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control of commercial buildings
Yashen Lin, Member, IEEE, Prabir Barooah, Member, IEEE, and Johanna L. Mathieu, Member, IEEE

Abstract—Prior work showed building Heating, Ventilation,
Air Conditioning (HVAC) systems can provide ancillary services
to the power grid without sacrificing occupant comfort if the
reference power variation is of high frequency (seconds to a few
minutes). This paper addresses the question of how to do that
when the reference power variation is of lower frequency, e.g.,
periods of a few minutes to an hour. The proposed control system
to do so uses a two-layer architecture. An optimizer schedules
the baseline cooling and heating power of a building based on
load forecasts. A lower level controller is then used to track the
scheduled baseline plus ancillary service reference signal. The
schedule is periodically updated based on indoor measurements
to ensure quality of service in spite of load forecasting error. The
algorithm is tested in simulation. Results show that ancillary ser-
vices in the frequency range of f ∈ [1/(1 hour), 1/(10 minutes)]
can be extracted from commercial building HVAC systems while
still maintaining a comfortable indoor climate.

Index Terms—Ancillary services, demand scheduling, commer-
cial building, HVAC

NOMENCLATURE

LIST OF VARIABLES

α Outside air ratio.

δP Power variation.

ω Humidity ratio.

h Specific enthalpy.

m Flow rate.

P Power.

S Score.

T Temperature.

LIST OF PARAMETERS

∆tI Implementation period.

∆tS Scheduling period.

γ Design parameter for schedule update.

λ Design parameter for schedule update.

τ Time constant.

C Heat capacity.

hw,e Latent heat of vaporization of water.

td Transport delay.

LIST OF SUPERSCRIPTS

b Baseline.

I Implementation period.

r Reference.

S Scheduling period.

s System operator.
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LIST OF SUBSCRIPTS

a Air flow.

c Chiller.

ca Conditioned air.

cc Cooling coil.

chw Chilled water.

d Disturbance.

f Supply air fan.

l Load.

ma Mixed air.

oa Outside air.

r Return.

ra Return air.

rh Reheat.

s Supply.

w Water.

I. INTRODUCTION

Ancillary services are needed to correct the mismatch

between demand and supply in a power grid. Traditionally,

ancillary services are provided by generators. An alternative

is to use flexible loads which may have less environmental

impact and cost in the long run. A number of works have

explored the use of residential and commercial building loads

to provide ancillary services [1–11].

Ancillary services are distinguished by their time-scales.

Frequency regulation has a time-scale of a few seconds to a

few minutes, while load following has a time-scale of minutes

to hours [12]. The topic of this paper is the use of loads to

provide ancillary services in the time scale similar to load

following. Specifically, we propose a method for Variable Air

Volume (VAV) Heating, Ventilation, Air Conditioning (HVAC)

systems to provide ancillary service in the time scale of ten

minutes to an hour. In previous work, it was shown how fan

motors in VAV HVAC systems can be used to effectively

provide frequency regulation without any discernible variation

of indoor climate [7, 8, 13]. In this paper, we extend the time

scale and use both chiller and fan motors.

The control system proposed in this paper has two tasks.

One is to vary the electric power consumption of the HVAC

system in such a way that the deviation from the baseline

follows an exogenous reference signal that is band-limited

to the above-mentioned timescale: ten minutes to an hour.

The baseline is the power the HVAC system would have

consumed if it were not providing ancillary service. The other

task is to maintain the consumers’ Quality of Service (QoS).

Specifically, the resulting indoor climate variation should be

small enough to be undetectable by occupants, and total energy

should not increase significantly.
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We assume the system operator broadcasts a signal that

contains information on grid-level demand-supply imbalance

to all buildings. At each building, this signal is passed through

a bandpass filter to generate the reference signal for that

building. The bandpass frequencies and bandpass gain of the

filter have to be chosen so that the reference signal is limited to

a frequency and amplitude that is appropriate for the building’s

characteristics.

If the reference signal is of high frequency, the baseline can

be estimated with a low pass filter since the power variation

caused by the climate control system is much slower than

that caused by reference tracking. This approach was used

in [7, 8, 13]. However, if the reference signal is of low fre-

quency, estimating the baseline is challenging because of lack

of time scale separation: the time scales of the power variation

caused by the existing climate control system overlaps with

that caused by reference tracking. This has been a recognized

issue in demand response; see [14] and references therein.

We therefore choose to schedule the baseline rather than to

estimate it. This approach is inspired by the early work of

Borenstein et al. [15] who called it Build Your Own Baseline

(BYOB). We therefore call the proposed control system, which

includes the baseline scheduler at a supervisory level and

an inner loop reference tracking control loop, the BYOB

Ancillary Service Controller (BYOB-ASC). In addition, when

the reference signal is of high frequency as in [8], variation in

the actuation (air flow rate) only affects the fan power but not

the chiller power due to the high thermal inertia of the chiller.

In the time scale considered in this paper, airflow variations

will affect both fan and chiller power, making the design of

the control system more challenging.

The control system we present in the paper has the following

features. One, it is simple to design and implement. The

design requires only a few parameters, black-box Linear Time

Invariant (LTI) models of a few HVAC system components,

and a few weeks of historical data of HVAC power con-

sumption to fit a load prediction model. The parameters

and black-box LTI models can be determined from system

identification experiments. The scheduling requires solving a

low-dimensional Linear Program (LP) every hour. Two, the

system is highly robust to error in load forecasts from weather

predictions. This is achieved by the introduction of feedback:

the load forecast is updated every hour based on measurements

of indoor temperature. As a result, the room temperature

deviation is kept small in spite of the forecast error. Theoretical

analysis of this robustness is provided.

The three papers most relevant to ours are [9–11], which

propose methods to use commercial buildings for frequency

regulation (as opposed to load following considered here)

including baseline scheduling. This paper makes several con-

tributions compared to [9–11]. The first is the simplicity of

our proposed scheduling algorithm. The scheduling in [9–11]

requires solving Model Predictive Control (MPC) problems

with simplified building thermal dynamical model, while our

formulation solves a low-dimensional LP based on steady state

load balance. Also, only a thermal capacitance parameter is

required within our scheduling problem; thermal resistances

are not needed. The second is that [9–11] do not consider the

challenges associated with tracking a reference power signal

computed by a baseline scheduler, such as transport delay in

the water loop. In [9, 10], it is assumed that a heat pump

controller can be designed to provide perfect tracking. The

control system proposed in this paper includes a low level

reference tracking controller that is robust to chilled water

loop delay uncertainty. The third contribution of our work is

robustness to load forecast error and model mismatch. We

explicitly introduce feedback in the scheduling algorithm to

correct the forecast error through baseline updates, provide

theoretical analysis of the robustness, and evaluate the overall

system in simulations that include significant plant-model mis-

match. In [9, 10], it is assumed that perfect forecast of building

load is available. Ref. [11] includes a disturbance in the

building model, but no analysis of its impact is provided. MPC

simulations in [9, 10] do not include plant-model mismatch.

