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Abstract— Renewable energy sources such as wind and so-
lar power have a high degree of unpredictability and time-
variation, which makes balancing demand and supply challeng-
ing. One possible way to address this challenge is to harness the
inherent flexibility in demand of many types of loads. We focus
on pool pumps, and how they can be used to provide ancillary
service to the grid for maintaining demand-supply balance. A
Markovian Decision Process (MDP) model is introduced for
an individual pool pump. A randomized control architecture
is proposed, motivated by the need for decentralized decision
making, and the need to avoid synchronization that can lead to
large and detrimental spikes in demand. An aggregate model
for a large number of pools is then developed by examining the
mean field limit. A key innovation is an LTI-system approxi-
mation of the aggregate nonlinear model, with a scalar signal
as the input and a measure of the aggregate demand as the
output. This makes the approximation particularly convenient
for control design at the grid level. Simulations are provided to
illustrate the accuracy of the approximations and effectiveness
of the proposed control approach.

I. INTRODUCTION

Renewable energy penetration is rising rapidly throughout
the world, and bringing with it high volatility in energy
supply. Resources are needed to compensate for these large
fluctuations in power. The federal energy regulatory com-
mission (FERC) in conjunction with generation and utility
companies are struggling to find resources, and finding ways
to properly compensate for ancillary services that are badly
needed by each balancing authority (BA) in the U.S.. FERC
orders 755 and 745 are examples of their attempts to provide
incentives.

The research described in this paper concerns harnessing
the flexibility of aggregates of deferrable loads. We argue
that most of the load in the U.S. is highly flexible, and
this flexibility can be harnessed to provide ancillary service
without central control, and without significant impact on
the needs of consumers or industry. A defining characteristic
of ancillary service is that on average it is a zero-energy
service, so that the desired power consumption level to be
tracked is zero on average. This makes use of deferrable
loads particularly attractive as sources of ancillary service.

Many utilities already employ demand response programs
that use deferrable loads to reduce peak demand and manage
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emergency situations. Florida Power and Light (FPL), for
example, has 780,000 customers enrolled in their OnCall
Savings Program in which residential air conditioners, water
heaters, and pool pumps systems are automatically controlled
when needed [1]. Today, FPL uses this service only 3–4 times
per year [1]. While a valuable service to the grid, there is
tremendous additional potential from these sources that today
is virtually untapped.

Nearly all of America’s ISOs/RTOs also allow for demand
side resources to participate in their regulation and spinning
reserve markets, but as of the summer of 2013, only PJM
allows aggregation (with approval) [2]. Growth of these
resources in these wholesale markets has helped lower costs
per megawatt-hour from 2009 to 2011 [2]. Still, markets for
regulation and spinning reserves from traditional generation
sources continue to grow because of increasing dependency
on renewable generation.

Fig. 1 shows the regulation signal for a typical week
within the Bonneville Power Authority (BPA) [3]. Its role
is analogous to the control signal in the feedback loop in a
flight control system. Just like in an aviation control system,
the variability seen in this figure is in part a consequence of
variability of wind generation in this region.
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Fig. 1. BPA Balancing Reserves Deployed — Ancillary service needs at the
BPA during one week in 2013. The maximum is approximately one-tenth
of maximum load in this region.

We propose to break up a regulation signal into frequency
bands for the purposes of ancillary services provisioning by
various resources. In prior work it is shown how heating
and ventilation systems in commercial buildings can provide
service in the high frequency band, corresponding to periods
ranging from 3 minutes to one hour [4]–[6]. At the lowest
frequencies, an important resource will be flexible manufac-
turing. An example is Alcoa, that today provides 70MW of
service to MISO by providing control over their aluminum
smelting operation in Indiana. Alcoa’s service is provided
continuously, and provides significant revenue to Alcoa and
even greater benefits to the region managed by MISO.

