
University of Illinois
at Urbana-Champaign

Lecture	4:	Dynamical	and	Hybrid	
Systems

Sayan	Mitra



Plan

• Dynamical	system	models
– notions	of	solutions
– Linear	dynamical	systems

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu



Introduction	to	dynamical	systems
Behaviors	of	physical	processes	are	described	in	
terms	of	instantaneous	laws

Common	notation: ÇÈ »
Ç»

= 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 	− 1 ,
where	time	𝑡 ∈ ℝ;	state	𝑥 𝑡 ∈ ℝ�; 𝑖𝑛𝑝𝑢𝑡		𝑢 𝑡 ∈
ℝÊ; 	𝑓: ℝ�	×	ℝÊ	×	ℝ → ℝ�

Initial	value	problem:	Given	system	(1)	and	initial	
state	𝑥[ ∈ ℝ�, 𝑡[ ∈ ℝ,	and	input	u:ℝ → ℝÊ, find	a	
state	trajectory	or	solution	of	(1).
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Notions	of	solution
What	is	a	solution?	Many	different	notions.

Definition	1.	(First	attempt)	Given	 𝑥[ and	 𝑢, 𝜉: 	ℝ → ℝ�
is	a	solution	or	trajectory	iff (1)	𝜉 𝑡[ = 𝑥[ and	(2)	
Ç
Ç»
𝜉 𝑡 = 𝑓(𝜉 𝑡 , 𝑢 𝑡 , 𝑡)), ∀𝑡 ∈ ℝ.	

Mathematically	makes	sense,	but	too	restrictive.	Assumes	
that	𝜉 is	not	only	continuous,	but	also	differentiable.	This	
disallows	u(𝑡) to	be	discontinuous,	which	is	often	
required	for	optimal	control.
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Modified	notion
Definition.	𝑢 ⋅ is	a	piece-wise	continuous	with	
set	of	discontinuity	points	𝐷 ⊆ ℝÊ if	
(1) ∀𝜏 ∈ 𝐷, lim

»→Ñ�
𝑢 𝑡 < ∞;	 lim

»→ÑÓ
𝑢 𝑡 < ∞

(2) Continuous	from	right	 lim
»→Ñ�

𝑢 𝑡 = 𝑢 𝑡
(3) ∀	𝑡[ < 𝑡M , 𝑡[, 𝑡M ∩ 𝐷 is	finite	

𝑃𝐶( 𝑡[, 𝑡M , ℝÊ)	is	the	set	of	all	piece-wise	
continuous	functions	over	the	domain	 𝑡[, 𝑡M

Define	𝑝 𝜉 𝑡 , 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 , for	a	given	
𝑢 𝑡 . Since	𝑢 𝑡 is	PC	in	𝑡 so	is	𝑝 in	the	second	
argument.	

Definition	2.	Given		𝑥[ and		𝑢, 𝜉: 	ℝ → ℝ� is	a	
solution	or	trajectory	iff (1)	𝜉 𝑡[ = 𝑥[ and	(2)	Ç
Ç»
𝜉 𝑡 = 𝑝(𝜉 𝑡 , 𝑡), ∀𝑡 ∈ ℝ\D.	

𝜏M 𝜏P

𝑢 𝑡
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Is	PC	input	𝑢 𝑡 adequate	for	
guaranteeing	existence	of	solutions?	

Example.	�̇� 𝑡 = −𝑠𝑔𝑛 𝑥 𝑡 ; 𝑥[ = 𝑐; 𝑡[ = 0; 𝑐 > 0
Solution:	𝜉 𝑡 = 𝑐 − 𝑡 for	𝑡 ≤ 𝑐;	check	𝜉̇ = −1
Problem:	𝑓 discontinuous	is	𝑥

Example.	�̇� 𝑡 = 𝑥P; 𝑥[ = 𝑐; 𝑡[ = 0; 𝑐 > 0
Solution:	𝜉 𝑡 = �

M#»�
works	for	𝑡 < 1/𝑐;	check	𝜉̇

Problem:	As	𝑡 → M
�
then	𝑥 𝑡 → ∞;	𝑝 grows	too	fast
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Lipschitz	continuity