On the other hand, [10] considers using a collection of

commercial buildings while we consider only one. While [9–

11] compute the time-varying reserve capacity, we assume the

reserve capacity is constant. Our work is therefore comple-

mentary to that in [9–11].

This paper is an extension of the work reported in [16, 17].

In [16], it is assumed that the baseline is somehow known,

while both [16, 17] neglected fan power assuming it is

insiginifant compared to chiller power, which is not accurate.

At the ancillary services timescales we consider, variation in

air flow rate will lead to variation in both fan and chiller

power1 and this paper considers both fan and chiller power

consumption in the design. Doing so introduces an additional

level of complexity as these two sources of demand have

distinct dynamics: the relation between air flow rate and fan

power is of high frequency with negligible transport delay,

while that between air flow and chiller power is of lower

frequency with a non-negligible transport delay. The second

contribution over the preliminary work [16, 17] is an extensive

simulation evaluation of the revised design. We thoroughly

examine not only the ancillary service performance but also

the impact on QoS (indoor climate and total energy use).

The rest of the paper is organized as follows. Section II

describes the proposed system; Section III presents analysis of

indoor climate variation and ancillary service capacity; Sec-

tion IV discusses the simulation setup and results; Section V

concludes the paper and discusses directions for future work.

II. THE PROPOSED BYOB-ASC SYSTEM

We start with a description of conventional chilled-water

VAV HVAC systems. The BYOB-ASC leaves certain parts of

the climate control system untouched while overriding others.

A. Background - VAV HVAC systems

Figure 1 shows a schematic of a typical single-duct, chilled

water-based, VAV HVAC system. Although the method pro-

posed in this paper is applicable to multi-zone HVAC systems

with minor modifications, we focus on single zone systems,

1The only remaining source of electric power in commercial HVAC system,
pumps, are neglected due to their much lower demand. Heating is typically
provided by gas, not electricity, hence not considered.
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Fig. 1. Schematic of a VAV HVAC system.

such as the one shown in Fig. 1. Fresh outside air (oa) is

brought in and mixed with the return air (ra), which ensures

good Indoor Air Quality (IAQ). The mixed air (ma) then

goes through a cooling coil (CC) in the Air Handling Unit

(AHU), where the air is cooled and dehumidified, producing

conditioned air (ca). The chilled water (chw) used to condition

the air in the cooling coil is produced in a chiller. There may

also be a reheat (rh) coil to increase the temperature of the

conditioned air. The conditioned air is then distributed to the

zone by a supply air fan through ducts. The abbreviations

indicated here will be used as subscripts to differentiate

different air streams in the following sections.

The indoor climate controller acts on the error between

the measured indoor temperature T and the pre-determined

set-point T r to determine the reference mr
a for airflow rate

ma (kg/s), and reheating rate P r
rh (W). The conditioned air

temperature Tca is maintained at a pre-determined set point

T r
ca by the cooling coil controller, which varies the chilled

water flow rate mchw using valves and chilled water pumps.

A controller varies the fan motor speed so that the measured

airflow rate ma tracks the reference mr
a.

There are three main sources of power consumption in such

an HVAC system - mechanical (fan+pumps), cooling (chiller

motors), and (re-)heating. In many cases, heating is provided

by steam rather than electricity. Moreover, electrical demand

of pumps is much smaller than the fans and chillers. Therefore,

in this paper we consider fan and chiller power as the only

sources of flexible electrical demand that can be used for

ancillary services. However, when examining the total energy

consumption of the HVAC system in Section IV-F, we take

into account reheating.

B. The BYOB Ancillary Service Controller

We assume that the system operator broadcasts a signal

δP s(t) to all participating resources, such as generators and

smart loads. It is argued in [18] that it is imperative to respect

the bandwidth limitations of resources in order to maintain

consumers’ quality of service. Therefore, the proposed system

uses an on-site bandpass filter that filters δP s(t) to create a

reference power deviation signal, δP r(t), whose magnitude

and frequency is appropriate for the building. We also assume

that the reference signal the building needs to track is energy

neutral.
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Fig. 2. Schematic illustration of the BYOB-ASC.

The advantage of using an on-site filter is that the system

operator could utilize the participating buildings to their full

potential since the filters would be specifically designed for

individual buildings. The disadvantage, however, is that the

system operator has to ensure the sum of ancillary service from

all buildings meets its total requirements. In this paper, we do

not address this problem, and we assume the system operator

has enough resources to meet its requirements. Alternatively,

the system operator could filter the signal and send different

signals to different resources, as the PJM Interconnection

(PJM) does [19]. In this case, our proposed approach still

works; each building would respond to the signal that best

fits their characteristics.

The measured HVAC electrical power consumption P (t) is

the sum of the fan and chiller power, i.e., the total electrical

HVAC power consumption, neglecting the pump power, which

is comparatively small. The value of P (t) is the sum of the

baseline electrical power P b(t) and the deviation from it,

P (t) := P b(t)+δP (t). In our BYOB approach, the baseline is

scheduled ahead of time to match the forecasted thermal load.

The scheduled baseline power is called P b,r. The reference

command for the total electrical power consumption is the sum

of the scheduled baseline and the ancillary services reference

signal:

P r(t) := P b,r(t) + δP r(t) (1)

A schematic illustration of the structure of the BYOB-

ASC for a building is shown in Fig. 2. The BYOB-ASC

consists of two modules: a high-level scheduler and a low-level

Power Tracking Controller (PTC). The scheduler computes

baseline P b,r(t) ahead of time. The PTC commands the

desired airflow rate mr
a(t) so that the electrical power P (t)

tracks the reference P r(t). We assume that the actual heating

power can be made to track the scheduled heating power

P r
rh(t) by actuating the heating valve.