In this paper we show how pool pumps can be harnessed
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to obtain ancillary service in a medium frequency band,
corresponding to the dashed line in Fig. 1. This is the same
BPA regulation signal, passed through a low pass filter

A pool pump is the heart of a pool’s filtration system:
It runs each day for a period of time range from 4 to
24 hours, and consumes over 1 KW of power when in
operation [7]. The ability to control just half of Florida’s
pool pumps amounts to over 500 MW of power! Much of the
control infrastructure is already in place [8]. Still, constraints
and costs must be satisfied. These include run-times per
day and per week, the cost of startup and shut down,
as well as the total energy consumption. Moreover, there
are privacy concerns and related communication constraints.
Consequently, control algorithms must be distributed so that
most of the required intelligence resides at individual pool
pumps. In this paper we focus on constraints related to run-
times per day, which is critical for keeping the water in the
pool clean. Privacy and communication constraints will be
addressed through the distributed control architecture.

The technical content of the paper starts with a con-
trol architecture designed to address privacy concerns and
communication constraints. An individual pool can view a
regulation signal, much as we can view BPA’s regulation
signal online today. To provide ancillary service in a specified
frequency band, we argue that it is essential to introduce
randomization at each pool. This avoids synchronization,
much like randomized congestion avoidance protocols in
communication networks.

To formulate a randomized control strategy, a Markovian
Decision Process (MDP) model is proposed for an individual
pool pump. An aggregate model for a large number of pools
is then developed by examining the mean field limit.

A key innovation is an LTI–system approximation of the
aggregate nonlinear model, with a scalar signal as the input
and fraction of pool pumps in the on state as the output.
The output is therefore a measure of the aggregate demand.
The LTI approximation is convenient for control design at
the grid level: the scalar input becomes the control signal
that the BA will broadcast to all the pools, which adjusts
a parameter in the randomized policy for the optimal MDP
solution at each pool. In the numerical results in this paper
it is found that a PI (proportional-integral) controller works
very well.

The analysis of the aggregate in Section II can be viewed
as a mean-field game, as in the prior work [9], [10]. The
LTI-approximation is based on large-deviation theory, made
possible by applying a particular optimal control approach
of Todorov [11] along with results from [12].

A number of recent works have explored the potential for
flexible loads for providing ancillary service. These include
commercial building thermostatic loads to provide ancillary
service in the time-scale of a few minutes (see [13] and refs.
therein), electric vehicle charging [9], [10], [13], [14] that can
provide ancillary service in the time scale of a few hours, and
our own recent work on harnessing ancillary service from
commercial building HVAC [4]–[6].

The work of [13] is most closely related to the present

paper, in that the authors also consider an aggregate model
for a large collection of loads. The natural state space model
is bilinear, and converted to a linear model through division
of the state. The control architecture consists of a centralized
control signal computation based on state feedback, and the
resulting input is broadcast to the devices.

In this paper, intelligence is concentrated at the individual
pool: An MDP control solution is obtained at each pool
pump, but the aggregate behavior is well approximated by
a single-input single-output, linear time-invariant (SISO-
LTI) system. Hence the control problem for the balancing
authority can be addressed using classical control design
methods. State estimation is not required — the information
required at the BA is an estimate of the proportion of pools
that are operating.

In the numerical example considered in this paper, the
linear system is minimum-phase and stable, which is very
helpful for control design.

The remainder of the paper is organized as follows. The
control solution for a single pool is described in Section II,
along with approximations of the optimal control solution
based on general theory presented in the Appendix. The
control of the aggregate collection of pools is considered
in Section III. Conclusions and directions of future research
are contained in Section IV.

II. OPTIMAL CONTROL FOR THE POOL AND THE GRID

In this section we pose an optimal control formulation
for an individual pool, taking into account the needs of the
pool and the grid. Approximations of the control solution
are obtained and illustrated in examples. In Section III we
analyze the aggregate behavior of a collection of pools each
governed by the optimal policy.

A. Pool-Grid model
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Fig. 2. State transition diagram for the pool-pump model.

