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Special	Classes	of	Hybrid	Automata
– Timed	Automata	ß

– Rectangular	Initialized	HA

– Rectangular	HA

– Linear	HA	

– Nonlinear	HA
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Clocks	and	Clock	Constraints	
[Alur and	Dill	1991]	

• A	clock	variable	𝑥 is	a	continuous	(analog)	variable	of	type	real	such	that	
along	any	trajectory	𝜏 of	x,	for	all	t	∈ 𝜏. 𝑑𝑜𝑚, 𝜏 𝑡 ⌈𝑥 = 𝑡.	

• That	is,	�̇� = 1

• For	a	set	X	of	clock	variables,	the	set	Φ(X)	of	integral	clock	constraints	are	
expressions	defined	by	the	syntax:
g	::=	x	≤ 𝑞	 	𝑥 ≥ 𝑞	 	¬	𝑔		|	𝑔M ∧ 		𝑔P	
where	𝑥 ∈ 𝑋	𝑎𝑛𝑑	𝑞 ∈ 	ℤ

• Examples:	x	=	10;	x	∈ [2,	5);	true	are	valid	clock	constraints
• Semantics	of	clock	constraints	[𝑔]
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Integral	Timed	Automata	[Alur and	Dill	1991]	

Definition.	A	integral	timed	automaton	is	a	HIOA	
𝓐 =	〈𝑉, 𝑄, Θ, 𝐴, 𝒟,𝒯〉 where	

V	=	X	∪ 𝑙 ,	where	𝑋 is	a	set	of	n	clocks	and	𝑙 is	a	
discrete	state	variable	of	finite	type	Ł
A	is	a	finite	set	of	actions
𝒟	is	a	set	of	transitions	such	that	

The	guards	are	described	by	clock	constraings	Φ(𝑋)
𝑥, 𝑙 − 𝑎 → 𝑥t, 𝑙t implies	either	𝑥t = 𝑥 or	𝑥 = 0

𝒯 set	of	clock	trajectories	for	the	clock	variables	in	X
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Example:	Light	switch
automaton	Switch

variables
internal	x,	y:Real	:=	0,	loc:	{on,off}	:=	off

transitions
internal	push

pre	x	≥ 2
eff	if	loc =	off	then	y	:=	0	fi;	x	:=	0;	loc :=	on

internal	pop
pre	y	=	15	/\ loc =	off
eff x	:=	0

trajectories
invariant	loc =	on	\/	loc =	off
stop	when	y	=	15	/\ loc =	off
evolve d(x)	=	1;	d(y)	=	1

Description
Switch	can	be	turned	on	whenever	at	least	2	time	
units	have	elapsed	since	the	last	turn	off.	Switches	
off	automatically	15	time	units	after	the	last	on.
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Control	State	(Location)	Reachability	
Problem

• Given	an	ITA,	check	if	a	particular	location	is	
reachable	from	the	initial	states

• This	problem	is	decidable
• Key	idea:	
– Construct	a	Finite	State	Machine	that	is	a	time-
abstract	bisimilar to	the	ITA

– Check	reachability	of	FSM	
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A	Simulation	Relation	with	a	finite	
quotient

When	two	states	x1	and	x2	in	Q	behave	identically?
• x1. 𝑙𝑜𝑐 = x2.𝑙𝑜𝑐	and	
• x1	and	x2	satisfy	the	same	set	of	clock	constraints

– For	each	clock	𝑦 int(x1.𝑦) = int(x2.𝑦) or	int(x1.𝑦) ≥ 𝑐𝒜N	and	int(x2.𝑦) ≥
𝑐𝒜N.	(𝑐𝒜N	is	the	maxium	clock	guard of	𝑦)

– For	each	clock	𝑦 with	x1.𝑦 ≤ 𝑐𝒜N,	frac(x1.𝑦) = 0	iff frac(x2.𝑦) = 0
– For	any	two	clocks	𝑦 and	𝑧 with	x1.𝑦 ≤ 𝑐𝒜N and	x1.𝑧 ≤ 𝑐𝒜O,	frac(x1.𝑦)
≤ frac(x1.𝑧)	iff frac(x2.𝑦)	≤ frac(x2.𝑧)

Lemma. This	is	a	equivalence	relation on	Q

The	partition	of	Q	induced	by	this	relation	is	are	called	clock	regions	
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What	do	the	clock	regions	look	like?