A	function	𝑓:ℝ� → ℝ is	Lipschitz	continuous	if	
there	exist	𝐿 > 0 such	that	for	any	pair	𝑥, 𝑥′ ∈
ℝ�,	 𝑓 𝑥 − 𝑓 𝑥′ ≤ 𝐿 𝑥 − 𝑥t

Examples:	6𝑥 + 4; 𝑥 ; all	differentiable	
functions	with	bounded	derivatives	

Non-examples:	 𝑥� ; 	𝑥P (locally	Lipschitz)	
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Existence	and	uniqueness	of	solutions

Theorem.	If	𝑝(𝑥 𝑡 , 𝑥) is	Lipschitz	continuous	in	
the	first	argument	then	(1)	has	unique	solutions.

Transition	system	model
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Linear	time-varying	systems
In	general,	for	nonlinear	dynamical	systems	we	do	not	have	closed	form	solutions	for	
𝜉 𝑡 , but	there	are	numerical	solvers	like	CAPD,	VNODE

�̇� 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢 𝑡 --- (2)
𝑦 𝑡 = 𝐶 𝑡 𝑥 𝑡 + 𝐷 𝑡 𝑢 𝑡 	

continuous	everywhere	except	𝐷È

Theorem.	Let	𝜉 𝑡, 𝑡[, 𝑥[, 𝑢 be	the	solution	for	(2)	with	points	of	discontinuity	, 𝐷È
1. ∀𝑡[ ∈ ℝ, 𝑥[ ∈ ℝ�, 𝑢 ∈ 𝑃𝐶 ℝ,ℝÊ , 𝜉 ⋅, 𝑡[, 𝑥[, 𝑢 : ℝ → ℝ� is	continuous	and	

differentiable	∀	𝑡 ∈ ℝ ∖ 𝐷È
2. ∀𝑡, 𝑡[ ∈ ℝ, 𝑢 ∈ 𝑃𝐶 ℝ,ℝÊ , 𝜉 𝑡, 𝑡[,⋅, 𝑢 : ℝ� → ℝ� is	continuous
3. ∀𝑡, 𝑡[ ∈ ℝ, 𝑥[M, 𝑥[P ∈ ℝ�, 𝑢M,𝑢P ∈ 𝑃𝐶 ℝ,ℝÊ , 𝑎M, 𝑎P ∈ ℝ, 𝜉(𝑡, 𝑡[, 𝑎M𝑥[M +

𝑎P𝑥[P, 𝑎M𝑢M + 𝑎P𝑢P) = 𝑎M𝜉 𝑡, 𝑡[, 𝑥[M, 𝑢M + 𝑎P𝜉 𝑡, 𝑡[, 𝑥[P, 𝑢P
4. ∀𝑡, 𝑡[ ∈ ℝ, 𝑥[ ∈ ℝ�, 𝑢 ∈ 𝑃𝐶 ℝ,ℝÊ , 𝜉 𝑡, 𝑡[, 𝑥[, 𝑢 = 𝜉 𝑡, 𝑡[, 𝑥[, 𝟎 +

𝜉 𝑡, 𝑡[, 0, 𝑢 Lecture	Slides	by	Sayan	Mitra
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Linear	system	and	solutions

�̇� 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)

For	a	given	initial	state	𝑥[ ∈ ℝ�, 𝑡[ ∈
ℝ 𝑎𝑛𝑑	𝑢(. ) ∈ 𝑃𝐶(ℝ,ℝ�) the	solution is	a	
function	𝜉 . , 𝑡[, 𝑥[, 𝑢 : ℝ → ℝ�

We	studied	several	properties	of	𝜉 in	the	last	
lecture:	continuity	with	respect	to	first	and	third	
argument,	linearity,	decomposition

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu



Linear	system	and	solutions

• Since	𝜉 . , 𝑡[, 𝑥[, 𝑢 : ℝ → ℝ� is	a	linear	
function	of	the	initial	state	and	input,