Time is divided into a number of slots for scheduling

and implementation purposes, with length ∆tS and ∆tI ,

respectively, where ∆tI < ∆tS . The main steps are:

1) At the beginning of the k-th scheduling period T S
k :=

(k∆tI , k∆tI + ∆tS ], forecast thermal load for this

period. The forecasting algorithm is described in Sec-

tion II-C1.

2) Determine the desired baseline power during T S
k which

serves the forecast thermal load while ensuring IAQ con-

straints are satisfied and actuation limits are respected.
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3) During the implementation period T I
k := (k∆tI , (k +

1)∆tI ], use the PTC to track the reference fan power and

chiller power (1) by varying the supply air flow rate.

4) At the end of implementation period, update the load

estimate for the next scheduling period T S
k+1, and go

back to step 1).

The BYOB-ASC over-rides the climate control system, i.e.,

the references mr
a(t) and P r

rh(t) that are otherwise computed

by the climate control system are now computed by the

BYOB-ASC. All other local control loops in the building,

such as control loops in the cooling coil, heating coil, fan

speed controller, are left untouched.

C. Baseline scheduling

1) Thermal load forecasting model: We first define the term

“thermal load” precisely and describe how to estimate it so that

these estimates can be used to fit a model that is used later

for prediction.

Assuming that the existing climate control system is able

to maintain indoor temperature perfectly at its set point, the

following steady-state relationship will hold:

0 = −Pcc(t) + Prh(t) + Pl(t) (2)

where Prh(t), Pcc(t) are the rate of heat provided to and

extracted from the building, respectively, by the heating and

cooling coils, and the last term Pl(t) is the rate of heat entering

the building from all other sources, such as from outside air,

solar irradiation, occupants and plug loads. We define the term

Pl(t) as the thermal load of the building. Equation (2) gives us

an estimate of Pl(t) from measurements of Pcc(t) and Prh(t),
which are obtained from meters installed in the cooling and

heating coils.

Once the building’s thermal load is estimated, we fit a model

to these data. We use the linear-regression model developed

in [20], where the load is a piecewise linear function of outside

air temperature and of time-of-week. Time of week acts as a

proxy for occupant behavior and appliance use. The ordinary

least squares method is used to parameterize the model with

historical load/temperature measurements. The model is then

used to forecast the building’s load at a particular time-of-week

given a forecast of outside air temperature.

2) Baseline scheduling at t = 0: The algorithm for up-

dating the baseline at subsequent scheduling intervals builds

on the algorithm used at the first scheduling period T S
0 =

[0, ∆tS ], so we first describe that in detail.

The HVAC system is required to bring in certain amount of

fresh outdoor air to ensure IAQ. This is achieved by setting

a minimum supply air flow rate, which is computed based

on floorspace and occupancy according to [21]. At the same

time, to ensure the humidity requirement, the supply air is

cooled to a low temperature (55 oF in this paper, which is

widely used in practice) first, no matter what the thermal load

is in the building. Under this mechanism, there is effectively a

minimum cooling load the HVAC has to provide at any time.

When the actual thermal load of the building is lower than

this minimum cooling load, reheating has to occur to maintain

the comfortable room temperature. This leads to simultaneous

cooling and heating. We emphasize that simultaneous cooling

and heating occurs in practice quite often for the same reason:

to ensure ventilation and humidity constraints.

The objective of the scheduling is to minimize the sum of

fan, cooling, and heating energy consumption subject to the

load balance, actuator constraints, and IAQ constraints. We

formulate the optimization problem as: for t ∈ T S
0 = [0,∆tS ],

minimize
ma(t),Prh(t)

∫

T S

0

(Pcc(t) + P̃f (t) + Prh(t))dt (3)

subject to

−Pcc(t) + Prh(t) + P̂l(t) = 0 (4)

ma(t) ∈ [mlb,mub], Prh(t) ∈ [Plb, Pub] (5)

where mlb and mub are the bounds for supply air flow rate

ma(t); Plb and Pub are the bounds for reheat power Prh(t);
P̂l(t) is the forecast of load from the load forecasting model

described in Section II-C1.

The cooling power Pcc(t) is:

Pcc(t) = ma(t)(hma(t)− hca(t)) (6)

where

hma(t) = Cp,aTma(t) + wma(t)(hw,e + Cp,wTma(t)) (7)

hca(t) = Cp,aTca(t) + wca(t)(hw,e + Cp,wTca(t)) (8)

Tma(t) = α(t)Toa(t) + (1− α(t))T (t) (9)

wma(t) = α(t)woa(t) + (1− α(t))w(t) (10)

where w∗a(t) is the humidity ratio of the air, Cp,a and Cp,w

are the specific heat capacity of air and water, hw,e is the

latent heat of vaporization of water at 0oC, α(t) is the ratio

of outside air to supply air. We assume that (i) the cooling coil

control loop maintains the conditioned air at its temperature

set-point T r
ca; (ii) conditioned air humidity is constant; (iii)

α(t), the room temperature T (t), and humidity ω(t) stay at

their set-points, and all the set-points are constants.

The fan power Pf (t) is:

Pf (t) = cfma(t)
3 (11)

where cf is the fan power coefficient. To keep the optimization

problem convex, we use a linear approximation of the fan

power P̃f (t) in the objective function:

P̃f (t) = 3cfm
2
a,∗ma(t) (12)

where ma,∗ is the nominal supply air flow rate.

Once the optimization problem is solved, we obtain the

scheduled supply air flow rate mb,r
a (t). The scheduled fan

power P b,r
f (t) is computed by (11). The scheduled baseline

cooling coil power reference P b,r
cc (t) is obtained from (6). The

corresponding power reference for the chiller P b,r
c (t) is then

calculated from P b,r
cc (t) and the chiller model, which will be

discussed in Section II-D. The scheduled baseline reference

power for the PTC is simply P b,r(t) = P b,r
c (t) + P b,r

f (t).
Under the assumptions listed above, the specific enthalpies

do not depend on the actuation ma(t), so energy minimization

is equivalent to power minimization at every instant over the

scheduling period. Therefore, the baseline power schedule is
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computed by solving the following optimization problem for

every t ∈ T S
0 :

mr(t), P r
rh(t) = arg min

ma(t),Prh(t)

(Pcc(t) + Pc(t) + Prh(t)) (13)

subject to the load and actuator constraints (4) and (5). This

is a convex problem, in particular, a linear program in two

decision variables, ma(t) and Prh(t), and can be solved easily.