Example	of	
Two	Clocks	

X	=	{y,z}
𝑐𝒜N =	2
𝑐𝒜O =	3
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Complexity

• Lemma.	The	number	of	clock	regions	is	
bounded	by	|X|!	2|X|∏ (2𝑐𝒜O + 2)�

O∈Q .
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Region	Automaton

• ITA	(clock	constants)	defines	the	clock	regions

• Now	we	add	the	“appropriate	transitions”	
between	the	regions	to	create	a	finite	automaton	
which	gives	a	time	abstract	bisimulation of	the	
ITA	with	respect	to	control	state	reachability
– Time	successors:	Consider	two	clock	regions	𝛾	and	𝛾t,	
we	say	that	𝛾t is	a	time	successor	of	𝛾 if	there	exits	a	
trajectory	of	ITA	starting	from	𝛾 that	ends	in	𝛾’

– Discrete	transitions:	Same	as	the	ITA
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Time	Successors

The	clock	regions	in	blue	are	
time	successors	of	the	clock	
region	in	red.	
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Example	1:	Region	Automata

ITA

Corresponding	FA
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Example	2

ITA

Clock	
Regions
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|X|!	2|X|∏ (2𝑐𝒜O + 2)�
O∈Q

Corresponding	FA

Drastically	increasing	with	the	
number	of	clocks
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Clocks	and	Rational Clock	Constraints

• A	clock	variable	x	is	a	continuous	(analog)	variable	of	type	
real	such	that	along	any	trajectory	𝜏 of	x,	for	all	t	∈
𝜏. 𝑑𝑜𝑚, 𝜏 ↓ 𝑥 𝑡 = 𝑡.	

• For	a	set	X	of	clock	variables,	the	set	Φ(X)	of	integral clock	
constraints	are	expressions	defined	by	the	syntax:
g	::=	x	≤ 𝑞	 	𝑥 ≥ 𝑞	 	¬	𝑔		|	𝑔M ∧ 		𝑔P	
where	𝑥 ∈ 𝑋	𝑎𝑛𝑑	𝑞 ∈ 	ℚ

• Examples:	x	=	10.125;	x	∈ [2.99,	5);	true	are	valid	rational	
clock	constraints

• Semantics	of	clock	constraints	[𝑔]
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Step	1.	Rational	Timed	Automata

• Definition.	A	rational timed	automaton	is	a	HA	
𝓐 =	〈𝑉, 𝑄, Θ, 𝐴, 𝒟,𝒯〉 where	
– V	=	X	∪ 𝑙𝑜𝑐 ,	where	𝑋 is	a	set	of	n	clocks	and	𝑙 is	a	
discrete	state	variable	of	finite	type	Ł

– A	is	a	finite	set	
– 𝒟	is	a	set	of	transitions	such	that	

• The	guards	are	described	by	rational	clock	constraings	Φ(𝑋)
• 𝑥, 𝑙 − 𝑎 → 𝑥t, 𝑙t implies	either	𝑥t = 𝑥 or	𝑥 = 0

– 𝒯 set	of	clock	trajectories	for	the	clock	variables	in	X
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Example:	Rational	Light	switch
Switch	can	be	turned	on	whenever	at	least	2.25	time	units	have	elapsed	since	the	last	
turn	off	or	on.	Switches	off	automatically	15.5	time	units	after	the	last	on.

automaton	Switch
internal	push;	pop
variables
internal	x,	y:Real	:=	0,	loc:{on,off}	:=	off
transitions
push
pre	x	>=2.25
eff	if	loc =	on	then	y	:=	0	fi;	x	:=	0;	loc :=	off

pop
pre	y	=	15.5	∧ loc =	off
eff	x	:=	0

trajectories
invariant	loc =	on	∨ loc =	off
stop	when	y	=	15.5	∧ loc =	off
evolve d(x)	=	1;	d(y)	=	1
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Control	State	(Location)	Reachability	
Problem

• Given	an	RTA,	check	if	a	particular	location	is	
reachable	from	the	initial	states

• Is	problem	decidable?	
• Yes
• Key	idea:	
– Construct	a	ITA	that	is	time-abstract	bisimilar to	
the	given	RTA

– Check	CSR	for	ITA
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Construction	of	ITA	from	RTA
• Multiply	all	rational	constants	by	a	

factor	q	that	make	them	integral
• Make	d(x)	=	q	for	all	the	clocks

• RTA	Switch	is	bisimilar to	ITA	Iswitch

• Simulation	relation	R	is	given	by	
• (u,s)	∈ 𝑅	iff u.x =	4	s.x and	u.y =	4	s.y

automaton	ISwitch
internal	push;	pop
variables
internal	x,	y:Real	:=	0,	loc:{on,off}	:=	off

transitions
push
pre	x	>=		9
eff	if	loc =	on	then	y	:=	0	fi;	x	:=	0;	loc :=	off
pop
pre	y	=	62	∧ loc =	off
eff	x	:=	0

trajectories
invariant	loc =	on	∨ loc =	off
stop	when	y	=	62	∧ loc =	off
evolve d(x)	=	4;	d(y)	=	4
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Step	2.	Multi-Rate	Automaton

