

University of Illinois at Urbana-Champaign

Lecture 5: Abstractions and Composition

Sayan Mitra

Plan

- Invariants and reachability
 - A simple technique for safety verification
- Abstraction
 - Motivation with discrete examples
 - Forward simulations for hybrid automata
- Composition

Invariants

Hybrid automaton $\mathcal{A} = \langle X, \Theta, A, D, T \rangle$

Recall, $I \subseteq val(X)$ is an invariant if $Reach_{\mathcal{A}} \subseteq I$

A set $I' \subseteq val(X)$ is inductive iff (a) $\Theta \subseteq I'$ (b) $\forall x \rightarrow^a x', x \in I' \Rightarrow x' \in I'$ (c) $\forall \tau \in T, \tau. fstate \in I' \Rightarrow$ $\tau.lstate \in I'$ val(X) I $Reach_{\mathcal{A}}$

Inductive invariants

Proposition. Inductive sets are invariants.

Proof. Consider an inductive set I', we will show that $Reach_{\mathcal{A}} \subseteq I'$. Pick any $\mathbf{x} \subseteq Reach_{\mathcal{A}}$. There exists an closed execution α with α . $lstate = \mathbf{x}$. We will do induction on length of α .

Base case. $\alpha = \tau_0$ and τ_0 is a point trajectory. Then by (a) $\tau_0(0) \in \Theta \subseteq I'$.

Inductive case 1. $\alpha = \alpha' \tau'$ and τ' is closed. By inductive hypothesis we know, α' . *lstate* = τ' . *fstate* $\in I'$. From (c), τ' . *lstate* $\in I'$. **Inductive case 2.** $\alpha = \alpha' \alpha' \tau'$ and τ' is a point traj. By inductive hypothesis we know, α' . *lstate* $\in I'$. From (b), τ' . *fstate* $\in I'$.

Inductive invariants 2

Is $Reach_{\mathcal{A}}$ an invariant? Is it an inductive invariant?

Not all invariants are inductive

Recall bouncing ball (height x)

Is $x \ge 0$ an inductive invariant?

 $x \le hc^{2k}$ is an invariant but not inductive. Why? $v^2 - (Hc^{2k} - x)2g = 0$ is an inductive invariant. Check this. $x \ge h; k \ge 0$

bounce

x = 0 / v < 0

v' := -cv;k:=k+1

Summary

If I is an inductive invariant of \mathcal{A} and $I \cap U = \emptyset$ the \mathcal{A} is safe w.r.t U.

Checking a given inductive invariant is (relatively) easy recall, $(a)\Theta \subseteq I'(b)\forall x \rightarrow^a x', x \in I' \Rightarrow x' \in I', (c)\forall \tau \in T, \tau. fstate \in I' \Rightarrow \tau. lstate \in I'$

Finding inductive invariants not so easy; requires iterative strengthening.

This is parallel to Lyapunov analysis. Checking if a given $V: val(X) \rightarrow R$ is a Lyapunov function is relatively easy; finding a Lypunov function is harder.

Abstractions and Simulations

Consider models that have the same external interface (input/output variables and actions)

We would like to approximate one (hybrid) automaton H_1 with another one H_2

 H_2 should be "simpler" and preserve some properties of H_1 (and not others)

Verifying H_2 we can then infer properties of H_1

Finite state examples

C03 0,1

С

 $Traces_{c} = \{0,1\}^{*}$

Lecture Slides by Sayan Mitra mitras@illinois.edu

Finite state examples

0,1

C03

B **simulates** A and vice versa. A and B are **bisimilar**.

C simulates both A and B. C is an abstraction of both A and B.

Lecture Slides by Sayan Mitra mitras@illinois.edu

В

С

How to prove B simulates A?

Show there exists a **simulation relation** from states of A to states of B. Say, R = ((A0, B02), (A2, B02), (A1, B13), (A3, B13))

Show that for every transition $Ai \rightarrow_A Ai'$ and $(Ai, Bj) \in R$ there exists Bj' such that

1. $Bj \rightarrow_B Bj'$ 2. $(Ai', Bj') \in R$ 3. $Trace(Bj \rightarrow_B Bj') = Trace(Aii) \rightarrow_A Ai'$

Finite state examples

0

1

1

B13

В

С

B02

0

C03

Check that A also simulates B and that C simulates both A and B.

Therefore, $Traces_A = Traces_B \subseteq Traces_C$?

Does A simulate C?