The state process of the MDP model for an individual pool
is denoted X , which evolves on the state space

X = {(m, i) : m ∈ {⊕,	}, i ∈ {0, . . . , T}};
X(t) = (	, i) indicates that the pool-pump was turned
off and has remained off for i time units, and X(t) =
(⊕, i) represents the alternative that the pool-pump has been
operating continuously for exactly i time units. A state-
transition diagram is shown in Fig. 2.

A randomized control solution is desirable to avoid syn-
chronization of pools in the grid, and also to facilitate anal-
ysis of the aggregate system. This is achieved by imposing
the following cost structure on the MDP model.
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It is assumed that there is a transition matrix P0 that
models “control free” behavior of the MDP. A new transition
matrix P may be chosen based on the state of the grid, but
there is a cost for deviation if P 6= P0. Moreover, there is a
cost function κ on X that is used to model the needs of the
grid. The one-stage cost for the MDP model is given by the
weighted sum,

c(x, P ) = zκ(x) +D(P (x, · )‖P0(x, · )) (1)

where z is a scalar constant (for now), and where D denotes
Kullback-Leibler divergence

D(P (x, · )‖P0(x, · )) =
∑
y

P (x, y) log
( P (x, y)

P0(x, y)

)
The cost will be infinite for any x and P for which P (x, · )
is not absolutely continuous with respect to P0(x, · ).

The average-cost optimality criterion is considered here.
The optimal average cost is defined as follows:

η∗z := min
π,P

{∑
π(x)c(x, P ) : π is invariant for P

}
(2)

The dependency of η∗ on z will be suppressed to simplify
notation. It was shown in [11] that the solution to the average
cost optimality equation associated with (2) can be found
through the solution of an eigenvector problem

P̂0v = λv (3)

with λ = e−η
∗
, and P̂0 the scaled transition matrix,

P̂0(x, y) = exp(−zκ(x))P0(x, y) , x, y ∈ X. (4)

The optimizing transition matrix is

P̌ (x, y) =
1

λ

1

v(x)
P̂0(x, y)v(y) , x, y ∈ X. (5)

Second order Taylor series approximations for v and η∗

near z ∼ 0 can be found by borrowing tools from large-
deviations theory. These approximation results are new, and
are collected together in the Appendix.

We now fix the structure for c(x, P ) that is used in the
numerical results described in this paper. The nominal tran-
sition matrix P0 is defined by the probabilities of turning the
pump on or off, as illustrated in the state transition diagram
Fig. 2. In the numerical results described below a symmetric
model was chosen for P0 in which p⊕i = p	i , where
p⊕i := P (pump switches on | it has been off i hours). Simi-
larly, p	i := P (pump switches off | it has been on i hours).
Fig. 3 shows a plot of the probability p⊕i vs. i.

Symmetry is not required in any of the theoretical results
of this paper, such as the form of the solution to the
optimality equations.

The cost function κ on X is chosen as the indicator
function that the pool pump is not operating:

κ(x) =
∑
i

I{x = (	, i)} (6)

The parameter z in (1) can be positive or negative; If z > 0
this one-stage cost function provides incentive to turn pumps
on.

0
0

0.5

1

Pool pump o� for i hours
2412 i

Fig. 3. Control free behavior of a pool used for numerical studies.

Given this structure, the solution to the eigenvector equa-
tion (3) has a simple form described in the Appendix (see
(20) and (31)).

Approximations: A Taylor-series approximation of the
average cost is based on two parameters, defined with respect
to the nominal model P0 with invariant measure π0. The
first-order coefficient is the the steady-state mean of κ,

η0 =
∑
x

π0(x)κ(x) (7)

By symmetry, in this model we have η0 = 1/2. The second-
order coefficient is based on the asymptotic variance of κ
for the nominal model (the variance appearing in the Central
Limit Theorem for the nominal model). For this finite state
space model this is represented as the limit,

ς20 = lim
N→∞

1

N
E
[(N−1∑

0

κ̃(X(t))
)2]

(8)

where κ̃ = κ− η0.
The approximation of the average cost established in

Proposition 1.1 in the Appendix is then,

η∗z = η0z − 1
2 ς

2
0z

2 +O(z3) (9)

Shown in Fig. 4 is a comparison of η∗z with the quadratic
approximation based on (9).