• Definition.	A	multirate automaton	is	𝓐 =	〈𝑉, 𝑄, Θ, 𝐴, 𝒟,𝒯〉
where	
– V	=	X	∪ 𝑙𝑜𝑐 ,	where	𝑋 is	a	set	of	n	continuous	variables and	
𝑙𝑜𝑐 is	a	discrete	state	variable	of	finite	type	Ł

– A	is	a	finite	set	of	actions
– 𝒟	is	a	set	of	transitions	such	that	

• The	guards	are	described	by	rational	clock	constraings	Φ(𝑋)
• 𝑥, 𝑙 − 𝑎 → 𝑥t, 𝑙t implies	either	𝑥t = 𝑐	𝑜𝑟	𝑥t = 𝑥

– 𝒯 set	of	trajectories	such	that	
for	each	variable	𝑥 ∈ 𝑋	∃𝑘	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝜏 ∈ 𝒯, 𝑡 ∈ 𝜏. 𝑑𝑜𝑚		

𝜏 𝑡 . 𝑥 = 𝜏 0 . 𝑥 + 𝑘	𝑡
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Control	State	(Location)	Reachability	
Problem

• Given	an	MRA,	check	if	a	particular	location	is	
reachable	from	the	initial	states

• Is	problem	is	decidable?	Yes
• Key	idea:	
– Construct	a	RTA	that	is	bisimilar to	the	given	MRA
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Example:	Multi-rate	to	rational	TA
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Step	3.	Rectangular	HA
Definition.	An	rectangular	hybrid	automaton	(RHA)	is	a	HA	𝓐 = ⟨𝑉, 𝐴, 𝒯, 𝒟⟩
where	

– V	=	X	∪ 𝑙𝑜𝑐 ,	where	X	is	a	set	of	n	continuous	variables and	𝑙𝑜𝑐 is	a	
discrete	state	variable	of	finite	type	Ł

– A	is	a	finite	set	
– 𝒯 =∪ℓ 𝒯ℓ set	of	trajectories	for	X

• For	each	𝜏	 ∈ 𝒯ℓ, 𝑥 ∈ 𝑋 either	(i)	𝑑 𝑥 = 𝑘ℓ or	(ii)	𝑑 𝑥 ∈ 𝑘ℓM	, 𝑘ℓP	
• Equivalently,	(i)	𝜏 𝑡 ⌈𝑥 = 𝜏(0)⌈𝑥 + 𝑘ℓ𝑡

(ii)	𝜏(0)⌈𝑥 + 𝑘ℓM𝑡 ≤ 𝜏 𝑡 ⌈𝑥 ≤ 𝜏(0)⌈𝑥 + 𝑘ℓP𝑡
– 𝒟	is	a	set	of	transitions	such	that	

• Guards	are	described	by	rational	clock	constraings		
• 𝑥, 𝑙 →G 𝑥t, 𝑙t implies	𝑥t = 𝑥	𝑜𝑟𝑥t ∈ [𝑐M, 𝑐P]
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CSR	Decidable	for	RHA?

• Given	an	RHA,	check	if	a	particular	location	is	
reachable	from	the	initial	states?

• Is	this	problem	decidable?	No	
– [Henz95] Thomas	Henzinger,	Peter	Kopke,	Anuj	Puri,	and	Pravin	

Varaiya.	What's	Decidable	About	Hybrid	Automata?.	Journal	of	
Computer	and	System	Sciences,	pages	373–382.	ACM	Press,	1995.	

