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Abstract—Renewable energy sources such as wind and solar
power have a high degree of unpredictability and time-variation,
which makes balancing demand and supply challenging. One
possible way to address this challenge is to harness the inherent
flexibility in demand of many types of loads. Introduced in this
paper is a technique for decentralized control for automated
demand response that can be used by grid operators as ancillary
service for maintaining demand-supply balance.

A randomized control architecture is proposed, motivated by
the need for decentralized decision making, and the need to avoid
synchronization that can lead to large and detrimental spikes in
demand. An aggregate model for a large number of loads is then
developed by examining the mean field limit. A key innovation
is an LTI (linear time-invariant) system approximation of the
aggregate nonlinear model, with a scalar signal as the input and
a measure of the aggregate demand as the output. This makes
the approximation particularly convenient for control design at
the grid level.

I. INTRODUCTION

Renewable energy penetration is rising rapidly throughout
the world, and bringing with it high volatility in energy supply.
Resources are needed to compensate for these large fluctu-
ations in power. The federal energy regulatory commission
(FERC) in conjunction with generation and utility companies
are struggling to find resources, and finding ways to properly
compensate for ancillary services that are badly needed by
each balancing authority (BA) in the U.S. FERC orders 755
and 745 are examples of their attempts to provide incentives.

This paper concerns decentralized control of a large number
of electric loads in a power grid. A particular load has a service
it is intended to provide – clean dishes, hot water, or a clean
pool. It is assumed that each load has some flexibility in energy
consumption. This flexibility is harnessed to provide ancillary
services to the power grid to help maintain stability, and to help
offset any volatility in the grid because of line or generation
outage, or because of the volatile nature of renewable energy.
This is commonly called “demand response”, but the meaning
is slightly different here: The tuning of energy consumption is
automated, and we want to ensure that the consumers do not
suffer any degradation in the service offered by the loads.

We argue that most of the load in the U.S. is highly flexible,
and this flexibility can be harnessed to provide ancillary
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Science Dept. of École Normale Supérieure, Paris, France.

service without central control, and without significant impact
on the needs of consumers or industry.

Many utilities already employ demand response programs
that use deferrable loads to reduce peak demand and manage
emergency situations. Florida Power and Light (FPL), for
example, has 780,000 customers enrolled in their OnCall
Savings Program in which residential air conditioners, water
heaters, and pool pumps systems are automatically controlled
when needed [1]. Today, FPL uses this service only 3–4
times per year. While a valuable service to the grid, there is
tremendous additional potential from these sources that today
is virtually untapped.
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Fig. 1. BPA Balancing Reserves Deployed — Ancillary service needs at the
BPA during one week in 2013. The maximum is approximately one-tenth of
maximum load in this region.

Nearly all of America’s ISOs/RTOs (Independent Systems
Operators / Regional Transmission Organizations) also allow
for demand side resources to participate in their regulation and
spinning reserve markets, but as of the summer of 2013, only
PJM (an RTO in the eastern U.S.) allows aggregation (with
approval) [2].

Fig. 1 shows the regulation signal for a typical week within
the Bonneville Power Authority (BPA) [3]. The variability seen
in this figure is in part a consequence of variability of wind
generation in this region. Generators in the region provide
ancillary services in the form of power deviations: ramping
their power output up and down to match this signal. Its role
is analogous to the control signal in the feedback loop in a
flight control system.

This regulation signal is zero energy on average, which
means that some form of storage can be used as a substitute
for ancillary service delivered by generators. We believe that
flexible loads will be an inexpensive source of ancillary service
– much cleaner and cheaper than generators or batteries.

To realize virtual storage from a flexible load it is necessary
to consider constraints on the quality of service delivered by
the load. In many cases these constraints can be interpreted
in whole or in part by frequency bandwidth limitations. Each
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class of loads can provide regulation only in a limited band-
width, but the ensemble of all loads (perhaps in conjunction
with generators, batteries, and other resources) can provide all
of the ancillary service required by the BA.

In prior work it is shown how heating and ventilation
systems in commercial buildings can provide service in a
high frequency band, corresponding to periods ranging from
under one minute to one hour [4]–[7]. As an example of
implementation today, Alcoa provides 70 MW of frequency
regulation service to the mid-continent ISO (MISO) by provid-
ing control over their aluminum smelting operation in Indiana.
Growth of these resources in these wholesale markets has
helped lower costs per megawatt-hour from 2009 to 2011
[2]. While recent analysis and implementation has focused
on moderate frequency ancillary services [8], we believe
that flexible manufacturing such as aluminum manufacturing
can provide a large proportion of ancillary services at low
frequencies (several hours to one day).

The focus of this paper is a large population of “on-off”
loads. A control architecture is introduced to address privacy
concerns and communication constraints, while allowing the
power deviation of the collection of loads appear to the BA
as a controllable resource. The information required at each
load is minimal: In addition to its own internal state, it
receives a regulation signal from the BA in real time, much
as we can view BPA’s regulation signal online today. The
“intelligence” at the load amounts to decision making based
on this information. These local control loops are designed so
that the computational cost at each load is small.

Without a centralized architecture in which each load is
managed individually by a balancing authority, it is essential to
introduce randomization. This prevents synchronization, much
like randomized congestion avoidance protocols in communi-
cation networks. First deployed nearly fifty years ago, ALOHA
may be the first distributed communication protocol based on
randomization [9]. Random Early Detection for congestion
control was introduced in the highly influential paper [10]. The
historical discussion in this paper points to significant research
on randomized algorithms beginning in the early 1970s, fol-
lowing wide deployment of ALOHA. Randomized protocols
are now standard practice in communication networks [9]. It
is likely that randomized algorithms will become a standard
feature of the power grid of the future.

To formulate a randomized control strategy, a Markovian
Decision Process (MDP) model is proposed for an individual
load. An aggregate model for a large number of loads is then
obtained as a mean field limit.

A particular formulation of Todorov [11] is adopted because
we can obtain an explicit solution, and because of available
tools for analysis borrowed from the theory of large deviations.
In particular, a key innovation in the present paper is an LTI
(linear time-invariant) system approximation of the aggregate
nonlinear model, which is possible through application of
results from [12]. The scalar input in this linear model is a
parameter that appears in the MDP cost function.

The LTI approximation is convenient for control design at
the grid level: the input becomes the control signal that the BA
will broadcast to all the loads, which adjusts a parameter in

the randomized policy for the optimal MDP solution at each
load.

In the second half of this paper we apply these general
results to show how pool pumps can be harnessed to obtain
ancillary service in a medium frequency band, corresponding
to the dashed line in Fig. 1. This is the same BPA regulation
signal, passed through a low pass filter.

Each residential pool has a pump that is the heart of its
filtration system: it runs each day for a period of time ranging
from 4 to 24 hours, and consumes over 1 kW of power when in
operation. Consequently, the ability to control just half of the
pool pumps in Florida or California amounts to over 500 MW
of power [13]. Much of the control infrastructure is already in
place [14]. Still, constraints and costs must be satisfied. These
include run-times per day and per week, the cost of startup and
shut down, as well as the total energy consumption. Moreover,
there are privacy concerns and related communication con-
straints. Consequently, control algorithms must be distributed
so that most of the required intelligence resides at individual
pool pumps. In this paper we focus on constraints related to
run-times per day, which is critical for keeping the water in
the pool clean. Privacy and communication constraints will be
addressed through the distributed control architecture.