There are multiple sets of ma(t) and Prh(t) that satisfy

the constraints, so the optimization problem has a non-trivial

feasible set.

Note that, in our approach, we schedule the HVAC system

to meet the load estimated from power consumption data under

normal building operation. This maintains the temperature

around its normal setpoint. Unlike [9–11], we only harness the

flexibility under this normal operation to provide ancillary ser-

vices. We do not attempt to manipulate temperature setpoints

to minimize energy consumption or shift loads between hours,

thus allowing us to decouple time periods. As the trade-off for

this simplification, the energy consumption of our algorithm

could be suboptimal compared to that of the algorithms in [9–

11], where the temperature setpoint is free to vary.

Under extreme cases where the thermal load is outside the

designed capacity of the HVAC system, the problem (13) could

be infeasible. In the case of load higher than the designed

capacity range, the maximum supply air flow rate and no

heating will be scheduled; in the case of load lower than the

designed capacity range, the minimum supply air flow rate and

maximum heating will be scheduled.

3) Baseline update: The scheduled baseline will be in-

accurate because of forecasting error and imperfect tracking

performance of local control loops. In order to prevent the

indoor temperature from deviating too far from the setpoint,

the baseline is updated periodically based on measured indoor

temperature.

Specifically, the baseline is updated at any scheduling period

T S
k , k ≥ 1 by solving the optimization problem (13), with only

one difference: the load constraint (4) is replaced by:

−Pcc(t) + Prh(t) + P̂l(t) + P k
c1(t) + P k

c2(t) = 0, t ∈ T S
k

(14)

where P k
c1(t), P

k
c2(t) are two correction terms:

P k
c1(t) := γ1Ṫ (k∆tI)e

−λ(t−k∆tI ), t > k∆tI (15)

P k
c2(t) :=

{

γ2Eend t ∈ (k∆tI , k∆tI +
1
γ2

]

0 t ∈ (k∆tI +
1
γ2

, k∆tI +∆tS ]
(16)

where γ1, γ2 and λ are design parameters, and Eend :=
C(T (k∆tI)−T r), where C is the thermal capacitance of the

building. In effect, the predicted load is updated from the open-

loop forecast by P-D (proportional derivative) feedback. The

term Ṫ (k∆tI) can be causally estimated from measurements

of T . Note that for the first scheduling period, the correction

terms are zero.

Once the schedule for airflow rate and reheat power are de-

termined, the baseline electrical power reference is computed

as described in Section II-C2.

Kalman

predictor

Smith

predictor
Building

-

PTC

Fig. 3. Architecture of the power tracking controller.

D. PTC design

The objective of the PTC is to make P (t) track the reference

signal P r(t). Power is consumed by the chiller to produce

chilled water at temperature Tchw,s(t) from the warm chilled

water returned from the cooling coil at temperature Tchw,r(t).
The rate of heat transfered to the chilled water at the cooling

coil is Pcc(t) = mchw(t)(Tchw,r(t)− Tchw,s(t)), which must

be removed by the chiller. Note also that due to conservation

of energy, this formula must yield the same result as (6). The

transfer function between power demand at the cooling coil

and power consumption at the chiller is modeled by a first

order lag with a pure time delay:

Pc(s)

Pcc(s)
=

1

kc

1/τc
s+ 1/τc

e−tds (17)

where td is the transport delay arising from the finite speed

of water flow from the cooling coil to the chiller, and kc
is the coefficient of performance (COP) of the chiller. This

arguably simple model is inspired by the experimental results

presented in [22], which shows that step response of a chiller

is approximately that of a first order system. Although the

COP varies as a function of operating conditions, we assume

it is a constant equal to the seasonal average.

The PTC shown in Fig. 3 has two main parts: a Smith

predictor to achieve reference tracking with a delay and a

Kalman predictor to predict the future reference. The Smith

predictor is a classical tool for designing compensators for LTI

plants with delay [23]. The Smith predictor ensures that the

closed loop transfer function with the delay td in the plant

is stable when the delay is known, but does not ensure good

tracking.

If the reference signal can be predicted td time-steps into

the future, reference tracking can be achieved by passing

the predicted reference to the Smith predictor-based control

system. The reference signal P r(t) consists of two parts;

see (1). The scheduled baseline P b,r(t) is known ahead of

time, so advancing it by t̂d is straightforward. The ancillary

service reference signal δP r(t), however, is calculated from

the signal received from the system operator in real-time and is

therefore not known ahead of time. We use a Kalman predictor

to predict this part of reference signal [24]. A double integrator

model is used for the Kalman filter:

η̇1(t) = η2(t), η̇2(t) = ξ(t), δP r = η1(t) + v(t)

where ξ(t), v(t) are Gaussian white noise. Since the reference

signal is smooth, it changes at an approximately constant

rate during short time intervals, which motivates the double

integrator model. More detail about the Kalman predictor can

be found in [25].
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Note that in designing the controller, we assume that both

fan and chiller power has a transport delay, while in reality

only the chiller power has a delay.

III. TEMPERATURE DYNAMICS AND ANCILLARY SERVICES

CAPACITY

A. Analysis of the indoor temperature dynamics

The baseline update is designed to create feedback that

provides robustness of zone temperature control to load fore-

casting error and other disturbances. Feedback can, however,

cause instability. Here we analyze the effect of that feedback

on the temperature deviation dynamics, with load forecasting

error and the ancillary service reference signal as exogenous

inputs, and the zone temperature deviation from the setpoint

as the output. The analysis will provide guidelines on how to

choose the design parameters in the baseline update so that the

effect of load forecasting error on the temperature deviation

is bounded and small. The analysis also provides a means to

estimate the capacity of ancillary services the building can

provide.

Define x1(t) = T (t) − T r, and x2(t) = Ṫ (t). Note that

ẋ1(t) = x2(t). Consider the k-th implementation period t ∈
T I
k = (k∆tI , (k + 1)∆tI ]. With (15) and (16), we have

P k
c1(t) = γ1x2(k∆tI)e

−λ(t−k∆tI) (18)

P k
c2(t) = γ2Cx1(k∆tI) (19)

We assume 1
γ2 ≥ ∆tI so that the second correction term

P k
c2(t) remains constant during T I

k , which simplifies the

expressions.