– CSR	for	RHA	reduction	to	Halting	problem	for	2	counter	machines
– Halting	problem	for	2CM	known	to	be	undecidable
– Reduction	in	next	lecture
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Step	4.	Initialized	Rectangular	HA
Definition.	An	initialized	rectangular	hybrid	automaton	(IRHA)	is	a	RHA	𝓐
where	

– V	=	X	∪ 𝑙𝑜𝑐 ,	where	 X	is	a	set	of	n	continuous	variables and		 𝑙𝑜𝑐 is	a	
discrete	state	variable	of	finite	type	Ł

– A	is	a	finite	set
– 𝒯 =∪ℓ 𝒯ℓ set	of	trajectories	for	X

• For	each	𝜏	 ∈ 𝒯ℓ, 𝑥 ∈ 𝑋 either	(i)	𝑑 𝑥 = 𝑘ℓ or	(ii)	𝑑 𝑥 ∈ 𝑘ℓM	, 𝑘ℓP	
• Equivalently,	(i)	𝜏 𝑡 ⌈𝑥 = 𝜏(0)⌈𝑥 + 𝑘ℓ𝑡

(ii)	𝜏(0)⌈𝑥 + 𝑘ℓM𝑡 ≤ 𝜏 𝑡 ⌈𝑥 ≤ 𝜏(0)⌈𝑥 + 𝑘ℓP𝑡
– 𝒟	is	a	set	of	transitions	such	that	

• Guards	are	described	by	rational	clock	constraings		
• 𝑥, 𝑙 →G 𝑥t, 𝑙t implies	if	dynamics	changes	from	ℓ to	ℓ′ then	𝑥t ∈
[𝑐M, 𝑐P],	otherwise	𝑥t = 𝑥
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Example:	Rectangular	Initialized	HA

1

𝑑 𝑥M = kM
𝑑 𝑥P = kP

2

𝑑 𝑥M = k′M
𝑑 𝑥P = kP

3

𝑑 𝑥M ∈ [𝑎, 𝑏]
𝑑 𝑥P = kS

Pre	𝑥M ≥ 𝐺 ∧ 𝑥P ≤ 𝐺	 Eff	𝑥M ≔ 0

Both	Pre	
𝑥M, 𝑥P have	
to	be	reset

Eff	𝑥M, 𝑥P ∈ [𝑐, 𝑑]
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CSR	Decidable	for	IRHA?

• Given	an	IRHA,	check	if	a	particular	location	is	
reachable	from	the	initial	states

• Is	this	problem	decidable?	Yes
• Key	idea:	
– Construct	a	2n-dimensional	initialized	multi-rate	
automaton	that	is	bisimilar to	the	given	IRHA

– Construct	a	ITA	that	is	bisimilar to	the	Singular	TA
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Split	every	variable	into	two	
variables---tracking	the	upper	
and	lower	bounds

IRHA MRA

𝑥 𝑥ℓ ;	𝑥'

Evolve:	𝑑(𝑥) ∈ 	 [𝑎M, 𝑏M] Evolve:	𝑑 𝑥ℓ = 𝑎M;	𝑑 𝑥' = 𝑏M

Eff:	𝑥t ∈ 	 [𝑎M, 𝑏M] Eff:		𝑥ℓ= 𝑎M; 𝑥' =	𝑏M

𝑥t = 𝑐 		𝑥ℓ= 𝑥' = 𝑐

Guard:	𝑥 ≥ 	5	 𝑥í ≥ 	5

𝑥í < 	5 ∧ 𝑥' ≥ 5 Eff	𝑥í = 	5

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu



Example	IRHA

v1
�̇� ∈ 1,3 	

�̇� ∈ [−3, −2]

v2
�̇� ∈ −4,−2 	
�̇� ∈ [−3,−2]

𝑐 ≔ 0; 𝑑 ≔ 1

𝑐 ≤ 5 ∧ 𝑑 ≤ −3
𝑐 ≔ 4

v3
�̇� ∈ −4,−2 	
�̇� ∈ [1,2]

𝑑 ≤ −5
𝑑 ≔ −4

v4
�̇� ∈ 1,3 	
�̇� ∈ [1,2]

𝑐 ≥ −3 ∧ 𝑑 ≤ −2
𝑐 ∈ [−1,−2]

𝑐 ≥ 0 ∧ 𝑑 ≤2
𝑑 ≔ 1
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Initialized	Singular	HA
v1

𝑐í̇ = 1	
𝑐'̇ = 3	
𝑑í̇ = −3	
𝑑'̇ = −2

v2
𝑐í̇ = −4
		𝑐'̇ = −2
		𝑑í̇ = −3		
𝑑'̇ = −2	

̇

𝑐í , 𝑐' ≔ 0; 𝑑í, 𝑑' ≔ 1

v3
𝑐í̇ = −4
		𝑐'̇ = −2
		𝑑í̇ = 1		
𝑑'̇ = 2	

̇

v4
𝑐í̇ = 1
		𝑐'̇ = 3
		𝑑í̇ = 1		
𝑑'̇ = 2	

̇
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Transitions

5

v1
𝑐í̇ = 1	
𝑐'̇ = 3	
𝑑í̇ = −3	
𝑑'̇ = −2

𝑐í ≤ 5
𝑐í, 𝑐' ≔ 4

-3

𝑐í	
𝑐'	