η∗
z

η0z

z

η0z

− 1
2 ς 20z

2
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−2

2

4

Fig. 4. The optimal cost η∗z and its quadratic approximation.

The invariant measure (or steady-state distribution) for P̌z
is denoted π̌z . The steady-state probability that a pool-pump
is in operation is given by

P̌{pool-pump is on} = 1−
∑
x

π̌z(x)κ(x)
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A linear approximation is obtained in Proposition 1.1 (ii):

P̌{pool-pump is on} = 1− (η0 − ς20z) +O(z2) (10)

A comparison of the true probability and its affine ap-
proximation is shown in Fig. 5. The approximation is very
tight for |z| ≤ 3. For larger values of z the true steady-state
probability saturates (approximately 0.9 as z → +∞).

−10 −8 −6 −4 −2 0 2 4 6 8 10 z

P̌{pool is on}
1− (η0 − zς20 )

0

0.5

1

Fig. 5. Approximation of the steady-state probability that a pool-pump is
operating under P̌ .

For fixed z, the controlled model P̌ has the same form as
P0, with transformed probability vectors p̌⊕ and p̌	. Fig. 6
contains plots of the transformed vector p̌⊕ for values z =
0,±4,±6. The plots of p̌	 are obtained through symmetry.

0 2412
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- 6
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z = 0
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Fig. 6. Transformed probability vector p̌⊕ under P̌ .

III. CONTROLLING A LARGE NUMBER OF POOLS

Consider N pool-pumps operating independently under
the randomized policy described in the previous section. The
state of the ith pool is denoted Xi(t). For large N we have
from the Law of Large Numbers,

1

N

N∑
i=1

κ(Xi(t)) ≈ E[κ(X(t))]

= P{Pump not operating at time t}
(11)

The expectation and probability on the right are with respect
to the optimal transition law P̌z , where z is the cost param-
eter used in (1).

There is now a centralized control problem faced by the
BA: How to choose the variable z to regulate the power
consumed by the pool pumps?

A. Mean-field control model

The BA observes the proportion of pools that are on as
a function of time. Based on this information and the state
of the grid, the command z is computed at the BA, and
transmitted to each pool pump. The control at each pool
pump is decentralized, based only on its own state and the
signal z.

To address the control problem faced by the BA it is
necessary to relax the assumption that this parameter is fixed.
We let z = {z0, z1, . . . } denote a sequence of scalars, which
is regarded as an input signal for the control problem faced
by the BA. An aggregate model is obtained in two steps.

In step 1 it is assumed without justification the existence of
a mean-field limit: Let N →∞ to obtain the generalization
of (11),

lim
N→∞

1

N

N∑
i=1

I{Xi(t) = x} = µt(x) , x ∈ X. (12)

For a given initial distribution µ0 on X, the distribution µt
is defined by µt(xt) =∑

xi∈X
µ0(x0)P̌z0(x0, x1)P̌z1(x1, x2) · · · P̌zt−1

(xt−1, xt)

where xt is an arbitrary state in X, and the sum is over all
intermediate states. We view {µt} as a state process that is
under our control through z. The grid operator is interested
in the average number of pools pumps that are operating,
given by

yt = 1−
∑
x

µt(x)κ(x)

Step 2 is based on the Taylor series approximations sur-
veyed in the previous section to approximate this nonlinear
system by a linear state space model. Further details are given
in Section III-C.

In the linear model we let Φt denote a column vector of
dimension |X| whose xth component approximates µt(x),
and γt a scalar that approximates yt. The approximate
dynamics of {µt, yt} are defined by a linear state space
model,

Φt+1 = AΦt +Bzt

γt = CΦt
(13)

with initial condition Φ0(x) = µ0(x).
We begin with an equilibrium analysis in which z is held

constant.