The contributions of this paper are focused on control design
at the load-level, and analysis of the aggregate. Due to space
constraints, we do not include any analysis of the quality of
service delivered to individual consumers. This topic is the
subject of current research. Methods to estimate and eliminate
risk to consumers are contained in the sequel [15].

A number of recent works have explored the potential for
flexible loads for providing ancillary service. These include
thermostatic loads to provide ancillary service in the time-scale
of a few minutes (see [16]–[18] and refs. therein), electric vehi-
cle charging [16], [19], [20] that can provide ancillary service
in the time scale of a few hours, and our own recent work on
harnessing ancillary service from commercial building HVAC
systems on time scales from minutes to hours [4]–[7].

Mean-field games have been employed for analysis of
aggregate loads in several recent papers [19], [20]. See [21]–
[23] for more on general theory of mean-field technques.

The three papers [16], [24], [25] are most closely related
to the present paper. Reference [24] proposes probabilistic
algorithms for demand response, and presents analysis in a
static setting. The more recent work [25] proposes a particular
randomized algorithm for demand response in the context of
voltage regulation on slow time-scales.

The paper [16] is closer to the control-theoretic setting of
the present work. A mean field model is described as a bilinear
state space model. This is converted to a linear model through
division of the state. The control architecture consists of a
centralized control signal computation based on state feedback,
and the resulting input is broadcast to the devices.

The hierarchical architecture proposed in this paper is
different from [16] because we introduce additional control
at the load layer. We believe that some form of intelligence at
each load is required so that it can can provide ancillary service
to the grid, while maintaining quality of service constraints.
We show that the aggregate behavior is well approximated by
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a single-input single-output, linear time-invariant (SISO-LTI)
system. Hence the control problem for the balancing authority
can be addressed using classical control design methods. State
estimation is not required — the information required at the
BA is an estimate of the proportion of loads that are operating.

In the numerical example considered in this paper, this
linear system is minimum-phase and stable, which is very
helpful for control design.

The remainder of the paper is organized as follows. The
control solution for a single pool is described in Section II,
along with approximations of the optimal control solution
based on general theory presented in the Appendix. The
control of the aggregate collection of pools is considered in
Section III. Conclusions and directions of future research are
contained in Section IV.

II. OPTIMAL CONTROL FOR A LOAD AND FOR THE GRID

A. Control architecture overview

We begin with a description of the control and information
architecture. The components are illustrated in Fig. 2:
(i) There are N homogeneous loads that receive a common
scalar command signal from the balancing authority, or BA,
denoted ζ = {ζt} in the figure.

Randomization at each load is desirable to avoid syn-
chronization of loads, and also to facilitate analysis of the
aggregate system. It is assumed that each load evolves as a
controlled Markov chain: the transition probability for each
load is determined by its own state, and the BA signal ζ.
The common dynamics are defined by a controlled transition
matrix {Pζ : ζ ∈ R}. For the ith load, there is a state process
Xi whose transition probability at time t is given by,

P{Xi
t+1 = x+ | Xi

t = x−, ζt = ζ} = Pζ(x
−, x+) (1)

where x− and x+ are possible state-values. The details of the
model are described in Section II-B.

The complexity of this controller is modest. The collection
of transition matrices {Pζ} will be pre-computed, so that im-
plementing (1) requires a simple 0/1 random number generator
(a coin-flip). To reduce the amount of data stored at a load,
the transition matrices can be approximated as explained in
Section II-C.
(ii) The BA has measurements of the other two scalar
signals shown in the figure: the normalized aggregate power
consumption y and desired deviation in power consumption
r, also normalized via a division by N . When ζt = 0 for all
t, then the aggregate power consumption takes the value y0.
This is the nominal power consumption of the collection of
loads. The nominal behavior is referred to as “control-free” in
this paper, indicating no interference by the BA on a load’s
operation. The goal of the BA is a problem of tracking the
deviation from the nominal: achieve yt ≈ y0 + rt for all t.
This can be addressed using classical control techniques if the
dynamics from ζ to ỹ = y − y0 can be approximated by an
LTI system.

The main contributions of this paper are based on the con-
struction of the controlled transition matrix for an individual
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Fig. 2. The control architecture: command ζ is computed at a BA, and
transmitted to each pool pump. The control decision at a load is binary (turn
on/off), and is based only on its own state and the signal ζ.

load, taking into account two potentially conflicting goals: (i)
the BA desires overall dynamics from ζ to y that facilitate
tracking the reference signal r, and (ii) each load requires
good quality of service. In the case of a pool, the water must
be kept clean, and the electricity bill must not increase.

The main results of this paper are based on a particular ap-
proach to the design of the parameterized family of transition
matrices. The structure of the family of controlled transition
matrices leads to the LTI approximation of the input-output
dynamics from ζ to ỹ that is presented in Proposition 2.4.

Example: In the second half of the paper we focus on a
particular example in which each load is a residential pool
pump.

The true nominal behavior would be deterministic – most
consumers set the pump to run a fixed number of hours each
day. Regardless, for the purposes of design and analysis it is
useful to introduce some randomness in the nominal model
P0. The values of P0(x, y) will be chosen to be nearly 0 or
1 for most x, y ∈ X to model nearly deterministic behavior of
a pool pump in the control-free case. The state space is taken
to be the finite set,

X = {(m, i) : m ∈ {⊕,	}, i ∈ {1, . . . , I}} (2)

where I > 1 is an integer.
If Xt = (	, i), this indicates that the pool-pump is off at

sampling time t and has remained off for the previous i time
units (including the current time t), and Xt = (⊕, i) represents
the alternative that the pool-pump has been operating contin-
uously for exactly i time units. A state-transition diagram is
shown in Fig. 3.

1 2
. . .On

O�
12

...

I −1 I

I I −1

Fig. 3. State transition diagram for the pool-pump model.

In this example it is found that the LTI approximation is
minimum phase, and that a simple PI (proportional-integral)
controller can be effectively used for the control transfer
function Gc shown in Fig. 2. ut

B. Design

In this subsection we describe a procedure to construct the
controlled transition matrix appearing in (1). The controlled



4

Markov chain evolves on a finite state space, denoted X =
{x1, . . . , xd}. The construction is based on an optimal control
problem for an individual load, taking into account the needs
of the load and the grid.

It is assumed that a transition matrix P0 is given that models
“control free” behavior of the Markov chain, and a utility
function U : X → R is used to model the needs of the grid.
The optimal control problem will balance average utility and
the cost of deviation.

Since we focus on a single load, in this subsection the index
i in (1) is dropped, and we denote by X = (X0, X1, . . . ) the
stochastic process evolving on X that models this load.

Consider first a finite-time-horizon optimization problem:
for a given terminal time T , let p0 denote the probability mass
function on strings of length T :

p0(x1, . . . , xT ) =

T−1∏
i=0

P0(xi, xi+1) ,

where x0 ∈ X is assumed to be given. A fixed scalar ζ ∈
R is interpreted as a weighting parameter in the following
definition of total welfare. For any probability mass function
p, this is defined as the weighted difference,

WT (p) = ζEp
[ T∑
t=1

U(Xt)
]
−D(p‖p0) (3)

where the expectation is with respect to p, and D denotes
relative entropy:

D(p‖p0) :=
∑

x1,...,xT

log
( p(x1, . . . , xT )

p0(x1, . . . , xT )

)
p(x1, . . . , xT )

The finite horizon problem admits a unique solution denoted
p∗T , whose form is described in Proposition 2.1 below.