• 𝜉 𝑡, 𝑡[, 𝑥[, 𝑢 =	𝜉 𝑡, 𝑡[, 0, 𝑢 +	𝜉 . , 𝑡[, 𝑥[, 0
• Let	us	focus	on	the	linear	function	
𝜉 . , 𝑡[, 𝑥[, 0

• Define	Φ . , 𝑡[ 𝑥[ = 𝜉 . , 𝑡[, 𝑥[, 𝑢
• This	Φ . , 𝑡[ :ℝ → ℝ�×� is	called	the	state	
transition	matrix
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Properties	of	Φ

• Φ . , 𝑡[ : ℝ → ℝ�×Þ is	the	unique	solution	of	(2)	and	is	
defined	by	a	(Peano-Baker)	infinite	sequence	of	integrals

• ß
ß»
Φ 𝑡, 𝑡[ = 𝐴 𝑡 Φ(𝑡, 𝑡[) with	Φ 𝑡, 𝑡 = 𝐼

– Continuous	everywhere

– Differentiable	everywhere	except	𝐷È (𝐴 𝑡 isn’t)

• ∀𝑡[, 𝑡M, 𝑡 Φ 𝑡, 𝑡[ = Φ 𝑡, 𝑡M Φ 𝑡M, 𝑡[

• Φ 𝑡, 𝑡[ is	invertible	 Φ 𝑡, 𝑡[ #M = Φ 𝑡[, 𝑡 	
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Solution	of	linear	systems	in	Φ

Theorem.	
𝜉 𝑡, 𝑡[, 𝑥[, 𝑢

= Φ 𝑡, 𝑡[ 𝑥[ + à Φ 𝑡, 𝜏 𝐵 𝜏 𝑢 𝜏 𝑑𝜏
»

»á
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Linear	time	invariant	system

�̇� 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡

Matrix	exponential:

𝑒�» = 1 + 𝐴𝑡 +
1
2! 𝐴𝑡

P +	… =ã
1
𝑘! 𝐴𝑡

 
ä

[

Theorem.Φ 𝑡, 𝑡[ = 𝑒� »#»á ,	that	is

𝜉 𝑡, 𝑡[, 𝑥[, 𝑢 = 𝑥[e�(»#»á) + à e�(»#Ñ)𝐵𝑢 𝜏 𝑑𝜏
»

»á
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Discrete	time	models	/	discrete	
transition	systems

• 𝑥 𝑡 + 1 = 𝑓 𝑥 𝑡 , 𝑢 𝑡
• 𝑥 𝑡 + 1 = 𝑓(𝑥 𝑡 ) autonomous
• Execution:	𝑥[, 𝑓 𝑥[ , 𝑓P 𝑥[ , …	
• 𝑨 = ⟨𝑄, 𝑄[, 𝑇⟩
– 𝑄 = ℝ�, 𝑄[ = 𝑥[
– 𝑇:ℝ� → ℝ�;	T(𝑥) 	= 𝑓(𝑥)
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Discretized	or	sampled-time	model

• �̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡
• Assume:	𝑢 ∈ 𝑃𝐶 ℝ,𝑈 	𝑤ℎ𝑒𝑟𝑒	𝑈 ⊆ ℝÊ is	a	finite	set
• 𝜉 𝑡, 𝑡[, 𝑥[, 𝑢
• Fix	a	sampling	period	𝛿 > 0	
• 𝑨𝜹 = ⟨𝑄, 𝑄[, 𝑈, 𝑇⟩
– 𝑄 = ℝ�, 𝑄[ = 𝑥[ , 𝐴𝑐𝑡 = 𝑈,	
– 𝑇 ⊆ ℝ�×𝑈×	ℝ�;	 𝑥, 𝑢, 𝑥t ∈ T	iff		𝑥t = 𝜉(𝛿, 0, 𝑥, 𝑢)
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Properties	for	dynamical	systems

What	type	of	properties	are	we	interested	in?	
• Invariance	
• State	remains	bounded	
• Converges	to	target
• Bounded	input	gives	bounded	output	(BIBO)
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Aleksandr M.	Lyapunov
Aleksandr Mikhailovich	Lyapunov (Russian:	June	6	
1857–November	3,	1918)	was	a	Russian	
mathematician	and	physicist.	