B. Equilibrium

Suppose that z does not vary with time, zt = z∗ for
all t, and consider the steady-state behavior of the mean-
field model. We denote y∞ = limt→∞ yt, which is the
steady-state probability that a pool is on, for the model
with transition law P̌z∗ . This can be approximated using
Proposition 1.1:

y∞ = P{Pump is operating} ≈ 1− (η0 − ς20z∗)
From the viewpoint of the BA, there is a value G∗ of

desired consumption by all the pools. If gp > 0 denotes the
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Fig. 7. Frequency response for linearized model C[Iz −A]−1B

consumption of one pool pump in operation, and if there are
N pools in total, then the desired steady-state probability is
y∞ = G∗/(Ngp). This translates to a corresponding value
of z∗,

z∗ ≈ 1

ς20

[ 1

gp

G∗

N
− (1− η0)

]
=

1

ς20

1

gp

G̃

N
(14)

where G̃ = G∗ −G0, with G0 = gpN(1− η0), the control-
free value obtained with z∗ = 0.

C. Linear systems analysis

Consider now the case in which z is a function of time.
We construct a linear systems approximation in which this
is the input, and the output is y (the fraction of pools on).

In the state space model (13) we take A = P T
0, and C is the

row vector of dimension |X| defined so that
∑
x Cxµt(x) =

1 − ∑x µt(x)κ(x) = yt. Specification of B is obtained
next, based on the Taylor series approximations developed
in Section B of the Appendix.

We have, from (5),

P̌z(x, y) = e−zκ(x)+η
∗
z−Vz(x)P0(x, y)eVz(y)

Based on the first order approximation of Vz in Proposi-
tion 1.1 we obtain,

P̌z(x, y) ≈ ez[h0(x)−κ̃(x)]P0(x, y)e−zh0(y)

where h0 is a solution to Poisson’s equation with forcing
function κ, for the nominal model (see (21)). Using a first
order Taylor series for the exponential then gives,

P̌z(x, y) ≈ [1 + z(h0(x)− κ̃(x))]P0(x, y)[1− zh0(y)]

≈ P0(x, y) + zE(x, y)

where E(x, y) =
[
(h0(x)− κ̃(x))P0(x, y)−P0(x, y)h0(y)

]
.

If µ ∼ π0 (the invariant measure for P0) and z is small,
then we can approximate,

µP̌z ≈ µP0 + zBT

where B is the column vector with entries B(y) =∑
x π0(x)E(x, y). In this way we can approximate y as the

output γ of the linear system (13).
Observe that the linear system (13) is not the form of a

typical linearization in which the state represents deviation
from nominal behavior (in this case this is z ≡ 0, Φ := πT

0).
We obtain a linearized system with Φt(x) ≈ µt(x), rather

than the deviation µt(x)− π0(x), because the matrix A has
a unique eigenvalue at 1, with eigenvector πT

0.
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Fig. 8. Open-loop pole-zero plot

Fig. 7 shows the Bode
plot for the linear model
(13), and its pole-zero plot
is shown in Fig. 8. The
transfer function from z
to γ is BIBO stable and
minimum phase.

Fig. 9 shows remark-
able solidarity between the
Markov model and its
linearization. The input
was chosen to be swept-
sinuosoid, of the form

zt = g sin(δt+ εt2),

with g, δ, ε positive and small numbers.

D. Control design and simulation

Recall the control architecture described at the start of
Section III. At any given time, the desired power con-
sumption/curtailment is determined by the BA based on its
knowledge of dispatachable and uncontrollable generation as
well as prediction of load. This is passed through a band-
pass filter and scaled appropriately based on the proportion
of ancillary service provided by the pools, and the average
power consumption of pool pumps. The resulting reference
signal is denoted r.

We introduce here a refinement of the randomized control
scheme to account for delay in the system: Even if sampling
takes place each hour, if a percentage of pools turn off in
response to a regulation signal, then the power consumption
in the grid will drop nearly instantaneously. Nevertheless, the
control system model will have a one hour delay, which is
unacceptable. Two mechanisms are used together to improve
performance.

First, in the experiments conducted it was found that
sampling at 30 minute intervals provided better response to
the grid, with little impact on service to the network of pools.

The second mechanism is more subtle. Why should each
pool operate on the same clock? We assume that each pool
checks the regulation signal each T = 30 minutes. However,
the pools have no common clock. It is convenient to model
this via binning of time. For example, 1/6 of the pools
measure the regulation signal at the top of the hour, 1/6
measure at five minutes past, and so on.

To model this refinement, let m > 1 denote a “super-
sampling” parameter, and we fix T = 30 minutes for the
sampling time of each pool. The model is in discrete time,
with sampling interval T/m. For example, m = 6 corre-
sponds to a five minute sampling interval. A pool is class i
if the reference signal is checked at times nT +(i−1)T/m,
with n ≥ 0, 1 ≤ i ≤ m.

Letting yit denote the fraction of pools in the ith class that
are operating, the total that are operating at time t is the sum
yt =

∑
i y
i
t. The delay in this model is T/m rather than T .
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approximately 24 hours.

A linear model is minimum phase as before, but now only
marginally since the sum introduces zeros on the unit circle.
Regardless, it is found that high-gain control is suitable for
the linear model.

For the purposes of translation to megawatts, it is assumed
that there are N = 106 pools (consistent with the state of
Florida), and that each pool in operation consumes gp =
1 KW. Power consumption at time t is assumed to be equal
to Ngpyt (in KW), or 103yt (in MW).

The following experiments involve the mean-field Marko-
vian model without linearization using PI control.1 With a
value of m = 12, corresponding to 150 second sampling
intervals at the grid level, a proportional gain of 20, and
integral gain of 4 worked well.
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Fig. 10. Closed loop simulation with Markovian model.

In the results shown in Fig. 10 the reference signal was
chosen to be the BPA regulation signal passed through a low
pass filter. The tracking performance is remarkable.

Observe that the magnitude of service reaches 200 MW.
This is a substantial amount of ancillary service in this
frequency band, and there is no reason to believe that a
network of one million pools cannot supply much more.

IV. CONCLUSIONS

The simplicity of the MDP solution, and the remarkable
accuracy of the LTI approximation for the mean-field model

1Just prior to final submission, experiments using a simulation of
100, 000 pools were completed by Yue Chen, a graduate student at Univ.
of Florida. The results are nearly identical to those described here, using
the deterministic mean-field game model, and will appear on our website
and a journal article in preparation.

makes this approach appealing for this and many related
applications.

There are also many issues that have not been addressed
here: The formulation of contracts with customers requires
a better understanding of the value of ancillary service, as
well as consumer preferences. Moreover, we do not yet
understand the potential cost to consumers in terms of energy,
or risk in terms of rare events in which the pool is under- or
over-cleaned. It is likely that hard constraints on performance
can be put in place without impacting the analysis – this is
a focus of current research.
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APPENDIX

AVERAGE COST OPTIMAL CONTROL:
AN INFORMATION-THEORETIC SETTING

This Appendix consists of three parts: A short review of
Todorov’s eigenvector characterization for a class of MDPs,
some new Taylor-series approximations for the solution of
this optimal control problem, and specialized results for
the pool-pump MDP model introduced in this paper. The
control setting has an information-theoretic flavor since the
cost is based on deviation from nominal behavior, where the
deviation-cost is based on relative entropy. The analysis here
is similar to what is used in information theory and statistics
(in particular [12], [15]).

A. Todorov’s formulation

We first review a general control methodology introduced
by Todorov in [11]. We present here the main ideas; modi-
fying the original formulation to simplify discussion.

In the standard formulation of optimal control of Markov
chains – also called Markov decision theory – there is a
finite state space X and action space U. A state process X
evolves on X, and input processU evolves on U. A controlled
Markov transition matrix Pu(x, y) defines the probability that
the state moves from x to y in one step:

P{X(t+ 1) = y | X(t) = x, U(t) = u} = Pu(x, y) . (15)

Under general conditions [16], the optimal average cost η∗

is independent of the initial condition, and together with a
relative value function h∗ solves the average-cost dynamic
programming equation (ACOE),

min
u
{c(x, u) + Puh

∗ (x)} = h∗(x) + η∗ (16)

In this equation we use the standard shorthand,

Puh
∗ (x) =

∑
y

Pu(x, y)h∗(y)

= E[h∗(X(t+ 1)) | X(t) = x, U(t) = u]

There are two components to the formulation of [11]. First,
the action space U is identified with the set of all transition
matrices (restrictions are placed on permissible Pu in [11],
but this is inconsequential here). This is consistent with the
definition (15), in which on observing X(t) = x, the entire
probability law P (x, y) is determined at this time. Second,
the cost function is taken to be of the specific form (1) for
some function κ : X→ R, a scalar z, and nominal transition
matrix P0.

The ACOE (16) becomes a minimum over P ,

min
P
{c(x, P ) + Ph∗ (x)} = h∗(x) + η∗ (17)

This convex optimization problem appears in the theory of
large deviations of sample-means [17]. In the minimization
(17) we can fix x, and let µ0( · ) = P0(x, · ), so that the
optimization problem is over probability vectors µ = P (x, · )
on X. Given the form of the cost function, the minimization
to be solved is,

min
µ
{D(µ‖µ0) + µ(h∗)} = −max

µ
{µ(−h∗)−D(µ‖µ0)}

where the maximum is of the standard form seen in large
deviations for i.i.d. stochastic processes. The solution µ̌ is
the “twisted distribution”,

µ̌(y) = ξµ0(y)e−h
∗(y) , y ∈ X.

where ξ > 0 is a normalizing constant, chosen so that∑
y µ̌(y) = 1.
Returning to the original notation, and recalling that we

solve this optimization problem for each x, the optimizer P̌
has the form,

P̌ (x, y) = ξ(x)P0(x, y)e−h
∗(y) (18)

where the normalizing constant ξ(x) is found as follows,

1

ξ(x)
=
∑
y

P0(x, y)e−h
∗(y) .

Substituting this expression into (17) we find that the solution
to the Perron-Frobenious eigenvector problem (3) is obtained
with v = e−h

∗
and λ = e−η

∗
.

Under the assumption that P0 is irreducible, λ is the
unique maximal eigenvalue for P̂0, and v is unique up to
constant multiples. This is not surprising, since the relative
value function h∗ solving the ACOE is typically unique up
to an additive constant.

B. Representations and approximations

A solution to the eigenvector problem (3) can be repre-
sented through a regenerative formula. Let α ∈ X be some
fixed state that is reachable from each initial condition of
the chain, under the transition law P0. That is, the chain
is assumed to be α-irreducible [18]. Since the state space
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is assumed to be finite, it follows that there is a unique
invariant probability measure π0 for P0. The first return time
is denoted,

τ = min{t ≥ 1 : X(t) = α} .
Recall that the optimal cost, which of course depends upon

z, is given by η∗z = − log(λ). From the theory of positive
matrices [12], [19], [20], it follows that it is the unique
solution to,

1 = Eα
[
exp
(τ−1∑

0

[−zκ(X(t)) + η∗z ]
)]

(19)

with initial condition X(0) = α. Moreover, for each x ∈ X,
the value of v(x) is obtained as the expected sum, with initial
condition X(0) = x:

v(x) = Ex
[
exp
(τ−1∑

0

[−zκ(X(t)) + η∗z ]
)]

(20)

These expectations are each with respect to the nominal
transition law P0.

Based on these two formula and Taylor series expansions
of the exponential, we can obtain second-order Taylor series
approximations of η∗z and Vz = log(vz) for z ∼ 0.