Consider the whole building as a single capacitor C, and

let T (t) be the indoor temperature. The temperature dynamics

of the building can be approximated by:

CṪ (t) =− Pcc(t) + Prh(t) + Pl(t) (20)

Both the load forecast error and the ancillary service ref-

erence signal enter the system as disturbances. Let δPd(t) be

the disturbance to the system: δPd(t) := δPl(t) + δP r(t),
where δPl(t) is the load forecast error: δPl(t) := Pl(t)−P̂l(t).
Equation (20) can be rewritten as

CṪ (t) = −P r
cc(t) + P r

rh(t) + P̂l(t) + δPd(t) (21)

Since the scheduled P r
cc(t) and P r

rh(t) have to satisfy (14),

we have

CṪ (t) = −P k
c1(t)− P k

c2(t) + δPd(t) (22)

This leads to

x2(t) = Ṫ (t) =
1

C
(−P k

c1(t)− P k
c2(t) + δPd(t)) (23)

We now define the states:

xk
1 = x1(k∆tI) xk

2 = x2(k∆tI) (24)

and denote δP k
d := δPd(k∆I).

It can be shown with straightforward manipulation that the

dynamics of the discrete-time states are given by [17]

[

xk+1
1

xk+1
2

]

=

[

1− γ2∆tI
γ1

Cλ
(e−λ∆tI − 1)

−γ2
γ1

C
e−λ∆tI

] [

xk
1

xk
2

]

+
1

C

[

δW k+1

δP k+1
d

] (25)

where

δW k+1 :=

∫ (k+1)∆tI

k∆tI

δPd(t)dt (26)

We make a further simplification by assuming that the dis-

turbance is constant during an implementation period, which

makes δW k+1 = ∆tIδP
k
d . The system (25) now also defines a

transfer function from the single input δP k
d (disturbance) to the

output xk
1 (zone temperature), which we denote by GTQ(z).

The parameters of the correction terms in the baseline

update have to be chosen to make (25) asymptotically stable.

In addition, the H∞ norm of the transfer function GTQ(z),
defined as ‖GTQ‖∞ := maxω |GTQ(e

jω)| should be small,

which ensures small deviation of the space temperature from

the setpoint.

B. Ancillary service capacity

We define the capacity of ancillary services a building can

provide as the amplitude of the ancillary service reference

signal δP r the building can track without significantly af-

fecting the indoor climate. Temperature, humidity, and IAQ

are all important attributes of indoor climate. Let ∆T̄ be the

maximum allowable variation in room temperature from its

setpoint, and let ∆m̄ be the maximum allowable variation in

supply air flow rate from its nominal value. An appropriate

value of ∆T̄ can be specified by the building operator, and

can be obtained from ASHRAE mandated thermal comfort

envelope [26]. Since the conditioned air temperature is as-

sumed to be maintained at 55◦F by the cooling coil controller,

indoor humidity will be maintained as long as sufficient air

flow is maintained. The airflow variation bound ∆m̄ comes

from ventilation constraints, which in turn ensures adequate

IAQ [21].

Let Pbid be the capacity of ancillary service the building

is willing to provide, which is communicated to the system

operator through a market bid or other mechanisms. To keep

the indoor temperature within ∆T̄ of its setpoint, we must

have

(Pbid + δPl) ‖GTQ‖∞ ≤ ∆T̄ (27)

The parameter Pbid should be chosen to satisfy this rela-

tionship. Another constraint on Pbid comes from the bound

on airflow variation. Let Gmp(s) be the closed loop transfer

function from the ancillary service reference signal to the

variation in supply air flow rate. Gmp(s) can be obtained from

linearizing a calibrated model of the building and its HVAC

system (such as the one used in the simulations in Section IV),

or from a system identification experiment. Let ‖Gmp‖f be the
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largest gain in the frequency range of interest of the reference

signal. We must have:

Pbid‖Gmp‖f ≤ ∆m̄ (28)

Thus, the maximum reserve capacity P̄ the building could

provide can be calculated by:

P̄ = min

(

∆T̄

‖GTQ‖∞
− δPl,

∆m̄

‖Gmp‖f

)

(29)

With the parameters used in the simulation, P̄ is calculated to

be 5.4 kW.

In [9–11], the temperature setpoint is free to vary within the

comfortable range and the reference signal is not necessarily

zero-mean. Thus, the reserve capacity the building can provide

is time varying. In our approach, we keep the temperature

setpoint constant and provide ancillary services only. Thus,

the reserve capacity in our approach is constant.

IV. SIMULATION STUDY

A. Reference signal

The objective of our control algorithm is to provide ancillary

services with frequency ranges suitable for the building HVAC

system. For demonstration, we use the Area Control Error

(ACE) signal as the signal received from the system operator

δP s(t) in the simulation, since it contains information of real-

time supply-demand mismatch. The reference signal δP r(t)
is obtained by bandpass filtering the ACE with a Butterworth

filter whose passband is f ∈ [1/(1 hour), 1/(10 minutes)]
and passband gain is 5.5 × 10−6. The resulting maximum

magnitude of δP r is 5 kW, while the total power consumption

of the HVAC system is around 10 kW (observed from Fig. 6).

The rationale for choosing this “filtered ACE” as the on-site

reference signal is that PJM’s RegA and RegD signals, which

are broadcasted to ancillary service providers, are computed

by filtering the ACE signal [19]. Spectral analysis of RegA

and RegD showed that both are higher frequency than the

frequency band of interest of this work.

B. Building and HVAC system model

A high-fidelity non-linear dynamic model of a building

and its HVAC system is used for simulations. The model

is calibrated to data from a large zone in Pugh Hall on the

University of Florida campus. The zone is serviced by a

dedicated AHU. A brief description of each component of

the HVAC system is included below.

A schematic of the components of the plant model (“build-

ing+HVAC” in Fig. 2) is shown in Fig. 4. The cooling coil

model, closed loop fan control model, and building thermal

model (and their calibration) are described in [25], so we omit

the details here. The cooling coil controller is a PID controller.

The two controllable inputs mb,r
a (t), P r

rh(t) are computed by

the BYOB-ASC. Among the exogenous inputs, the weather

related inputs (Toa(t), woa(t)) are obtained from weather

data, the setpoints of the lower-level control loops (α, Tchw,s,

T r
ca) are set to constant values observed from Pugh Hall’s

wma

Tma

Tchw,s

mchw

CCC

CC
wca

Tca

Tca
r

Toa,woa,α

T,w

ma
r

Prh
r

ma

f1

Pl

Pcc

Pc

Hfd,cl(s)
Hch(s)

Building 

Thermal 

Dynamics

-

Fig. 4. Schematic of the “plant” (see Fig. 2) used in simulations. CC stands
for cooling coil, CCC for cooling coil controller, Hfd,cl is the closed loop
fan and duct dynamics with the fan controller, Hch is the chiller dynamics.
The function f1 is given by (9) and (10).

Building Automation System (BAS). The thermal load Pl(t)
is calculated from Pugh Hall data using (2).

The time constant of the chiller model (17) is taken to be

200 seconds, which is based on experimental results reported

in [22]. The transport delay td is taken as 30 seconds, which

is approximately the time taken by chilled water to travel from

a roof-top chiller to the cooling coil in Pugh Hall (computed

based on the estimated chilled water flow speed). The COP of

the chiller is taken as 3.5 [27].

We emphasize that there is significant model mismatch be-

tween the plant and the models used within the control system.

For example, in the plant, the building temperature dynamics

are modeled with a three-state nonlinear model, while the

control system uses a first-order LTI model. Additionally, the

scheduler assumes that most air and water related variables

remain exactly at their setpoints at all times, while, in the

plant, they vary.

C. Ancillary Service Controller

Recall that the baseline scheduler needs the data-driven

load model (2). Historical data of Pcc(t) and Prh(t) are

collected from sensors installed in Pugh Hall. Weather data

are collected from www.wunderground.com for Gainesville,

FL. Two weeks of data (01/13/2014 to 01/26/2014) are used

in estimating the parameters of the model. The BYOB-ASC

uses this model and 24-hour regional weather forecasts from

www.wunderground.com to predict the thermal load on the

building using (2).

The prediction from the load model is compared with the

measured load for the week (04/14/2014 to 04/20/2014). Fig-

ure 5 shows the model calibration (in sample) and validation

(out of sample) results. The validation results shows that

prediction error is non-negligible. The BYOB-ASC is robust to

large prediction errors, which the simulation results presented

in the next section will show.

The other parameters needed by the baseline scheduler and

updater, and the values used in the simulation, are shown in

Table I. The compensator within the Smith predictor in the

PTC loop is designed so that the sensitivity function of the

closed loop system (P r to Pc) is approximately s
s+0.1 , which

makes the tracking error less than −3 dB when ω < 0.1
rad/s. The models of the components of the HVAC system
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Fig. 5. Thermal load model calibration and validation. Top: measured
and predicted thermal load with calibration data 01/13/2014 to 01/19/2014.
Bottom: measured and predicted thermal load with validation data 04/14/2014
to 04/20/2014.

TABLE I
PARAMETERS USED BY THE CONTROL SYSTEM.

Parameter Value Parameter Value

C 8× 107 J/K γ1 3.2× 106 J/K
∆tI 1 hour γ2 1/(1 hour)
∆tS 24 hours λ 1/(1 hour)
T r 72 oF T r

ca 55 oF
Tchw,s 44 oF

described in Section IV-B are connected together to get the

full model. The system is linearized to obtain the relevant

transfer functions for design of the compensator.

D. Performance metrics

Metrics to quantify performance are described here. Let

δP (t) , P (t)−P b,r(t) be the measured power deviation from

the scheduled baseline, i.e., the actual ancillary service pro-

vided. We quantify the tracking error e(t) := δP r(t)− δP (t)
by the metric

rR :=

√

1
t0

∫ t0

0 e2(t)

avgt|δP
r(t)|

(30)

over an interval t0.

We also evaluate the tracking performance by the following

three scores: Sc - the correlation score, Sd - the delay score,

and Sp - the precision score. These criteria are inspired by the

PJM scores [19]. Although the ancillary services considered

in this paper are different from frequency regulation which the

PJM scores are designed for, the criteria evaluate the precision

and response speed of the tracking. Define the correlation

coefficient to be:

RP (τ) =
cov(δP (t), δP (t + τ))

σδP (t)σδP (t+τ)
(31)

where σ is the standard deviation of the signal. The parameter

τ∗ is defined as the time shift for which the response has the

highest correlation with the reference signal:

τ∗ = argmax
τ∈[0,5mins]

RP (τ) (32)

TABLE II
PERFORMANCE VARIATION WITH t̂d (td = 30 SEC.)

Test t̂d rR Sc Sd Sp

Filtered ACE
(Summer day)

30 0.446 0.959 0.847 0.782
0 0.609 0.922 0.753 0.567

20 0.422 0.960 0.860 0.793
40 0.506 0.939 0.847 0.759

Filtered ACE
(Winter day)

30 0.574 0.924 0.793 0.705
0 0.912 0.828 0.647 0.289

20 0.574 0.922 0.793 0.709
40 0.573 0.924 0.793 0.701

The scores Sc and Sd are then determined as:

Sc = RP (τ
∗), Sd =

∣

∣

∣

∣

τ∗ − 5mins

5mins

∣

∣

∣

∣

(33)

The precision score Sp is defined as:

Sp = 1−
1

n

n
∑

i=1

|δP (i)− δP r(i)|

|δP r,a|
(34)

where δP r,a is the hourly average of the reference signal and

n is the number of samples.

For indoor climate quality, we use the temperature violation

DT defined in [28]. This score is 0 if the indoor temperature

stays within the minimum and maximum allowed values,

which we set to 70◦F and 75◦F [26, Chapter 8]. If the

temperature deviates outside of these bounds, the violation

score becomes non-zero.

Variation in supply air flow rate affects ventilation, thus

smaller variation is preferable. This variation is quantified by

δma,avg := 1
t0

∫ t0

0

∣

∣

∣

ma(t)−mr

a
(t)

mr
a
(t)

∣

∣

∣
dt over an interval t0.

E. Results

The simulations are conducted in Simulink R©. We present

simulation results for a summer day and a winter day. During

the summer day, cooling load is the dominant load and

during the winter day, heating load is the dominant load.

The reference signal along with the resulting fan, cooling,

and reheating schedules are shown in the top plots in Fig. 6.

The tracking performance is shown in the bottom two plots in

Fig. 6. The effect of the controller on room climate is shown in

Fig. 7. The ancillary services provided by the fan and chiller

are shown in Fig. 8. The performance scores are shown in

Table II. The results presented in the figures are for the cases

when the true value of the chilled water loop transport delay

was used in the Smith predictor of the PTC.

On both the summer day and winter day, the room tem-

perature remains in the comfortable range, so the temperature

violation DT is 0. The mean variation δma,avg in supply air

flow rate is 25.4% for the summer day simulation and 21.4%
for the winter day simulation.

For the values used by the control algorithm in the simula-

tion, the eigenvalues of the state matrix in (25) are 0.52 and

0.04, which satisfies the asymptotic stability requirement of

the baseline update-driven temperature dynamics. For these

parameter values, ‖GTQ‖∞ = 4.75 × 10−5 (Kelvin/Watt).
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Fig. 6. Simulation results for a summer day (left) and a winter day (right). Top: reference signals P b,r , P r
rh

and δP r , which are calculated and updated
online. Middle: power deviation tracking performance. Bottom: 2-hour close-up of the middle plot.
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Fig. 7. Room temperature and supply air flow rate during simulation for a summer day (left) and a winter day (right). The red horizontal lines in top figures
indicate the comfortable temperature range. The black horizontal line in top figures indicates the temperature setpoint. SA refers to supply air.

The maximum load prediction error is 18 kW (see Fig. 5),

and the maximum magnitude of the reference signal is 5 kW.

Thus the maximum magnitude of the load deviation from

the baseline load is 23 kW, which predicts the maximum

deviation of the temperature from the baseline setpoint to be

4.75×10−5×23000 ≈ 1.1 Kelvin, or, 2.0 oF. This prediction is

essentially equivalent to the observed value of 2 oF; cf Fig. 7.

One should note that this level of variation around the setpoint

occurs during normal operation; see Fig. 8 in [13].

To study how sensitive closed loop performance is to the

knowledge of the transport delay in the chilled water loop,

we performed simulations with several distinct delay values

in the controller that are different from the true delay in the

plant. The results are shown in Table II. We see that the control

system can handle a ±10 second (33%) error in the estimate of

the delay without a significant performance degradation, when

the actual delay is 30 seconds. Beyond that, its performance

deteriorates significantly.

F. Impact on energy consumption

Energy consumption is another important aspect of QoS of

buildings. The authors of [29] reported inefficiencies associ-

ated with providing ancillary services from large commercial

buildings, which leads to additional energy consumption. In

this paper, we consider two types of power consumption

changes: (i) variation from the scheduled baseline due to the

PTC; (ii) variation from what a conventional climate controller

would consume due to the baseline scheduling algorithm.

For (i), we performed simulations with the same scheduled

fan, chiller, and reheat power with and without providing

ancillary services. The comparison is shown in Fig. 9 and

Table III. The difference in total energy consumption during
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Fig. 9. Comparison between simulations with and without providing ancillary
services (AS) during the summer simulation.

the 24-hour simulation period between the two cases is less

than 1%. Another observation from these results is that the

impact of the ancillary services reference signal on the room

temperature is small. Thus, the temperature difference from

the setpoint at the end of the simulation observed in Fig. 7 is

likely caused by thermal load forecast error, not the ancillary

service reference signal.

For (ii), we compared the energy consumption resulting

from the proposed method with that from the conventional cli-

TABLE III
ENERGY CONSUMPTION COMPARISON BETWEEN SIMULATIONS WITH AND

WITHOUT PROVIDING ANCILLARY SERVICES (AS).

Without AS With AS Increase with AS

Cooling (kWh) 198.0 198.1 0.1
Reheat (kWh) 21.7 21.9 0.2

Fan (kWh) 7.6 7.9 0.3
Total (kWh) 227.3 228.0 0.7 (0.3 %)

mate control system used in Pugh Hall – the single-maximum

control [26]. We call this control logic the “Pugh Hall control”.

The resulting changes in the daily energy consumption

and its breakdown are shown in Table IV. We observe that

the proposed approach leads to a slight increase in energy

consumption over that of the conventional climate control on

the summer day (6%) and a larger increase on the winter day

(11%). The reason for this is the model mismatch resulting

from computing the cooling load from the supply air flow

rate. Time-traces of relevant signals from the simulations are

shown in Fig. 10 and Fig. 11. Recall equations (6) to (10),

where the calculation of the cooling demand Pcc is based on a

linearized cooling coil model. The cooling power demand that

the scheduler calculates is higher than the true value. This also

leads to a higher heating load to maintain indoor temperature

of the building. In short, the inaccurate cooling coil model

used by the scheduler leads to a high degree of simultaneous

heating and cooling. Note that, in the summer simulation, the

end-of-day temperature is higher for BYOB-ASC than Pugh

Hall control. If the BYOB-ASC achieved a final temperature

equals to that of the Pugh Hall control, the energy consumption

would be slightly different.

Although it may not be possible to completely eliminate

simultaneous cooling and heating with existing HVAC sys-

tems, the increase in this inefficient behavior of the proposed

approach can be improved by a number of means. These

include calibrating different models for different seasons, or

through an on-line cooling coil adaptation.

V. CONCLUSION

Building HVAC systems can provide ancillary services with-

out affecting QoS over a range of timescales due to the large

thermal inertia of the building. The proposed scheme is able

to provide satisfactory reference tracking without significant

effect on the indoor climate for reference signals within the

frequency range f ∈ [1/(1 hour), 1/(10 minutes)]. A slight

increase in energy consumption is observed compared to the

conventional control scheme. Reducing energy consumption

through improvement of the control algorithm is an avenue

for future work.

The site-specific information required to implement the pro-

posed system in a building is small, and can be obtained from

a few weeks of data and system-identification experiments.

The system can be deployed easily in a building with a

BAS, without requiring installation of any new hardware. One-

way communication of the reference signal from the system

operator to the building is required, which can be performed,

for example, over the public Internet by using technologies

such as PJM’s Jetstream c© [30].

Future work will involve examining the performance of the

system in simulations with a more sophisticated model of the

chiller than the one used here, and experimental verification. It

will also be useful to extend the proposed approach to multi-

zone buildings. Another avenue is to extend the algorithm

to include energy reduction, so that the proposed system can

provide services to both the consumer (energy efficiency) and

to the grid (ancillary services), as in [9–11].
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TABLE IV
ENERGY CONSUMPTION COMPARISON BETWEEN SIMULATIONS WITH BYOB-ASC (REFERRED TO AS “BYOB”) AND PUGH HALL CONTROL (REFERRED

TO AS “PUGH”).