The infinite-horizon mean welfare is denoted,

η∗ζ = lim
T→∞

1

T
WT (p∗T ) (4)

We show in Proposition 2.2 that the infinite-horizon perfor-
mance η∗ζ can be obtained from a Markovian model whose
transition law is denoted P̌ζ

1. This is used to define the
randomized policy described in Section II-A.

The two terms in the welfare function (3) represent the
two conflicting goals: to provide service to the grid and to
reduce deviation of the load’s behavior from the nominal. If
the controlled probability p is chosen to be different from p0,
it potentially reduces the quality of service to the consumer,
which is modeled by the term “−D(p‖p0)”.

Consider the case in which U(Xt) is equal to the power
consumption of the load. If the grid operator requires lower
power demand than the nominal value, this goal is modeled
through the first term in (3) whenever the parameter ζ is
positive.

We next characterize the optimizer of the total welfare.

1The notation is introduced to distinguish these from an arbitrary collection
of transition matrices; this notation is consistent with the ‘twisted transition
matrix’ considered in [12].

Proposition 2.1: The probability mass function p∗T that
maximizes the total welfare (3) is the twisted distribution,

p∗T (xT1 ) = exp
(
ζ

T∑
t=1

U(xt)− ΛT (ζ)
)
p0(xT1 ) (5)

where xT1 = (x1, . . . , xT ) and

ΛT (ζ) = log
{
E
[
exp
(
ζ

T∑
t=1

U(Xt)
)]}

, (6)

where the expectation is with respect to p0. Moreover,
WT (p∗T ) = ΛT (ζ) is the optimal value. ut

Proof: Optimality of p∗T follows from convex duality
between the log moment generating function and relative
entropy – [26, Proposition II.1] and [27, Lemma 2.39]. The
formula (6) follows from the fact that p∗T sums to unity, so
that ΛT (ζ) can be interpreted as a normalizing constant.

The identity WT (p∗T ) = ΛT (ζ) follows from the definitions
of WT and p∗T . ut

The probability mass function p∗T defines a Markov chain on
the time interval {0, 1, . . . , T} (with X0 = x0 given), but it is
not necessarily time-homogeneous. In the infinite horizon case,
we would like to find a distribution p∗ on infinite sequences
that attains the optimal average welfare (4).

A solution to the infinite horizon problem is given by a time-
homogenous Markov chain whose transition matrix is obtained
following the solution of an eigenvector problem, based on the
d× d matrix,

P̂ (x, y) = exp(ζU(x))P0(x, y) , x, y ∈ X . (7)

Let λ > 0 denote the Perron-Frobenious eigenvalue, and v the
eigenvector with non-negative entries satisfying,

P̂ v = λv (8)

We introduce subscripts, e.g. λ = λζ , when the value of the
parameter must be emphasized.

Representations for λ and v are contained in Section II-C.
The proof of Proposition 2.2 is given in Section A of the
Appendix.

Proposition 2.2: If P0 is irreducible, an optimizing p∗ that
achieves (4) is defined by a time-homogeneous Markov chain
whose transition probability is defined by,

P̌ζ(x, y) =
1

λ

1

v(x)
P̂ (x, y)v(y) , x, y ∈ X, (9)

where P̂ is the scaled transition matrix (7). The eigenvector
v has positive entries and is unique up to constant multiples.
The eigenvalue λ is also positive.

In addition, the following bounds hold for each T . Let
p̌T denote the probability on XT induced by P̌ζ , with initial
condition x0 given. Denote Λ = log(λ), and

h∗(x) = log(v(x)), x ∈ X. (10)

Then,
0 ≤ WT (p∗T )−WT (p̌T ) ≤ 2‖h∗‖sp

|TΛ−WT (p∗T )| ≤ ‖h∗‖sp
(11)
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where the span norm is defined by ‖h∗‖sp = maxh∗−minh∗.
Consequently, the Markov model achieves the optimal average
welfare (4) with η∗ζ = Λ. ut

The eigenvector problem (8) appears in multiplicative er-
godic theory [12], and also in Todorov’s analysis [11]. It
is shown in [11] that the relative value function appearing
in the average cost optimality equations is the logarithm of
the eigenvector, which is denoted h∗ in (10). See also the
derivation in [28] for a variant of this model.

Second order Taylor series approximations for v and η∗ near
ζ ≈ 0 can be found by borrowing tools from large-deviations
theory. Some of these approximation results are new, and are
collected together in the next section and in the Appendix.

C. Approximations

Approximations will be needed for analysis when we extend
the model to allow ζ to change with time. Throughout the
paper we take for granted that λζ and hζ are differentiable in
ζ. Justification is based on the spectral analysis in Section 3.2
of [12].

A solution to the eigenvector problem (8) can be represented
through a regenerative formula. Let α ∈ X be some fixed state
that is reachable from each initial condition of the chain, under
the transition law P0. That is, the chain is assumed to be α-
irreducible [29]. Since the state space is assumed to be finite,
it follows that there is a unique invariant probability mass
function π0 for P0. The first return time is denoted,

τ = min{t ≥ 1 : Xt = α} .

Recall that the infinite horizon optimal welfare is given by
η∗ζ = log(λ). From the theory of positive matrices [12], [30],
[31], it follows that it is the unique solution to,

1 = Eα
[
exp
(τ−1∑
t=0

[ζU(Xt)− η∗ζ ]
)]

(12)

where the subscript indicates that the initial condition is
X(0) = α. Moreover, for each x ∈ X, the value of v(x) is
obtained as the expected sum, with initial condition X(0) = x:

v(x) = Ex
[
exp
(τ−1∑
t=0

[ζU(Xt)− η∗ζ ]
)]

(13)

These expectations are each with respect to the nominal
transition law P0.

A Taylor-series approximation of η∗ζ is based on two
parameters, defined with respect to the nominal model P0

with invariant probability mass function π0. The first-order
coefficient is the the steady-state mean:

η0 =
∑
x

π0(x)U(x) (14)

The second-order coefficient is based on the asymptotic vari-
ance of U for the nominal model (the variance appearing in the
Central Limit Theorem (CLT) for the nominal model). For this

finite state space model this has two similar representations,

κ2 = lim
T→∞

1

T
E
[(T−1∑

t=0

Ũ(Xt)
)2]

= π0(α)Eα
[(τ−1∑

t=0

Ũ(Xt)
)2] (15)

where
Ũ = U − η0. (16)

See [29, Theorem 17.0.1] for the CLT, and eqn. (17.13) of
[29] for the second representation above.

Similarly, the following functions of x are used to define
a second order Taylor series approximation for h∗ζ . The first-
order term is the solution to Poisson’s equation for P0,

H(x) = Ex
[τ−1∑
t=0

Ũ(Xt)
]

(17)

The asymptotic variance can be expressed in terms of Pois-
son’s equation [29], [32]:

κ2 =
∑
x

π0(x)
(
2Ũ(x)H(x)− Ũ(x)2

)
The second-order term in an approximation of v is another
variance,

S(x) = Ex
[(τ−1∑

t=0

Ũ(Xt)
)2]
−
(
H(x)

)2
, x ∈ X. (18)

Proposition 2.3: The following hold for the finite state
space model in which P0 is irreducible:

(i) The optimal average welfare η∗ζ is convex as a function
of ζ, and admits the Taylor series expansion,

η∗ζ = η0ζ + 1
2κ

2ζ2 +O(ζ3) (19)

(ii) The mean of U under the the invariant probability
mass function π̌ζ for P̌ζ is given by,∑

x

π̌ζ(x)U(x) =
d

dζ
η∗ζ (20)

This admits the first-order Taylor series approximation
d

dζ
η∗ζ = η0 + κ2ζ +O(ζ2) (21)

(iii) The relative value function (10) admits the second-
order Taylor series approximation,

h∗ζ(x) = ζH(x) + 1
2ζ

2S(x) +O(ζ3) (22)
ut

Proof: Equations (19)—(21) follow from the fact that
η∗ζ = log(λ) can be expressed as a cumulative log-moment
generating function [12, Prop. 4.9].

Convexity follows from the fact that η∗ζ is the maximum of
linear functions of ζ (following the linear-program formulation
of the ACOE [33]).

The approximation (22) follows from the the representation
(13) for v, and the definition h∗ζ = log(v) (see (10)). ut

The representations in this subsection are useful for analysis,
but not for computation. Methods to compute H and S are
contained in Section B2 of the Appendix.
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D. Aggregate load model

Consider N loads operating under the distributed control
architecture surveyed in Section II-A. The state of the ith load
is denoted Xi

t .
The previous subsections focused on design of the local

transition matrices {P̌ζ : ζ ∈ R}. We now consider the control
problem faced by the BA: how to choose the sequence ζ =
(ζ0, ζ1, . . . ) to provide service to the grid, while maintaining
quality of service constraints for the loads. It is assumed that
the BA has measurements of a regulation signal r, and the
average utility y: At time t this is given by

yt =
1

N

N∑
i=1

U(Xi
t). (23)

Control design is based on a model of the input-output system,
whose input is ζ and output y. The model is obtained in two
steps.

In step 1 the existence of a mean-field limit is assumed (to
be justified in Theorem 2.5): let N →∞ to obtain

lim
N→∞

1

N

N∑
i=1

I{Xi
t = x} = µt(x) , x ∈ X. (24)

For a given initial distribution µ0 on X, the distribution µt is
defined by µt(xt) =∑
xi∈X

µ0(x0)P̌ζ0(x0, x1)P̌ζ1(x1, x2) · · · P̌ζt−1(xt−1, xt) (25)

where xt is an arbitrary state in X, and the sum is over all
intermediate states. We view {µt} as a state process that is
under our control through ζ.

Step 2 is based on the Taylor series approximations surveyed
in the previous section to approximate this nonlinear system
by a linear state space model with d-dimensional state Φ and
output γ. It is defined so that for any time t, and any i,

µt(x
i) = π0(xi) + Φt(i) +O(‖ζ‖2)

γt = ỹt +O(‖ζ‖2)

where ỹt = yt−y0, with y0 =
∑
x π0(x)U(x), and O(‖ζ‖2) =

O(ζ2
0 + · · ·+ ζ2

t ).
Proposition 2.4: Consider the nonlinear state space model

whose state evolution is µt+1 = µtP̌ζt , and output is yt =∑
x µt(x)U(x). Its unique equilibrium with ζ ≡ 0 is µt ≡ π0

and yt ≡ y0 :=
∑
x π0(x)U(x). Its linearization around this

equilibrium is defined by the state space model,

Φt+1 = AΦt +Bζt

γt = CΦt
(26)

with initial condition Φ0(i) = µ0(xi)− π0(xi), 1 ≤ i ≤ d. In
this model A = P T

0, C is a row vector of dimension d = |X|
with Ci = U(xi) for each i, and B is a d-dimensional column
vector with entries Bj =

∑
x π0(x)E(x, xj), where

E(xi, xj) =
[
Ũ(xi) +H(xj)−H(xi)

]
P0(xi, xj) (27)

for each xi, xj ∈ X. The matrix E is equal to the derivative,

E =
d

dζ
P̌ζ

∣∣∣
ζ=0

ut
Proof: The formulae for A and C follow from the fact

that the system is linear in the state.
To establish the formula for B based on (27) we begin with

a representation that follows from (9),

P̌ζ(x
i, xj) = eζU(xi)−η∗ζ−h∗

ζ(xi)P0(xi, xj)eh
∗
ζ(xj)

where η∗ζ is defined in (4), and h∗ζ is defined in (10). Based
on the first order approximation of h∗ζ in Proposition 2.3 we
obtain,

P̌ζ(x
i, xj) = eζ[−H(xi)+Ũ(xi)]P0(xi, xj)eζH(xj) +O(ζ2)

where H is a solution to Poisson’s equation (with forcing
function U) for the nominal model (see (17)), and Ũ is defined
in (16). Using a first order Taylor series for the exponential
then gives,

P̌ζ(x
i, xj) = [1− ζ(H(xi)− Ũ(xi))]P0(xi, xj)[1 + ζH(xj)]

+O(ζ2)

= P0(xi, xj) + ζE(xi, xj) +O(ζ2)

If µ = π0 +O(ζ) and ζ is small, then we can approximate,

µP̌ζ = µP0 + ζBT +O(ζ2) ,

where B is the vector with entries Bj =
∑
x π0(x)E(x, xj).

ut
Next we justify the mean-field model (24).
For the purpose of analysis we lift the state space from the

d-element set X = {x1, · · · , xd}, to the space of probability
mass functions on X. This is denoted S since it can be
identified as the d-dimensional unit simplex.

For the ith load at time t, the element πit ∈ S is the
degenerate distribution whose mass is concentrated at x if
Xi
t = x. The average over N , denoted µNt ∈ S, is the

empirical distribution,

µNt (x) =
1

N

N∑
i=1

πit(x) =
1

N

N∑
i=1

I{Xi
t = x} , x ∈ X

In the proof of convergence it is assumed that ζN is obtained
using state feedback of the form,

ζNt = φt(µ
N
0 , . . . , µ

N
t )

where φt : St+1 → R is continuous for each t, and does not
depend upon N . The following result establishes convergence.

Theorem 2.5: Suppose µN0 → µ0 as N → ∞. Then for
each t,

lim
N→∞

µNt = µt, with probability one, (28)

where the right hand side denotes the probability mass function
(25), in which

ζt = φt(µ0, . . . , µt), t ≥ 0.

ut
While Theorem 2.5 and other results in this section are

based on the particular transition matrices constructed in
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Proposition 2.2, the main results hold in far greater generality.
In particular, Theorem 2.5 only requires continuity in ζ of a
family of the transition matrices {Pζ : ζ ∈ R}.

The proof of this result is given at the end of this subsection,
and is based on a version of the Law of Large Numbers for
martingales.

Let {MN,k, 1 ≤ k ≤ N} denote a (vector-valued) mar-
tingale array: This is a vector-valued sequence satisfying
E[MN,k|MN,1, · · ·MN,k−1] = MN,k−1 for each N and 1 <
k ≤ N . We denote MN = MN,N .