His	methods,	which	he	developed	in	1899,	make	it	
possible	to	define	the	stability	of	sets	of	ordinary	
differential	equations.	He	created	the	modern	theory	
of	the	stability	of	a	dynamic	system.	In	the	theory	of	
probability,	he	generalized	the	works	of	Chebyshev	
and	Markov,	and	proved	the Central	Limit	
Theorem under	more	general	conditions	than	his	
predecessors.
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Requirements:	Stability

• We	will	focus	on	time	invariant	autonomous	
systems	(closed	systems,	systems	without	inputs)	

• �̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑥[ ∈ ℝ�, 𝑡[ = 0 –(1)
• 𝜉 𝑡 is	the	solution
• |𝜉 𝑡 | norm
• 𝑥∗ ∈ ℝ� is	an	equilibrium	point	if	𝑓 𝑥∗ = 0.
• For	analysis	we	will	assume	0	to	be	an	
equilibrium	point	of	(1)	with	out	loss	of	generality
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Example:	Pendulum
Pendulum	equation
𝑥M = 𝜃		𝑥P = �̇�

𝑥P = �̇�M

�̇�P = −
𝑔
𝑙 sin 𝑥M −

𝑘
𝑚𝑥P

𝑥Ṗ
𝑥Ṁ

=	 −
ì
í
sin 𝑥M −  

Ê
𝑥P

𝑥P

𝑘: friction	coefficient	

Two	equilibrium	points:	 0,0 , (𝜋, 0)

𝑙
𝜃

𝑚
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Lyapunov stability

Lyapunov stability:	The	system	(1)	is	said	to	be	
Lyapunov stable	(at	the	origin)	if	for	every	𝜀 >
0	there	exists	𝛿ð > 0	such	that	for	every	if	
𝜉 0 ≤ 𝛿ð then	for	all	t ≥ 0, 𝜉 𝑡 ≤ 𝜀.

How	is	this	related	to	
invariants	and	
reachable	states	?

𝛿ð
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Asymptotically	stability

The	system	(1)	is	said	to	be	Asymptotically	stable	
(at	the	origin)	if	it	is	Lyapunov stable	and	there	
exists	𝛿P > 0	such	that	for	every	if	 𝜉 0 ≤ 𝛿P then	
t → ∞, 𝜉 𝑡 → 𝟎.
If	the	property	holds	for	any	𝛿P then	Globally	
Asymptotically	Stable
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Example:	Pendulum
Pendulum	equation
𝑥M = 𝜃		𝑥P = �̇�

𝑥P = �̇�M

�̇�P = −
𝑔
𝑙 sin 𝑥M −

𝑘
𝑚𝑥P

𝑥Ṗ
𝑥Ṁ

=	 −
ì
í
sin 𝑥M −  

Ê
𝑥P

𝑥P

Two	equilibrium	
points:	 0,0 , (𝜋, 0)

𝒙 = 	 𝟎, 𝟎
asymptotically	stable

𝒙 = 	 𝝅, 𝟎
unstable

𝑥M

𝑥 P
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Example:	Pendulum

Pendulum	equation

𝑥M = 𝜃		𝑥P = �̇�

𝑥P = �̇�M

�̇�P = −
𝑔
𝑙 sin 𝑥M −

𝑘
𝑚 𝑥P

𝑥Ṗ
𝑥Ṁ

=	 −
ì
í
sin 𝑥M −  

Ê
𝑥P

𝑥P

𝑘 = 0 no	friction
𝒙∗ = 	 𝟎, 𝟎

stable	but	not	
asymptotically	stable

𝒙∗ = 	 𝝅, 𝟎
unstable
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Van	der	pol	oscillator