Lecture Slides by Sayan Mitra mitras@illinois.edu

Two Machines with identical sets of Traces but are not Bisimilar

(b) State Machine 2

$\mathcal{R} = \{\{q_0, t_0\}, \{q_1, t_1\}, \{q_2, t_1\}, \{q_3, t_2\}, \{q_4, t_3\}\}$

Lecture Slides by Sayan Mitra mitras@illinois.edu

A Simulation Example

- \mathcal{A} is an implementation of \mathcal{B}
- Is there a forward simulation from *A* to *B* ?
- Consider the forward simulation relation

• $\mathcal{A}: 2 \rightarrow_c 4$ cannot be simulated by \mathcal{B} from 2' although (2,2') are related.

Simulations (Same actions related states)

Forward simulation relation from \mathcal{A}_1 to \mathcal{A}_2 is a relation $\mathbb{R} \subseteq val(X_1) \times val(X_2)$ such that

- 1. For every $\mathbf{x_1} \in \Theta_1$ there exists $\mathbf{x_2} \in \Theta_2$ such that $\mathbf{x_1} R \mathbf{x_2}$
- 2. For every $\mathbf{x_1} \rightarrow_{a_1} \mathbf{x_1'} \in \mathcal{D}$ and $\mathbf{x_2}$ such that $\mathbf{x_1} R \mathbf{x_{2,}}$ there exists $\mathbf{x_2'}$ such that
 - $\mathbf{x_2} \rightarrow_{a_1} \mathbf{x_2'}$ and
 - x₁' R x₂'
- 3. For every $\tau_1 \in T_1$ and $\mathbf{x_2}$ such that τ_1 . *fstate* R $\mathbf{x_2}$, there exists $\tau_2 \in T_2$ that
 - $\mathbf{x_2} = \tau_2$. *fstate* and
 - **x**₁' R τ₂. *lstate*
 - τ_2 . dom = τ_1 . dom

Theorem. If there exists a forward simulation relation from hybrid automaton \mathcal{A}_1 to \mathcal{A}_2 then for every execution of \mathcal{A}_1 there exists a corresponding execution of \mathcal{A}_2 .

Simulation relations for hybrid automata

• Recall condition 3 in definition of simulation relation: $Trace(Bj \rightarrow_B Bj') = Trace(Ai \rightarrow_A Ai')$

- Hybrid automata have transitions and trajectories
- Different types of simulation depending on different notions for "Trace"
 - Match for all variable values, action names, and time duration of trajectories (abstraction)
 - Match variables but not time (time abstract simulation)
 - Match a subset (external) of variables and actions (trace inclusion)
 - Match single action/trajectory of A with a sequence of actions and trajectories of B Lecture Slides by Sayan Mitra mitras@illinois.edu

Timer simulates Ball (w.r.t. timing of bounce actions)

Automaton Ball(c,v₀,g) variables: x: Reals := 0v: Reals := v_0 actions: bounce transitions: bounce pre x = 0 / v < 0eff v := -cvtrajectories: evolve d(x) = v; d(v) = -ginvariant $x \ge 0$

Automaton Timer(c, v_0 g) variables: analog timer: Reals := $2v_0/g$, n:Naturals=0; actions: bounce transitions: bounce pre *timer* = 0 eff n:=n+1; timer := $\frac{2v_0}{ac^n}$ trajectories: evolve d(timer) = -1 invariant timer ≥ 0

Some nice properties of Forward Simulation

Let \mathcal{A}, \mathcal{B} , and \mathcal{C} be comparable TAs. If R_1 is a forward simulation from \mathcal{A} to \mathcal{B} and R_2 is a forward simulation from \mathcal{B} to \mathcal{C} , then $R_1 \circ R_2$ is a forward simulation from \mathcal{A} to \mathcal{C}

 ${\mathcal A}$ implements ${\mathcal C}$

The **implementation relation** is a preorder of the set of all (comparable) hybrid automata

(A preorder is a reflexive and transitive relation)

If R is a forward simulation from \mathcal{A} to \mathcal{B} and R⁻¹ is a forward simulation from \mathcal{B} to \mathcal{A} then R is called a **bisimulation** and \mathcal{B} are \mathcal{A} **bisimilar**

Bisimilarity is an **equivalence relation**

(reflexive, transitive, and symmetric) Mitra

Remark on Simulations and Stability

Stability not preserved by ordinary simulations and bisimulations [Prabhakar, et. al 15]

time time Stability Preserving Simulations and Bisimulations for Hybrid Systems, Prabhakar, Dullerud, Viswanathan IEEE Trans. Automatic Control 2015

Lecture Slides by Sayan Mitra mitras@illinois.edu

Backward Simulations

Backward simulation relation from \mathcal{A}_1 to \mathcal{A}_2 is a relation $\mathbb{R} \subseteq Q_1 \times Q_2$ such that