Proposition 2.6: Suppose that {MN,k} is a martingale ar-
ray, and suppose that it has bounded increments, i.e., for some
cm <∞,

‖MN,k+1 −MN,k‖ ≤ cm for all k and N

Then the Law of Large Numbers holds:

lim
N→∞

1

N
‖MN‖ = 0, with probability one.

ut
Proof: The Hoeffding-Azuma inequality [34] gives the

following bound:

P{N−1|M i
N | ≥ t} ≤ 2 exp(−[Nt]2/[2Nc2m])

where M i
N is the ith entry of the vector MN . The right hand

is summable, so the result follows from the Borel-Cantelli
Lemma. ut

Proposition 2.6 is applied to show that the sequence of em-
pirical distribution µNt can be approximated by the mean-field
model perturbed by a disturbance that vanishes as N →∞:

Lemma 2.7: The empirical distributions {µNt : t ≥ 0} obey
the recursion

µNt+1 = µNt P̌ζNt +WN
t+1, (29)

in which, WN
t+1 = 1

N

∑N
i=1 ∆i

t+1 for a family of vector
random variables {∆i

t+1}.
On denoting MN,k =

∑k
i=1 ∆i

t we have,
(i) {MN,k : 1 ≤ k ≤ N} is a martingale array.
(ii) There exists cm such that ‖MN,k −MN,k−1‖ ≤ cm

for all N and all k such that 1 < k ≤ N .
Proof of Lemma 2.7: to establish (29) we first establish a

similar expression for {πit}.
For each i, the sequence of degenerate distributions {πit}

evolve according to a random linear system,

πit+1 = πitG
i
t+1 (30)

in which πit is interpreted as a d-dimensional row vector,
and Git+1 is a d × d matrix with entries 0 or 1 only,
and

∑
lG

i
t+1(xj , xl) = 1 for all j. The matrix Git+1 is

conditionally independent of {πi0, · · · , πit}, given ζNt , with

E[Git+1|πi0, · · · , πit, ζNt ] = P̌ζNt . (31)

Dependency of πit, G
i
t on N is suppressed, but we must

distinguish ζNt from its limit ζt.
The random linear system (30) can thus be described as a

linear system driven by “white noise”:

πit+1 = πitP̌ζNt + ∆i
t+1 (32)

where, {∆i
t+1 = πit(G

i
t+1 − P̌ζNt ) : t ≥ 1}, which establishes

(29).
The following representation will clarify the remaining

analysis: for some function Ξ with domain R × [0, 1], and
range equal to the set of d× d matrices,

Git = Ξ(ζNt−1, ξ
i
t), (33)

where {ξit : t ≥ 1, i ≥ 1} are i.i.d. on [0, 1]. For 1 ≤ i < N
and fixed t, we define two σ-algebras:

Fi = σ{∆k
t , k ≤ i}

Hi = σ{πk+1
t−1 , ζ

N
t−1,∆

k
t , k ≤ i}

Under (33) we have the extension of (31), that E[Gi+1
t | Hi] =

P̌ζNt−1
. Moreover, by construction the random variable πi+1

t−1 is
Hi-measurable. Therefore,

E[∆i+1
t | Hi] = E[πi+1

t−1(Gi+1
t − P̌ζNt−1

) | Hi] = 0

The construction Fi ⊂ Hi then gives (i),

E[∆i+1
t | Fi] = E[E[∆i+1

t | Hi] | Fi] = 0

From the definition of ∆i
t below equation (32), it follows

that {‖∆i
t‖} admits a uniform bound. Consequently, ‖MN,k−

MN,k−1‖ = ‖∆k
t ‖ is bounded, which is (ii). ut

Proof of Theorem 2.5: Denote, for T ≥ 0, the deviation
µ̃NT = µNT − µT . We prove by induction on T that µ̃NT → 0
as N →∞. This holds by assumption when T = 0.

Suppose now that (28) holds for t ≤ T . By continuity of
φt, it follows that ζNt → ζt as N → ∞. We also have by
Lemma 2.7,

µ̃NT+1 = µ̃NT P̌ζT + µNT (P̌ζNT − P̌ζT ) +WN
T+1

Lemma 2.7 and Proposition 2.6 imply that WN
T+1 → 0 as

N →∞. Continuity of P̌ζ then implies that

lim
N→∞

µ̃NT+1 = 0

ut

III. CONTROLLING A LARGE NUMBER OF POOLS

For the remainder of the paper we apply the results of
the previous section to the control of a large population of
residential pools. The nominal transition matrix P0 is defined
by the probabilities of turning the pump on or off, as illustrated
in the state transition diagram Fig. 3. In many of the numerical
results described below a symmetric model was chosen for P0

in which the nominal cleaning cycle is equal to 12 hours, and
p⊕(i) = p	(i), where

p⊕(i) := P{pump switches on | it has been off i hours}
p	(i) := P{pump switches off | it has been on i hours}

The utility function U is chosen as the indicator function
that the pool pump is operating:

U(x) =

I∑
i=1

I{x = (⊕, i)} (34)
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Fig. 4. Control free behavior of a pool with a 12-hour cleaning cycle (solid),
and 8-hour cycle (dashed).

It remains to give numerical values for p⊕(i) and p	(i), 1 ≤
i ≤ I. It is convenient to first consider a model in continuous
time.

Let τ⊕ denote a random variable whose distribution models
the typical time-interval that the pool is off in the nominal
model. Its cumulative distribution function (CDF) is denoted,

F⊕(t) = P{τ⊕ ≤ t} 0 ≤ t ≤ T ,

where T = 24 hours. On denoting the complimentary CDF
by F

⊕
(·) = 1 − F⊕(·), the mean of this random variable is

expressed

E[τ⊕] =

∫ T
0

F
⊕

(t) dt

If, say, we choose a sampling time Ts = 30 minutes then we
will quantize τ⊕,

τ∆
⊕ = Tsdτ⊕/Tse

The probability that the pool turns on at time t = iTs is given
by,

p⊕(i) = P{τ∆
⊕ = iTs | τ∆

⊕ > (i− 1)Ts}
= P{τ⊕ ≤ iTs | τ⊕ > (i− 1)Ts}

=
1

F
⊕

((i− 1)Ts)

(
F⊕(iTs)− F⊕((i− 1)Ts)

) (35)

In the symmetric model, the CDF was constrained to the
following parametric family: For fixed γ > 1,

F⊕s (t) = F	s (t) =

{
2γ−1tγ 0 ≤ t ≤ 1/2

1− 2γ−1(1− t)γ 1/2 ≤ t ≤ 1
(36)

Fig. 4 shows a plot of this CDF with γ = 6
To go beyond the symmetric model, a parameter α is

introduced to represent the fraction of the day that the pool is
operating. The two CDFs are modified as follows,

F⊕(t) = F⊕s (tδ+) , F	(t) = F⊕s (xδ−) (37)

where δ+ is chosen so that 0.5δ+ = 1−α, or δ+ = − log2(1−
α), and similarly δ− = − log2(α). Hence the median of τ⊕ is
equal to (1− α)T , and the median of τ	 is equal to αT .

As γ → ∞, the functions in (37) will converge to step
functions corresponding to a deterministic cleaning period of
α×24 hours. We find numerically that the mean approximates
the median when γ ≥ 3 and α ∈ [1/3, 1/2]. The CDF F⊕

with α = 1/3 and γ = 6 is represented as the dashed line in
Fig. 4.

A. Approximations

The steady-state probability that a pool-pump is in operation
is given by

P̌ζ{pool-pump is on} =
∑
x

π̌ζ(x)U(x)

A linear approximation is obtained in Proposition 2.3 (ii):

P̌ζ{pool-pump is on} = η0 + κ2ζ +O(ζ2) (38)

A comparison of the true probability and its affine approxi-
mation is shown in Fig. 5 for the symmetric model, in which
η0 = 1/2. The approximation is very tight for |ζ| ≤ 2. For
larger values of ζ the true steady-state probability saturates.

−6 −4 −2 0 2 4 6
0

0.5

1

 

 

ζ

ζP̌ {pool is on}
η0 + ζκ2

Fig. 5. Approximation of the steady-state probability that a pool-pump is
operating under P̌ζ .

For each ζ, the controlled model P̌ζ has the same form
as P0, with transformed probability vectors p̌⊕ζ and p̌	ζ .
Fig. 6 contains plots of the transformed vector p̌⊕ζ for values
ζ = 0,±2,±4, and also the corresponding discrete CDFs. The
plots of p̌	ζ are obtained through symmetry.

The approximation of the average welfare established in
Proposition 2.3 is,

η∗ζ = η0ζ + 1
2κ

2ζ2 +O(ζ3) (39)

Shown in Fig. 7 is a comparison of η∗ζ with linear and quadratic
approximations based on (39).

−8 −6 −4 −2 0 2 4 6 8
−4  

η0ζ

η0ζ

+ 1
2 ζ

ζ

2κ2
 

η∗
ζ

−2

0

2

4

6

8

10

Fig. 7. The optimal average welfare η∗ζ and its quadratic approximation.

The plots in Fig. 8 compare the eigenvector v = exp(h∗ζ)
with the exponential of the quadratic approximation (22) given
in Proposition 2.3 (iii). They are normalized so that the com-
mon maxima are equal to unity. The computations of H and
S were based on the alternate expression for these functions
that are described in Proposition A.1. The approximation is
nearly perfect for the range of |ζ| ≤ 1 (only positive values
are shown due to space limitations).
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Fig. 6. Transformed probability vectors p̌⊕ζ and corresponding discrete CDFs under P̌ζ
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ζ= 0.1

ζ= 0.2

ζ= 0.4

ζ= 0.6

ζ= 0.8

ζ= 1

ζ= 1.5

ζ= 2

t/hourt/hour

Fig. 8. Eigenvectors v(x) = eh
∗
ζ(x) (solid lines), and their approximations (dashed lines) for ζ > 0. On the left x = (⊕, i) and on the right x = (	, i).

The horizontal axis is converted to real-time using Ts = 30 minutes. The approximations are exp(Cζ + ζH(x) + 1
2
ζ2S(x)), where Cζ is independent of x.

B. Super-sampling

Recall the control architecture described at the start of
Section II: at any given time, the desired power consump-
tion/curtailment is determined by the BA. This is passed
through a band-pass filter and scaled appropriately based on
the proportion of ancillary service provided by the pools, and
the average power consumption of pool pumps. The resulting
filtered and normalized reference signal is denoted r.

Super-sampling is introduced here to reduce system delay
observed at the grid level. Let Ts denote the sampling interval
at each pool. In this paper it has been assumed that the signal
ζt is broadcast by the BA at time iTs, for each i = 0, 1, 2, ....
Consider for concreteness the value Ts = 30 minutes. After a
single broadcast, the response by the collection of loads will
be nearly instantaneous – the physical delay in the system is
nearly zero. Nevertheless, the control system model (26) will
have a 30 minute delay, which is unacceptable. Moreover, with
sampling every 30 minutes, the BA can only track signals
r that are constant during the 30 minute periods between
broadcast events.

To obtain a more responsive system we could place a larger
burden on the loads by forcing them to check a signal from the
BA more frequently, say, every minute. This would ease con-
trol at the grid level, but would also increase communication,
and may not be acceptable to the consumers. An alternative
is to employ “super-sampling” at the grid level.

It is convenient to model super-sampling via binning of
time, so that we retain a discrete time model. We maintain
the assumption that each pool checks the regulation signal at

intervals of length Ts. However, the pools have no common
clock. Let m > 1 denote a “super-sampling” parameter. At
the grid-level the system is in discrete time, with sampling
interval Ts/m. For example, if Ts = 30 minutes, then m = 6
corresponds to a five minute sampling interval. A pool is class
i if the reference signal is observed by this load at times
nTs + (i− 1)Ts/m, with n ≥ 0, 1 ≤ i ≤ m.

Letting yit denote the fraction of pools in the ith class that
are operating, the total proportion that are operating at time t
is the average,

yt =
1

m

m−1∑
i=0

yit

Let G0 denote the discrete time transfer function using m = 1,
which is simply the transfer function for the linear state space
model (26). For general m, the transfer function from ζ to y
is

G(z−1) = zmG0(z−m)L(z) (40)

where L is the low pass filter,

L(z) =
1

m

m∑
i=1

z−i =
1

m
z−1 1− z−m

1− z−1

In the second representation there is a pole-zero cancellation
at z = 1. The filter L(z) has m − 1 zeros on the unit circle:
all of the solutions to zm = 1, except for the solution z = 1.

In real time, the delay in this LTI model is Ts/m rather
than Ts. Using super-sampling we have achieved our goal of
reducing delay.
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C. Simulation results

The numerical results described here are based on a stochas-
tic simulation of approximately one million pools, using
Matlab. This large number of pools is consistent with Florida
or California [13].

The super-sampling approach was used in all experiments,
with the following values of Ts and m fixed throughout: each
pool checks the regulation signal every Ts = 30 minutes.
The super-sampling parameter is m = 6, corresponding to
5 minutes sampling intervals at the grid level.

In simulation experiments it was assumed that the BA has
perfect measurements of the total power consumption of the
population of pools. We use yt to denote the normalized power
consumption, and rt the normalized reference signal at the
grid-level sampling time t = 0, 1, 2, . . . .

PI control was used to obtain the signal ζ: a proportional
gain of 19, and integral gain of 1.4 worked well in all cases.
That is, the signal ζ was taken to be

ζt = 19et + 1.4eIt , et = rt − yt and eIt =

t∑
k=0

ek (41)

This is of the form ζt = φt(µ0, . . . , µt), t ≥ 0, that is required
in Theorem 2.5.

Two nominal cleaning cycles were employed in the experi-
ments, 12 and 8 hours. In each case the switching probabilities

were constructed based on a pair of CDFs, using (35). For the
12-hour cleaning-cycle model, the CDF was taken to be (36)
with γ = 6. An 8-hour cleaning-cycle model was obtained by
using the two CDFs defined in (37) in which α = 1/3 and
γ = 6. The CDF F⊕ is plotted in Fig. 4.

The linearization (26) is minimum phase in each case: all
zeros of C(Iz − A)−1B lie strictly within the unit disk in
the complex plane. Fig. 9 shows the pole-zero plot for the
symmetric model, and Fig. 10 shows each of the Bode plots.
With the introduction of super-sampling, the resulting transfer
function (40) has zeros on the unit circle.

Three categories of experiments were conducted to investi-
gate: 1) the frequency band of regulation that the collection of
pools can track, 2) the impact of cleaning cycle on the capacity
of ancillary service, and 3) the performance of the algorithm
when the collection of pools is heterogeneous. It was also
assumed that each pool in operation consumes 1 kW. The setup
for the heterogeneous model is described in Section III-C3.

In all of the experiments, N = 999, 984 pools were used so
that N is divisible by the super-sampling parameter m = 6.

1) The need for filtering: The goal here is to find an
appropriate frequency band of regulation that pool pumps can
provide. The symmetric model based on a 12-hour cleaning
cycle per day was used in simulations.

Suppose that the BPA signal is used to define the refer-
ence r without any pre-filtering, but scaled to a comparable
magnitude with the low-pass filtered signal shown in Fig. 1.
To ease comparison, only the first 48 hours of output from
the simulation is shown. In simulations we find that there is
noticeable tracking error using the PI control (41). A typical
result from simulations is shown on the left hand side of
Fig. 11. If the reference signal r is chosen to be the low-pass
filtered signal, then tracking performance is nearly perfect, as
shown on the right hand side of Fig. 11.

We conclude that one million pools can provide ancillary
service in this low frequency band, with negligible tracking
error.

The filtered reference signal was used in all subsequent
experiments.

2) Cleaning cycle and capacity: It was found that one mil-
lion pools can provide far more regulation than the ± 200 MW
required at BPA during the week corresponding to Fig. 1. More
experiments were conducted in which the filtered signal was
scaled to investigate the limits of regulation from a population
of one million pools.

We summarize results obtained from two sets of experi-
ments conducted in two scenarios. In the first, we used the
symmetric model with cleaning cycle of 12 hours per day.
The second scenario was based on the asymmetric model with
8-hour cleaning cycle.

The average proportion of time that a pool is on will
be approximately 1/2 in Scenario 1, and 1/3 in Scenario
2. Consequently, the class of regulation signals that can be
tracked is not symmetric in Scenario 2: the population of pools
has more potential for increasing rather than decreasing power
consumption.

To attempt to quantify this effect, define potential capacity
as the upper and lower limits of power deviation, subject
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to the constraint that tracking performance does not degrade
significantly, denoted {+Demand,−Supply}. In simulations
we observe a phase transition: the performance is nearly
perfect until the regulation signal reaches upper or lower
limits. Moreover, these limits nearly coincide with values
obtained from the following heuristic. Let π⊕0 denote the
fraction of pool pumps that are operating in nominal steady-
state,

π⊕0 =
∑
i

π0(⊕, i)

where π0 is invariant for P0. The heuristic is then given
by {+Demand,−Supply} ≈ {(1 − π⊕0 ) × N,−π⊕0 ×
N} kW. In Scenario 1 this gives the approximation
{+500MW,−500MW}, and {+659MW,−341MW} in
Scenario 2.

Results from two experiments are shown in Fig. 12. The
low-pass filtered signal shown in Fig. 1 was scaled in mag-
nitude to match its potential capacity. In addition, a DC
offset was used in the experiments using the 8 hour cleaning
cycle — this allowed for greater overall capacity from these
loads. The provision of the DC component of power would
be from traditional generation resources, and not the loads.
The tracking performance is remarkable. In particular, it is
surprising that a ±400 MW signal can be tracked, given that
the average power consumption of the pools is 500 MW in
Scenario 1.

Subplots (a) and (b) in Fig. 13 show what happens when
the reference signal exceeds capacity. Two sources of error
are evident in these plots. First, the power deviation saturates
when all of the N ≈ 106 pools are turned off, or all are turned

on. Secondly, large tracking errors are observed immediately
after saturation. This is a consequence of memory in the PI
controller – what is known as integrator windup. To solve this
problem, the BA should truncate the regulation signal so that
it does not exceed the values {+Demand,−Supply}. Subplots
(c) and (d) in Fig. 13 use the same regulation signal used in
(a), (b), but truncated to meet these capacity constraints. Once
again, the tracking is nearly perfect.

3) Heterogeneous population: Consider a population of
pools in which the cleaning cycle and power consumption
vary from pool to pool. The control architecture remains the
same: the command ζ is defined using the PI control law
(41), where y is again the normalized power consumption of
the population.

Results from a special case are summarized here, in which
the population of pools is the union of four homogeneous
classes. Each class consists of N/4 pools that are differentiated
by cleaning cycle and power consumption: the cleaning cycle
is either 12 or 8 hours per day, and power consumption of a
pool pump in one class is either 1 kW or 2 kW. Hence there
are N ≈ 106 pools in total, with peak power consumption
of approximately 1.5 GW. By considering each of the four
classes separately, the heuristic gives {+Demand,−Supply} =
{+869MW,−631MW}. The potential capacity observed in
simulation experiments closely matched this approximation.

This model admits a linearization in which the transfer
function G from ζ to y is the average of the transfer functions
of the four classes of pools, where each transfer function has
the same form as in the homogeneous case. Letting Gk denote
the transfer function obtained with cleaning cycle k and 1 kW
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Fig. 13. The impact of exceeding capacity

power consumption, the overall transfer function is given by,

G = 1
4

(
G8 + 2G8 +G12 + 2G12

)
= 3

4

(
G8 +G12

)
The first plot in Fig. 14 shows that the tracking performance

is again nearly perfect. The response of each class of pools
in the population is more complex. Shown on the right hand
side of Fig. 14 is the power consumption from two of the
four classes: 12 and 8 hour cleaning cycle, each with 1 kW
maximal power consumption. The plots of the outputs for the
other two classes (with 2 kW power consumption) are nearly
the same as those shown in Fig. 14, but scaled by a factor of
2.

The pools with 12-hour cleaning cycle provide a larger
contribution to the reference signal than the pools with 8-
hour cleaning cycle. The two classes of pools also contribute
very differently in behavior. At times, the deviations in power
consumption are of different signs. This ‘lack of cooperation’
is reduced when the reference signal is scaled upwards: When
the reference signal is near capacity, the power deviations of
one class is nearly a constant multiple of the other.

IV. CONCLUSIONS

The simplicity of the MDP solution, and the remarkable
accuracy of the LTI approximation for the mean-field model
makes this approach appealing for this and related applica-
tions.

We hope it is clear to the reader that the application of these
techniques go beyond pool pumps. In the context of a power
grid, a large collection of on/off loads can provide ancillary
service at high capacity and over a large frequency range using

a randomized control architecture of the form described in
this paper. In many parts of the world, more valuable than
pools are the chillers in heating and ventilation systems. These
loads are nearly as flexible as pools, and consume a great deal
of power. Harnessing ancillary service from chillers requires
greater attention to dynamics and constraints at the load. This
is a topic of current research.

There are several issues that have not been addressed here:

(i) The construction and analysis of randomized policies
deserves further consideration. We are currently consid-
ering settings for which some randomness is exogenous
in the nominal model. For example, in the case of a
heating and ventilation system, the weather and building
occupancy are sources of exogenous randomness. We are
also working to understand why the linearization should
be minimum phase – preliminary work is contained in
[35].

(ii) We do not fully understand the potential cost to
consumers in terms of energy, or risk in terms of rare
events in which the pool is under- or over-cleaned. It is
likely that hard constraints on performance can be put in
place without impacting the analysis: Preliminary results
are contained in the sequel [15], along with methods to
approximate the distribution of risk.

(iii) Does the grid operator need to know the real-time
power consumption of the population of pools? The grid
frequency passed through a band-pass filter could serve
as a surrogate for the measurement yt assumed in this
paper.
Alternatively, it may be valuable to have two mea-
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Fig. 14. Tracking performance in heterogeneous case, and power deviation from two of the four classes (with 1 kW maximal power consumption).

surements at each load: the BA command, and local
frequency.

(iv) How can we engage consumers? FERC order 755 that
demands “mileage payments” for ancillary services may
provide a mechanism for incentivizing consumers today.
It is envisioned that these payments will be part of a
bilateral contract between the consumer and a BA or
aggregator. The formulation of contracts with customers
requires a better understanding of the value of ancillary
service, as well as consumer preferences.
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APPENDIX

A. Controlled transition matrix: Proof of Proposition 2.2.

The dependency of η∗, h = log(v), and λ on ζ will be
suppressed to simplify notation in the proof of Proposition 2.2
that follows.

The existence of a unique maximal eigenvalue and a pos-
itive eigenvector is a consequence of the Perron-Frobenious
Theorem [30], [31]. Recent results on this and associated
multiplicative ergodic theory are contained in [12], from which
the identity Λ:=log(λ) = η∗ζ is established (see [12, Theorem
1.2]).