𝑑' 			

𝑑í	

𝑑' ≤ −3 no	reset
𝑑' > −3 ∧ 𝑑í ≤ −3	𝑑' ≔-3
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Initialized	Singular	HA
v1

𝑐í̇ = 1	
𝑐'̇ = 3	
𝑑í̇ = −3	
𝑑'̇ = −2

v2
𝑐í̇ = −4
		𝑐'̇ = −2
		𝑑í̇ = −3		
𝑑'̇ = −2	

̇

𝑐í , 𝑐' ≔ 0; 𝑑í, 𝑑' ≔ 1

𝑐í ≤ 5 ∧ 𝑑' ≤ −3
𝑐í, 𝑐' ≔ 4

𝑐í ≤ 5 ∧ 𝑑í ≤ −3 ∧ 𝑑' > −3
𝑐í, 𝑐' ≔ 4	𝑑' ≔ −3

v3
𝑐í̇ = −4
		𝑐'̇ = −2
		𝑑í̇ = 1		
𝑑'̇ = 2	

̇𝑑í ≤ −5
𝑑í𝑑' ≔ −4

v4
𝑐í̇ = 1
		𝑐'̇ = 3
		𝑑í̇ = 1		
𝑑'̇ = 2	

̇

𝑐' ≥ −3 ∧ 𝑑' ≤ −2
𝑐í ≔ −2𝑐' ≔ −1

𝑐' ≥ −3 ∧ 𝑑í ≤ −2	 ∧ 𝑑' > −2
𝑐í ≔ −2𝑐' ≔ −1	𝑑' − 2

𝑐í ≥ 0 ∧ 𝑑í ≤2
𝑑í, 𝑑' ≔ 1

𝑐í < 0 ∧ 𝑐' ≥ 0 ∧ 𝑑í ≤2
𝑐í ≔ 0𝑑í, 𝑑' ≔ 1
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Can	this	be	further	generalized	?	

• For	initialized	Rectangular	HA,	control	state	
reachability	is	decidable
– Can	we	drop	the	initialization	restriction?
• No,	problem	becomes	undecidable

– Can	we	drop	the	rectangular	restriction?
• No,	problem	becomes	undecidable

– Tune	in	in	a	week
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Data	structures	for	representing	sets

• Hyperrectangles
– gM; gP = 𝑥 ∈ 𝑅É	 			 x − gM 	V

≤ gP − gM 	V
} = ΠY[𝑔MY, 𝑔PY]

• Polyhedra
• Zonotopes
• Ellipsoids
• Support	functions
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Verification	in	tools
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Reachability	Computation	with	polyhedra

• A	set	of	states	is	
represented	by	
disjunction	of	linear	
inequalities
– 𝑙𝑜𝑐 = 𝑙M ∧ 𝐴M𝑥 ≤ 𝑏M ∨

𝑙𝑜𝑐 = 𝑙P ∧ 𝐴P𝑥 ≤ 𝑏P ∨
⋯

• Post(,)	computation	
performed	symbolically	
using	quantifier	
eliminationPortion	of	Navigation	benchmark

𝑥t = 𝑘 → 𝑃𝑜𝑠𝑡 𝑎M, 𝑎P = ∃𝑡	 𝑎M + 𝑘𝑡, 𝑎P + 𝑘𝑡 = [𝑎M,∞]
the	state	is	reachable	if	there	exists	a	time	when	we	reach	it.
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Summary
• ITA:	(very)	Restricted	class	of	hybrid	automata
– Clocks,	integer	constraints
– No	clock	comparison,	linear

• Control	state	reachability	with	Alur-Dill’s	
algorithm	(region	automaton	construction)

• Rational	coefficients
• Multirate Automata
• Initialized	Rectangular	Hybrid	Automata
• HyTech,	PHAVer use	polyhedral	reachability	
computations
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Summary
• ITA:	(very)	Restricted	class	of	hybrid	automata

– Clocks,	integer	constraints
– No	clock	comparison,	linear

• Control	state	reachability

• Alur-Dill’s	algorithm	
– Construct	finite	bisimulation (region	automaton)
– Idea	is	to	lump	together	states	that	behave	similarly	and	reduce	

the	size	of	the	model

• UPPAAL	model	checker	based	on	similar	model	of	timed	
automata
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