Van	der	pol	oscillator
𝑑𝑥P

𝑑𝑡P − 𝜇 1 − 𝑥P
𝑑𝑥
𝑑𝑡 + 𝑥 = 0

𝑥M = 𝑥; 𝑥P = �̇�M;
coupling	coefficient	𝜇 = 2		0.1

𝑥Ṗ
𝑥Ṁ

=	 𝜇 1 − 𝑥MP 𝑥P −	𝑥M
𝑥P

stable	?	
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Stability	of	solutions*	(instead	of	
points)

• For	any	𝜉 ∈ PC ℝö[, ℝ� define	the	s-norm	 𝜉 ÷ = sup
»∈ℝ

| 𝜉 𝑡 |

• A	dynamical	system	can	be	seen	as	an	operator	that	maps	initial	
states	to	signals		𝑇:ℝ� → 𝑃𝐶 ℝö[, ℝ�

• Lyapunov stability	required	that	this	operator	is	continuous

• The	solution	𝜉∗ is	Lyapunov stable	if	𝑇 is	continuous	as	
𝜉∗(0)	. 	i. e. ,	for	every	𝜀 > 0	there	exists	𝛿ð > 0	such	that	for	every	
𝑥[ ∈ ℝ� if	 𝜉∗ 0 − 𝑥[ ≤ 𝛿ð then	 𝑇 𝜉∗ 𝑡 − 𝑇 𝑥[ ÷

≤ 𝜀.
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Butterfly*

𝑥Ṗ
𝑥Ṁ

=	
2𝑥M𝑥P
𝑥MP − 𝑥PP

All	solutions	converge	to	0	
but	the	equilibrium	point	
(0,0)	is	not	Lyapunov stable

*Not	discussed	in	class Lecture	Slides	by	Sayan	Mitra
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Verifying	Stability	for	Linear	Systems

Consider	the	linear	system	�̇� = 𝐴𝑥

Theorem.	
1.	It	is	asymptotically	stable	iff all	the	eigenvalues	of	A	have	
strictly negative	real	parts	(Hurwitz).

1.	It	is	Lyapunov stable	iff all	the	eigen values	of	A	have	real	
parts	that	are	either	zero	or	negative	and	the	Jordan	blocks	
corresponding	to	the	eigenvalues	with	zero	real	parts	are	of	
size	1.
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Example	1:	Simple	linear	model	of	an	economy

• 𝑥:	national	income	𝑦: rate	of	consumer	spending;	𝑔:	
rate	government	expenditure

• �̇� = 𝑥	 − 𝛼𝑦
• �̇� = 𝛽 𝑥 − 𝑦 − 𝑔
• 𝑔 = 𝑔[ + 𝑘𝑥 𝛼, 𝛽, 𝑘 are	positive	constants
• What	is	the	equilibrium?	
• 𝑥∗ = ìáú

ú#M# ú
𝑦∗ = ìáú

ú#M# ú
• Dynamics:

• �̇�
�̇� = 1 −𝛼

𝛽(1 − 𝑘) −𝛽
𝑥
𝑦
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Example:	Simple	linear	model	of	an	
economy

• 𝛼 = 3, 𝛽 = 1, 𝑘 = 0

• 𝜆M, 𝜆M∗ = (−.25 ± 𝑖	1.714)

• Negative	real	parts,	
therefore,	asymptotically	
stable	and	the	national	
income	and	consumer	
spending	rate	converge	to	
𝑥 = 1.764 𝑦 = 5.294
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Stability	of	nonlinear	systems
• For	any	positive	definite	function	of	state	𝑉:ℝ� → ℝ
– 𝑉 𝑥 ≥ 0 and	𝑉 𝑥 = 0	iff	𝑥 = 0

• Sub	level	sets	of	𝐿þ = {𝑥 ∈ ℝ� |	𝑉 𝑥 ≤ 𝑝}
• 𝑉(𝜉 𝑡 )
V	differentiable	with	continuous	first	derivative

• �̇� = 	𝑑 ÿ ! »
Ç»

=	?