The bounds in (11) imply a rate of convergence of the finite
horizon cost using P̌ to its infinite-horizon limit, which in
particular implies that Λ := log(λ) = η∗ζ . To complete the
proof of Proposition 2.2 it remains to establish this pair of
bounds.

We begin with the second bound in (11). Let p̌T denote
the probability on strings on XT induced by P̌ , with initial
condition x0 given, and let xT1 denote the string (x1, . . . , xT ).
We have,

p̌T (xT1 ) =
v(xT )

v(x1)
exp
(
ζ

T∑
t=1

U(xt)− TΛ
)
p0(xT1 )

and since p̌T is a probability mass function,

1 =
∑

x1,...,xT

p̌T (xT1 )

=
∑

x1,...,xT

v(xT )

v(x1)
exp
(
ζ

T∑
t=1

U(xt)− TΛ
)
p0(xT1 )

which gives,

TΛ = log
{
E
[v(XT )

v(X1)
exp
(
ζ

T∑
t=1

U(Xt)
)]}

.

The bound on |TΛ − WT (p∗T )| follows from this identity
combined with Proposition 2.1 (which establishes WT (p∗T ) =
ΛT (ζ)).

Substitution of p̌T into the definition of WT gives,

WT (p̌T ) = −Ep
[
log(v(X(T ))− log(v(X(1))

]
+ TΛ

This combined with the second bound in (11) gives the desired
upper bound on WT (p∗T )−WT (p̌T ). ut

B. Computation

The specification of the transition matrix P̌ζ in (9) is based
on the optimal average cost η∗ζ that is defined in (4), the
relative value function h∗ζ introduced in (10), and the nominal
transition matrix P0.

Approximations of η∗ζ and h∗ζ are based on Poisson’s
equation. In general, we say that g is the solution to Poisson’s
equation with forcing function f if the following equation
holds:

g − P0g = f (42)

For this finite state space Markov chain, it follows from
invariance of π0 that π0(f) =

∑
x π0(x)f(x) = 0.

We show here that the second order term S defined in (18)
can be expressed as a solution to a certain Poisson equation,
and explain how to compute solutions.

1) Poisson’s equation: This is a finite state Markov chain,
so Perron-Frobenious theory is very simple and attractive [12],
[30], [31]. Let s : X→ R+ be a function (not identically zero),
and ν a probability mass function such that the minorization
condition holds,

P0(x, y) ≥ s(x)ν(y), x, y ∈ X

This is written P0 ≥ s ⊗ ν. We will take s(x) = I{x = α}
and ν(y) = P0(α, y), so that for all y,

P (x, y) := P0(x, y)− s(x)ν(y) =

{
0 x = α

P0(x, y) x 6= α

The inverse Z = [I−P ]−1 is called the potential matrix [31].
The invariant probability mass function π0 can be expressed

in terms of a matrix inverse. We first use the implication,

π0P0 = π0 =⇒ π0(P0 − s⊗ ν) = π0 − δν

where δ =
∑
x π0(x)s(x) is a constant. We then invert,

π0 = δν[I − (P0 − s⊗ ν)]−1 = δνZ

The measure µ = νZ is an unnormalized invariant measure.
Normalization gives the invariant probability measure,

π0(x) = µ(x)/[
∑
y

µ(y)], x ∈ X.

A similar computation is used to solve Poisson’s equation.
Assume that ν(H) =

∑
ν(x)H(x) = 0. This is without loss

of generality. Under this assumption,

Ũ + P0H = H =⇒ Ũ + (P0 − s⊗ ν)H = H

which gives H = ZŨ .
2) Second-order approximation: Let h′ζ and h′′ζ denote the

first and second derivatives of h∗ζ with respect to the argument
ζ. Each of these are real-valued functions on X. The Taylor
series approximation (22) in Proposition 2.3 implies that

h′ζ

∣∣∣
ζ=0

= H and h′′ζ

∣∣∣
ζ=0

= S .

Here we obtain representations of these functions that are
convenient for computation.

http://arxiv.org/abs/1402.4618
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We show in Proposition A.1 that S solves a certain Poisson
equation, that can be solved through elementary matrix alge-
bra. The representation for h′′ζ in Proposition A.1 appears to
be new.

The derivations are most easily obtained using the nonlinear
generator, defined for any function g : X→ R via,

H(g) := P(g)− g,
where P(g) denotes the function,

P(g)
∣∣∣
x

:= log(Peg)
∣∣∣
x

= log
(∑

y

P (x, y)eg(y)
)
, x ∈ X

Using this notation, the eigenvector equation can be expressed
in a form similar to Poisson’s equation,

h∗ζ − P(h∗ζ) = zU − η∗ζ (43)

in which zU − η∗ζ plays the role of a forcing function, similar
to (42). The similarity between (42) and (43) is why h∗ζ is
called the solution to the multiplicative Poisson equation in
[12].

We also require a nonlinear operator that defines one-step
variance: For any function g : X→ R,

V(g)
∣∣∣
x

:=
∑
y

P0(x, y)g2(y)−
[∑

y

P0(x, y)g(y)
]2

That is, V(g) = Pg2 − [Pg]2.
Proposition A.1: The functions h′ζ and h′′ζ solve the follow-

ing Poisson equations:

U + P̌ζh
′
ζ = h′ζ + Λ′ζ (44)

V(h′ζ) + P̌ζh
′′
ζ = h′′ζ + Λ′′ζ (45)

where Λζ = log(λζ) = η∗ζ . The derivatives also satisfy the
boundary conditions,

h′ζ(α) = h′′ζ (α) = 0.

In particular, with ζ = 0 we obtain,

U + P0H = H + η0

V(H) + P0S = S + κ2

ut
Proof: The boundary conditions hold because h∗ζ(α) =

log(v(α)) = 0 for all ζ. This is by construction — see (13)
and (12).

The remaining results are obtained by differentiating each
side of (43). The first derivative of P(h∗ζ) is obtained from
simple calculus:

d

dζ
P(h∗ζ) =

d

dζ
log(Peh

∗
ζ ) =

1

Peh
∗
ζ
P{eh∗

ζh′ζ} = P̌ζh
′
ζ (46)

On differentiating each side of (43) we thus obtain (44).
For the second derivative of h∗ζ we require the second

derivative of P(h∗ζ). A representation will follow from the
product rule, using (46):

d2

dζ2
P(h∗ζ) = P̌ζh

′′
ζ + P̌ ′ζh

′
ζ (47)

To obtain an expression for the matrix P̌ ′ζ , observe that for
any x, y ∈ X for which P0(x, y) > 0,

d

dζ
log
(
P̌ζ(x, y)

)
=

d

dζ
log
(
P (x, y)eh

∗
ζ(y)/Peh

∗
ζ (x)

)
= h′ζ(y)− d

dζ
P(h∗ζ)

∣∣∣
x

= h′ζ(y)− P̌ζh′ζ (x)

where the final equality follows from (46). This gives,

d

dζ
P̌ζ(x, y) = P̌ζ(x, y)[h′ζ(y)− P̌ζh′ζ (x)], x, y ∈ X.

Substituting this into (47) gives,

d2

dζ2
P(h∗ζ)

∣∣∣
x

= P̌ζh
′′
ζ (x) + P̌ ′ζh

′
ζ (x)

= P̌ζh
′′
ζ (x) +

∑
y

P̌ζ(x, y)[h′ζ(y)− P̌ζh′ζ (x)]h′ζ (y)

which simplifies to,

d2

dζ2
P(h∗ζ) = P̌ζh

′′
ζ + V(h′ζ)

Differentiating each side of (43) twice thus gives (45). ut
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