Summer day Winter day

Pugh BYOB Increase with BYOB Pugh BYOB Increase with BYOB

Cooling (kWh) 198.0 198.0 0.0 56.7 64.8 8.1
Heating (kWh) 8.0 21.7 13.7 123.6 135.0 11.4

Fan (kWh) 7.8 7.6 -0.2 4.4 4.8 0.4
Total (kWh) 213.9 227.3 13.4 (6%) 184.7 204.7 20.0 (11%)
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Fig. 10. Power consumption comparison between simulations with BYOB-ASC (referred to as “BYOB”) and Pugh Hall control (referred to as “Pugh”). Left:
summer simulation; right: winter simulation.
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[18] P. Barooah, A. Bušić, and S. Meyn, “Spectral decomposition of demand-
side flexibility for reliable ancillary services in a smart grid,” in System

Sciences (HICSS), 2015 48th Hawaii International Conference on.
IEEE, 2015, pp. 2700–2709.

[19] PJM, “PJM manual 12: Balancing operations, rev. 27,” December 2012.
[20] J. Mathieu, P. Price, S. Kiliccote, and M. Piette, “Quantifying changes

in building electricity use, with application to demand response,” IEEE

Transactions on Smart Grid, vol. 2, no. 3, pp. 507–518, 2011.
[21] American Society of Heating, Refrigerating and Air-Conditioning

Engineers, Inc., “ANSI/ASHRAE standard 62.1-2007, ventilation for
acceptable air quality,” 2007. [Online]. Available: www.ashrae.org

[22] S. Bendapudi, J. Braun, and E. Groll, “A dynamic model of a vapor
compression liquid chiller,” in International Refrigeration and Air
Conditioning Conference, 2002.

[23] K. Warwick and D. Rees, Industrial digital control systems. Peter

Peregrinus Limited, 1988, vol. 37.
[24] I. B. Rhodes, “A tutorial introduction to estimation and filtering,” IEEE

Transaction on Automatic Control, vol. AC-16, no. 6, 1971.
[25] Y. Lin, “Control of commercial building HVAC systems for power

grid ancillary service,” Ph.D. dissertation, University of Florida, 2014.
[Online]. Available: http://www.uflib.ufl.edu/etd.html

[26] American Society of Heating, Refrigerating and Air Conditioning En-
gineers, “The ASHRAE handbook fundamentals (SI Edition),” 2005.

[27] ——, “ASHRAE Standard 90.1-2004, energy standard for buildings
except low rise residential buildings,” 2010.

[28] S. Goyal, H. Ingley, and P. Barooah, “Occupancy-based zone climate
control for energy efficient buildings: Complexity vs. performance,”
Applied Energy, vol. 106, pp. 209–221, June 2013.

[29] I. Beil, I. Hiskens, and S. Backhaus, “Round-trip efficiency of fast
demand response in a large commercial air conditioner,” Energy and
Buildings, vol. 97, pp. 47–55, 2015.

[30] PJM, “Jetstream,” http://www.pjm.com/markets-and-operations/etools/
jetstream.aspx.

Yashen Lin is a Post-doctoral research fellow in the
Department of Electrical Engineering and Computer
Science at the University of Michigan, Ann Arbor,
MI, USA. He received the B.S. degree in automation
from the University of Science and Technology,
Beijing, China, in 2009. He received the M.S. and
Ph.D. degrees in mechanical engineering from the
University of Florida, Gainesville, FL, USA, in 2012
and 2014, respectively. His research interests include
power system modeling and optimization, energy
storage resources, and building HVAC control.

Prabir Barooah is an Associate Professor of Me-
chanical and Aerospace Engineering at the Uni-
versity of Florida, where he has been since 2007.
He received the Ph.D. degree in Electrical and
Computer Engineering in 2007 from the University
of California, Santa Barbara. From 1999 to 2002
he was a research engineer at United Technologies
Research Center, East Hartford, CT. He received the
M. S. degree in Mechanical Engineering from the
University of Delaware in 1999 and the B. Tech.
degree in Mechanical Engineering from the Indian

Institute of Technology, Kanpur, in 1996. Dr. Barooah is the winner of the
ASEE-SE (American Society of Engineering Education, South East Section)
outstanding researcher award (2012), NSF CAREER award (2010), General
Chairs’ Recognition Award for Interactive papers at the 48th IEEE Conference
on Decision and Control (2009), best paper award at the 2nd Int. Conf.
on Intelligent Sensing and Information Processing (2005), and NASA group
achievement award (2003).

Johanna L. Mathieu (S’10M’12) received the B.S.
degree in ocean engineering from the Massachusetts
Institute of Technology, Cambridge, MA, USA, in
2004 and the M.S. and Ph.D. degrees in mechani-
cal engineering from the University of California,
Berkeley, USA, in 2008 and 2012, respectively.
She is an Assistant Professor in the Department of
Electrical Engineering and Computer Science at the
University of Michigan, Ann Arbor, MI, USA. Prior
to joining the University of Michigan, she was a
postdoctoral researcher at the Swiss Federal Institute

of Technology (ETH) Zurich, Switzerland. Her research interests include
modeling, estimation, control, and optimization of demand response and
energy storage resources.

http://www.science.smith.edu/~jcardell/Courses/EGR325/Readings/Ancillary_Services_Kirby.pdf
http://www.science.smith.edu/~jcardell/Courses/EGR325/Readings/Ancillary_Services_Kirby.pdf
www.ashrae.org
http://www.uflib.ufl.edu/etd.html
http://www.pjm.com/markets-and-operations/etools/jetstream.aspx
http://www.pjm.com/markets-and-operations/etools/jetstream.aspx

	I Introduction
	II The proposed BYOB-ASC system
	II-A Background - VAV HVAC systems
	II-B The BYOB Ancillary Service Controller
	II-C Baseline scheduling
	II-C1 Thermal load forecasting model
	II-C2 Baseline scheduling at t=0
	II-C3 Baseline update

	II-D PTC design

	III Temperature dynamics and ancillary services capacity
	III-A Analysis of the indoor temperature dynamics
	III-B Ancillary service capacity

	IV Simulation study
	IV-A Reference signal
	IV-B Building and HVAC system model
	IV-C Ancillary Service Controller
	IV-D Performance metrics
	IV-E Results
	IV-F Impact on energy consumption

	V Conclusion
	Biographies
	Yashen Lin
	Prabir Barooah
	Johanna L. Mathieu