• ßÿ
ßÈ
. Ç
Ç»

𝜉 𝑡 = ßÿ
ßÈ
. 𝑓(𝑥) is	also	continuous

• 𝑉 is	radially	unbounded	if	 𝑥 → ∞ ⇒ 𝑉 𝑥 → ∞
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Verifying	Stability

Theorem.	(Lyapunov)	Consider	the	system	(1)	
with	state	space	𝜉 𝑡 ∈ ℝ� and	suppose	there	
exists	a	positive	definite,	continuously	
differentiable	function	𝑉:ℝ� → ℝ.	The	system	
is:	

1.	Lyapunov stable	if	�̇� 𝜉 𝑡 = ßÿ
ßÈ
𝑓 𝑥 ≤ 0

2.	Asymptotically	stable	if	�̇� 𝜉 𝑡 < 0
3.	It	is	globally	AS	if	V	is	also	radially	unbounded.	
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Proof	sketch:	Lyapunov	stable	if	�̇� ≤ 0

• Assume	�̇� ≤ 0	
• Consider	a	ball		Bð	around	the	origin	of	

radius	𝜀 > 0.	
• Pick	a	positive	number	𝑏 < min

È Zð
𝑉 𝑥 .

• Let	𝛿 be	a	radius	of	ball	around	origin	which	
is	inside	B$ =	 𝑥	 𝑉 𝑥 ≤ 𝑏}

• Since	along	all	trajectories	V	is	non-
increasing,	starting	from	𝐵$ each	solution	
satisfies	𝑉 𝜉 𝑡 ≤ 𝑏	and	therefore	remains	
in	Bð

Bð
𝐿% 𝐵$
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Proof	sketch:	Asymptotically	stable	if	�̇� 𝜉 𝑡 < 0

• Assume	�̇� < 0	
• Take	arbitrary	 𝜉 0 ≤ 𝛿,	where	this	𝛿

comes	from	some	𝜀 for	Lyapunov stability
• Since	𝑉 𝜉 . > 0 and	decreasing	along	𝜉	it	

has	a	limit	𝑐 ≥ 0	at	𝑡 → ∞
• It	suffices	to	show	that	this	limit	is	actually	0
• Suppose	not,	c	>	0	then	the	solution	evolves	

in	the	compact	set	𝑆 = 𝑥	 	𝑟 ≤ 𝑥 ≤ 𝜀} for	
some	sufficiently	small	𝑟

• Let	𝑑 = max
È∈&

�̇�(𝑥) [slowest	rate]
• This	number	is	well-defined	and	negative
• �̇� 𝜉 𝑡 ≤ 𝑑	for	all	t
• 𝑉 𝑡 ≤ 𝑉 0 + 𝑑𝑡	
• But	then	eventually	𝑉 𝑡 < 𝑐

Bð

𝑟
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Example	2

• �̇�M = −𝑥M + 𝑔 𝑥P ; �̇�P = −𝑥P + ℎ 𝑥M

• 𝑔 𝑢 ≤ '
P
, ℎ 𝑢 ≤ '

P

• Use	𝑉 = M
P
𝑥MP + 𝑥PP ≥ 0

• �̇� = 𝑥M	�̇�M + 𝑥P	�̇�P
=−𝑥MP −𝑥PP +𝑥M𝑔 𝑥P + 𝑥Pℎ 𝑥M
≤ −𝑥MP −𝑥PP +

M
P
|𝑥M𝑥P| + |𝑥P𝑥M|

≤ − M
P
(𝑥MP + 𝑥PP) = −𝑉

We	conclude	global	asymptotic	stability	(in	fact	global	exponential	
stability)	without	knowing	solutions

𝑥M − 𝑥P
P
≥ 0	

𝑥MP + 𝑥PP ≥ 2 𝑥M𝑥P

𝑥M𝑥P ≤
1
2 (𝑥M

P + 𝑥PP)
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Proposition. Every	sublevel	set	of	V	is	an	
invariant