Both approximations require the solution to Poisson’s
equation for P0,

h0(x) = Ex
[τ−1∑

0

κ̃(X(t))
]

(21)

where κ̃ = κ− η0, and η0 is the nominal steady-state mean
(7). The asymptotic variance associated with κ defined in (8)
can be expressed in terms of Poisson’s equation [16], [18]:

ς20 =
∑
x

π0(x)
(
κ̃(x)h0(x)− κ̃(x)2

)
The second order approximation of the optimal cost is given
in terms of these two statistics. The approximation of the
relative value function h∗ is based on another variance term,

S0(x) = Ex
[(τ−1∑

0

κ̃(X(t))
)2]
−
(
h0(x)

)2
(22)

Proposition 1.1: The following hold for the finite state
space model in which P0 is irreducible:

(i) The optimal cost η∗z is concave as a function of z,
and admits the Taylor series expansion,

η∗z = η0z − 1
2 ς

2
0z

2 +O(z3) (23)

(ii) The mean of κ under the the invariant measure π̌z
for P̌z is given by,∑

x

π̌z(x)κ(x) =
d

dz
η∗z (24)

This admits the first-order Taylor series approximation

d

dz
η∗z = η0 − ς20z +O(z2) (25)

(iii) The relative value function admits the second-order
Taylor series approximation,

h∗(x) = zh0(x)− 1
2z

2S0(x) +O(z3) (26)
Proof: Equations (23)—(25) follow from the fact that

−η∗z = log(λ) can be expressed as a cumulative log-moment
generating function [12, Prop. 4.9].

Concavity follows from the fact that η∗z is the minimum
of linear functions of z (following the linear-program formu-
lation of the ACOE [21]).

Next we establish the approximation of V = log(v).
The second order approximation of V(x) follows from the
representation (20),

V(x) = −zh0(x) + 1
2z

2S0(x) +O(z3) (27)

This gives an approximation for the relative value function
(26) using v = e−h

∗
.

C. Solution to the pool pump MDP control problem

The representation of the eigenvector v given in (20) is
based on the first return time τ to a state α ∈ X. A convenient
choice in the pool-pump model is α = (⊕, 0), so that τ is
the first time that the pool-pump is switched from off to on,

τ = τ⊕ = min{t ≥ 1 : X(t) = (⊕, 0)}
The function v given in (20) can be found via dynamic
programming.

Consider first an initial condition in which the pool pump
is initially off. For x = X(0) = (	, i) we then have

v(x) = Ex
[
exp
(
θτ⊕

)]
, (28)

with θ = η∗z − z. The case i = T has an explicit solution,
which is interpreted as a boundary condition,

v(x) = eθ , x = (	, T ) . (29)

This holds because T is an upper limit on the length of a
cycle, so that p⊕T = 1.

For x = X(0) = (	, i) with i < T , the next state can take
on two possible values: X(1) = (	, i+1) or X(1) = (⊕, 0).
In the latter case τ⊕ = 1, giving the recursive equation,

v(	, i) = p⊕i e
θ + (1− p⊕i )eθv(	, i+ 1) (30)

Consider now the initial condition x = (⊕, i) for i ≥ 0.
To reach the state (⊕, 0) for t ≥ 1 it is necessary to first
pass through the state (	, 0). On denoting

τ	 = min{t ≥ 1 : X(t) = (	, 0)}
the value function can be represented,

v(x) = Ex[eη
∗τ	 ]E(	,0)[e

θτ⊕ ] (31)

This is because κ(X(t)) = 0 for t < τ	.
The moment generating function Ex[eη

∗τ	 ] is easily com-
puted as before.

Recall that Proposition 1.1 contains quadratic approxima-
tions for η∗z and Vz = log(vz), based on the solution to
Poisson’s equation. This expectation defining h0 in (21) is
is similar to the representation of v, so that similar dynamic
programming steps can be used to compute h0.
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