- 1. If $\mathbf{x_1} \in \Theta_1$ and $\mathbf{x_1} R \mathbf{x_2}$ then $\mathbf{x_2} \in \Theta_2$ such that
- 2. If $\mathbf{x'_1} \mathbb{R} \mathbf{x'_2}$ and $\mathbf{x_1} \mathbf{a} \rightarrow \mathbf{x_1'}$ then
 - $x_2 \beta \rightarrow x_2'$ and
 - **x**₁ R **x**₂
 - Trace(β) = a₁
- 3. For every $\tau \in \mathcal{T}$ and $\mathbf{x_2} \in \mathbf{Q_2}$ such that $\mathbf{x_1'} \in \mathbf{x_2'}$, there exists $\mathbf{x_2}$ such that
 - $x_2 \beta \rightarrow x_2'$ and
 - x₁ R x₂
 - Trace(β) = τ

Theorem. If there exists a backward simulation relation from \mathcal{A}_1 to \mathcal{A}_2 then $ClosedTraces_1 \subseteq ClosedTraces_2$

University of Illinois at Urbana-Champaign

COMPOSITION

Lecture Slides by Sayan Mitra mitras@illinois.edu

Composition of Hybrid Automata

The parallel **composition** operation on automata enable us to construct larger and more complex models from simpler automata modules

 \mathcal{A}_1 to \mathcal{A}_2 are compatible if $X_1 \cap X_2 = H_1 \cap A_2 = H_2 \cap A_1 = \emptyset$

Variable names are disjoint; Action names of one are disjoint with the internal action names of the other

Modeling a Simple Failure Detector System

- Periodic send
- Channel
- Timeout

Composition

- For compatible \mathcal{A}_1 and \mathcal{A}_2 their composition $\mathcal{A}_1 \mid \mid \mathcal{A}_2$ is the structure $\mathcal{A} = (X, Q, \Theta, E, H, D, T)$
- $X = X_1 \cup X_2$ (disjoint union)
- $Q \subseteq val(X)$
- $\Theta = \{ \mathbf{x} \in Q | \forall i \in \{1,2\}: \mathbf{x}. Xi \in \Theta_i \}$
- $H = H_1 \cup H_2$ (disjoint union)
- $E = E_1 \cup E_2$ and $A = E \cup H$
- $(\mathbf{x}, a, \mathbf{x}') \in \mathcal{D}$ iff
 - $a \in H_1$ and $(\mathbf{x}. X_1, a, \mathbf{x}'. X_1) \in \mathcal{D}_1$ and $\mathbf{x}. X_2 = \mathbf{x}. X_2$
 - $a \in H_2$ and $(\mathbf{x}. X_2, a, \mathbf{x}'. X_2) \in \mathcal{D}_2$ and $\mathbf{x}. X_1 = \mathbf{x}. X_1$
 - Else, $(x. X_1, a, x'. X_1) \in \mathcal{D}_1$ and $(x. X_2, a, x'. X_2) \in \mathcal{D}_2$
- *T*: set of **trajectories** for X
 - $\quad \tau \in \ \mathcal{T} \ \text{iff} \ \forall \ i \ \in \{1,2\}, \ \tau.Xi \in \mathcal{T}_{\mathsf{i}}$

Theorem . \mathcal{A} is also a hybrid automaton.

Example: Send || TimedChannel

mitras@illinois.edu

```
Automaton Channel(b,M)
 variables: internal
         queue: Queue[M,Reals] := {}
         clock1 · Reals ·= 0
 actions: external send(m:M), receive(m:M)
 transitions:
    send(m)
    pre true
    eff queue := append(<m, clock1+b>, queue)
     receive(m)
    pre head(queue)[1] = m
    eff queue := queue.tail
 trajectories:
    evolve d(clock1) = 1
    stop when \exists m, d, \langlem,d\rangle \in queue
         \land clock=d
                                     Lecture Slides by Sayan Mitra
```

```
Automaton PeriodicSend(u, M)
         variables: internal clock: Reals := 0
          actions: external send(m:M)
         transitions:
                    send(m)
                    pre clock = u
                    eff clock := 0
          trajectories:
                    evolve d(clock) = 1
                    stop when clock=u
```

Composed Automaton

```
Automaton SC(b,u)
 variables: internal queue: Queue[M,Reals] := {}
         clock s, clock c: Reals := 0
 actions: external send(m:M), receive(m:M)
 transitions:
    send(m)
    pre clock s = u
    eff queue := append(<m, clock_c+b>, queue); clock_s := 0
    receive(m)
    pre head(queue)[1] = m
    eff queue := queue.tail
 trajectories:
    evolve d(clock_c) = 1; d(clock_s) = 1
    stop when
         (\exists m, d, <m,d > \in queue \land clock_c=d)
         \langle (clock_s=u) \rangle
                                 Lecture Slides by Sayan Mitra
```

mitras@illinois.edu

Modeling a Simple Failure Detector System

- Periodic send || Channel
- Periodic send || Channel || Timeout

Time bounded channel & Simple Failure Detector

```
Automaton Timeout(u,M)
 variables: internal suspected: Boolean := F,
        clock: Reals := 0
 actions: external receive(m:M), timeout
 transitions:
    receive(m)
    pre true
    eff clock := 0; suspected := false;
    timeout
    pre ~suspected \land clock = u
    eff suspected := true
 trajectories:
    evolve d(clock) = 1
    stop when clock = u / \sim suspected
```

Lecture Slides by Sayan Mitra mitras@illinois.edu

General composition

nitras@illinois.edu

Time bounded channel & Simple Failure Detector

```
Automaton Channel(b,M)
Automaton Timeout(u,M)
 variables: suspected: Boolean := F,
                                            variables: queue: Queue[M,Reals] := {}
         clock: Reals := 0
                                                   clock: Reals := 0
                                            actions: external send(m:M), receive(m:M)
 actions: external receive(m:M),
timeout
                                            transitions:
 transitions:
                                               send(m)
    receive(m)
                                               pre true
    pre true
                                               eff queue := append(<m, clock+b>, queue)
    eff clock := 0; suspected := false;
                                               receive(m)
    timeout
                                               pre head(queue)[1] = m
    pre \sim suspected / clock = u
                                               eff queue := queue.tail
                             (1-f) ≤ d(clock trajectories:
    eff suspected := true
 trajectories:
                                               evolve d(clock) = 1
    evolve d(clock) = 1
                                               stop when \exists m, d, \langlem,d\rangle \in queue
    stop when clock = u / \land \sim suspected
                                                    \wedge clock=d
```

Lecture Slides by Sayan Mitra mitras@illinois.edu

Some properties about composed automata

- Let $\mathcal{A} = \mathcal{A}_1 \mid \mid \mathcal{A}_2$ and let α be an execution fragment of \mathcal{A} .
 - Then $\alpha_i = \alpha | (A_i, X_i)$ is an execution fragment of \mathcal{A}_i
 - α is time-bounded iff both α_1 and $\alpha_2\,$ are time-bounded
 - α is admissible iff both α_1 and $\alpha_2\,$ are admissible
 - α is closed iff both α_1 and $\alpha_2\,$ are closed
 - α is non-Zeno iff both α_1 and $\alpha_2\,$ are non-Zeno
 - α is an execution iff both α_1 and $\alpha_2\,$ are executions
- Traces $_{\mathcal{A}} = \{ \boldsymbol{\beta} \mid \boldsymbol{\beta} \mid \boldsymbol{\beta} \mid \mathbf{E}_{i} \in \text{Traces } \mathcal{A}_{i} \}$
- See examples in the TIOA monograph

Substitutivity

- Theorem. Suppose \mathcal{A}_1 , \mathcal{A}_2 and \mathcal{B} have the same external interface and \mathcal{A}_1 , \mathcal{A}_2 are compatible with \mathcal{B} . If \mathcal{A}_1 implements \mathcal{A}_2 then $\mathcal{A}_1 || \mathcal{B}$ implements $\mathcal{A}_2 || \mathcal{B}$
- Proof sketch.
- Define the simulation relation:

Substutivity

- Theorem. Suppose \$\mathcal{A}_1 \mathcal{A}_2 \mathcal{B}_1\$ and \$\mathcal{B}_2\$ are HAs and \$\mathcal{A}_1 \mathcal{A}_2\$ have the same external actions and \$\mathcal{B}_1 \mathcal{B}_2\$ have the same external actions and \$\mathcal{A}_1 \mathcal{A}_2\$ is compatible with each of \$\mathcal{B}_1\$ and \$\mathcal{B}_2\$
- If \mathcal{A}_1 implements \mathcal{A}_2 and \mathcal{B}_1 implements \mathcal{B}_2 then $\mathcal{A}_1 \mid \mid \mathcal{B}_1$ implements $\mathcal{A}_2 \mid \mid \mathcal{B}_2$.
- Proof. \$\mathcal{A}_1\$ || \$\mathcal{B}_1\$ implements \$\mathcal{A}_2\$ || \$\mathcal{B}_1\$ implements \$\mathcal{A}_2\$ || \$\mathcal{B}_2\$ By transitivity of implementation relation \$\mathcal{A}_1\$ || \$\mathcal{B}_1\$ implements \$\mathcal{A}_2\$ || \$\mathcal{B}_2\$

• **Theorem.** $\mathcal{A}_1 || \mathcal{B}_2$ implements $\mathcal{A}_2 || \mathcal{B}_2$ and \mathcal{B}_1 implements \mathcal{B}_2 then $\mathcal{A}_1 || \mathcal{B}_1$ implements $\mathcal{A}_2 || \mathcal{B}_2$.

Summary

Implementation Relation

Forward and Backward simulations

- Composition
- Substitutivity