Proof.	𝑉 𝜉 𝑡 =	
= 𝑉 𝜉 0 + ∫ �̇� 𝜉 𝜏 𝑑𝜏»

[
≤ 𝑉(𝜉(0))
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An	aside:	Checking	inductive	invariants

• 𝑨 = 𝑋,𝑄[, 𝑇
– 𝑋: set	of	variables
– 𝑄[ ⊆ 𝑣𝑎𝑙 𝑋
– 𝑇 ⊆ 𝑣𝑎𝑙 𝑋 ×𝑣𝑎𝑙 𝑋 written	as	a	program	𝑥′ ⊆ 𝑇(𝑥)

• How	do	we	check	that	𝐼 ⊆ 𝑣𝑎𝑙(𝑋) is	an	inductive	invariant?
– 𝑄[ ⇒ 𝐼(𝑋)
– 𝐼 𝑋 ⇒ 𝐼(𝑇 𝑋 )

• Implies	that	𝑅𝑒𝑎𝑐ℎ𝑨 𝑄[ ⊆ 𝐼	without	computing	the	
executions	or	reachable	states	of	A

• The	key	is	to	find	such	𝐼
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Finding	Lyapunov Functions

• The	key	to	using	Lyapunov theory	is	to	find	a	
Lyapunov function	and	verify	that	it	has	the	
properties

• In	general	for	nonlinear	systems	this	is	hard
• There	are	several	approaches
– Linear	quadratic	Lyapunov functions	for	linear	systems
– Decide	the	form/template	of	the	function	(e.g.,	
quadratic),	parameterized	by	some	parameters

– Try	to	find	values	of	the	parameters	so	that	the	
conditions	hold
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Linear	autonomous	systems

• �̇� = 𝐴𝑥, 𝐴 ∈ ℝ�×�

• The	Lyapunov equation:	𝐴)𝑃 + 𝑃𝐴 + 𝑄 = 0	
where	𝑃, 𝑄 ∈ ℝ�×� are	symmetric

• Interpretation:	𝑉 𝑥 = 𝑥)𝑃𝑥 then	
�̇� 𝑥 = 𝐴𝑥 )𝑃𝑥 + 𝑥)𝑃(𝐴𝑥)

[using	ß'
*�+
ß»

= ß'
ß»
𝑃𝑣 + ß+

ß»
𝑃)𝑢]

=	𝑥) 𝐴)𝑃 + 𝑃𝐴 𝑥 = −𝑥)𝑄𝑥

• If	𝑥)𝑃𝑥 is	the	generalized	energy	then	−𝑥)𝑄𝑥 is	the	associated	
dissipation
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Quadratic	Lyapunov Functions

• If	𝑃 > 0 (positive	definite)
• 𝑉 𝑥 = 𝑥)𝑃𝑥 = 0 ⇔ 𝑥 = 0
• The	sub-level	sets	are	ellipsoids
• If	𝑄 > 0 then	the	system	is	globally	
asymptotically	stable	
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Same	example
Lyapunov	equations	are	solved	as	a	
set	of	� ��M

P
equations	in	

𝑛 𝑛 + 1 /2 variables.	Cost	O(𝑛,)

Choose	𝑄 = 1 0
0 1 solving	

Lyapunov equations	we	get	𝑃 =
	 2.59 −2.29
−2.29 4.92 and	we	get	the	

quadratic	Lyapunov function	
𝑥 − 𝑥∗ 𝑃 𝑥 − 𝑥∗ ) an	a	sequence	
of	invariants
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Converse	Lyapunov

Converse	Lyapunov theorems	show	that	conditions	of	
the	previous	theorem	are	also	necessary.	For	example,	
if	the	system	is	asymptotically	stable	then	there	exists	a	
positive	definite,	continuously	differentiable	function	V,	
that	satisfies	the	inequalities.	

For	example	if	the	LTI	system	�̇� = 𝐴𝑥 is	globally	
asymptotically	stable	then	there	is	a	quadratic	
Lyapunov function	that	proves	it.	

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu


