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Abstract— How can a building Heating, Ventilation, Air
Conditioning (HVAC) system vary its real time power consump-
tion to provide ancillary services to the power grid without
sacrificing occupant comfort? Prior work showed how this can
be done if the reference power variation is of high frequency
(seconds to a few minutes) so that the climate control system
filters out the disturbance. This paper addresses the question of
how to do that when the reference power variation is of lower
frequency, e.g., periods of a few minutes to an hour. We propose
a receding horizon approach to schedule the baseline cooling
and heating power of a building based on weather forecasts.
A lower level controller is then used to track the scheduled
baseline plus ancillary service reference signal. Periodic updates
to the scheduler based on measurements ensure quality of
service in spite of forecasting errors. The algorithm is tested in
simulation. Results show that ancillary service in the frequency
range of f ∈ [1/(1 hour), 1/(10 minutes)] can be extracted
from commercial building HVAC systems while still maintaining
a comfortable indoor climate.

I. I NTRODUCTION

Ancillary services are needed to correct the mismatch
between demand and supply in a power grid to ensure
the functionality and reliability of the grid. Integratinga
large amount of volatile renewables into the power grid
will require a larger amount of ancillary services to handle
this volatility [1, 2]. Traditionally, ancillary services are
provided by fast ramping generators. An alternative is to
explore demand-side flexibility [3, 4] which may have less
environmental impact and cost in the long run. Interest in
demand side resources providing ancillary services is long
standing. Florida Power & Light’s On CallR© program is one
of the early attempts at using demand side resources [5].
Recent research on providing various forms of ancillary
services with on-off loads include [6–8], which consider
thermostatic loads such as residential air conditioners, heat
pumps, refrigerators etc., and [9] which considers deferrable
loads, such as pool pumps, with local intelligence.

This paper builds on prior work on using commercial
building HVAC systems for providing ancillary services [10–
12]. Commercial buildings account for about 40% of the
total electricity consumption in the U.S. [13]. The power
consumption in Variable Air Volume (VAV) Heating, Venti-
lation, Air Conditioning (HVAC) systems, which serve 30%
of all commercial building floor space in the U.S. [14], can
be varied continuously between a low and high value using
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variable speed drives. This feature makes them particularly
well-suited for sophisticated control. Moreover, many com-
mercial buildings are equipped with Building Automation
Systems (BAS), making the task of implementing additional
control algorithms easy and inexpensive. Finally, commercial
buildings have high thermal inertia, which can be translated
to effective energy storage much like a large battery.

In commercial building HVAC systems, multiple pieces of
equipment can be used to provide ancillary services at dif-
ferent timescales. The supply air fan has fast dynamics, and
is suitable for high frequency ancillary services; see [10, 15].
Heat pumps with variable speed drives are another potential
resource [16]. Chillers, even those without variable speed
drives, can be used to provide ancillary services by indirectly
varying the load on them [11]. Due to their slow dynamics,
chillers are useful for providing service at slow time scales.

When the reference signal is high-frequency compared
to the thermal dynamics of the building and its climate
control system, a low pass filter can be used to estimate
the baseline power [10]. However, when the reference signal
frequency overlaps with the bandwidth of the building, the
baseline estimation problem is more challenging. Building
climate control systems are designed to react to disturbances
on the time scale of a few minutes or longer. Estimating
baselines on these timescales requires prediction, typically
with statistical baseline models parameterized with historical
building data [17, 18]. Errors in predictions make it hard to
separate the baseline and control response [19].

In this paper, we propose a novel approach to the baseline
estimation problem and a new algorithm to effectively con-
trol commercial building HVAC systems to provide ancillary
services on timescales of a few minutes to an hour. Instead
of estimating the baseline, the baseline isscheduled ahead
of time based on weather forecasts. Note that Borenstein
et al. [20] proposed a similar concept for demand response
financial settlement purposes called Build-Your-Own (BYO)
baseline. After scheduling the baseline, a lower level Power
Tracking Controller (PTC) is used for tracking the scheduled
baseline plus the filtered reference signal. The scheduler
updates the baseline periodically based on indoor climate
measurements to ensure indoor climate conditions remain
comfortable. This also ensures robustness to load forecast
error and other uncertainties. The benefits of the proposed
method are two-fold: (i) the baseline is clearly defined which
makes implementing and evaluating the service provided
possible, and (ii) by smart scheduling, we can minimize
the energy consumption of the HVAC system. Following
Borenstein et al., we call our approach a Bring-Your-Own-
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Baseline (BYOB) scheme.
The algorithm is tested in simulation where the model is

built to resemble a portion of Pugh Hall on the University of
Florida campus. Results show the algorithm could provide
satisfactory ancillary services in the frequency range off ∈
[1/(1 hour), 1/(10 minutes)] while maintaining comfortable
indoor climate.

The rest of the paper is organized as follows: SectionII
describes the proposed algorithm; SectionIII present a
stability analysis of the algorithm; SectionIV introduces the
model used in the simulation, the simulation setup, and the
results; SectionV concludes the paper and discusses future
work.

II. CONTROL ARCHITECTURE

We start with a description of VAV HVAC systems. The
algorithm leaves certain parts of the climate control system
untouched while overriding others.

A. VAV HVAC systems

In a variable air volume HVAC system, the indoor climate
and Indoor Air Quality (IAQ) are maintained by varying the
flow rate of air through the building. Fresh air brought in
from the outside and return air collected from the zones are
mixed and sent through a cooling coil in the Air Handling
Unit (AHU), where the air is cooled and dehumidified. There
may also be a reheat coil to increase the temperature after itis
dehumidified. The conditioned air is then sent to the terminal
VAV boxes by a supply air fan for distribution to zones.
We consider a chilled-water based HVAC system, where a
chiller produces chilled water which is then used in the AHU
cooling coils to condition the air. Similarly, a boiler produces
the hot water used for reheating.

Among the three main sources of power consumption
in an HVAC system – mechanical, cooling, and heating
– we only consider chiller power (cooling) for providing
ancillary services. Cooling and heating power dominate the
mechanical power, and in heating is often provided by steam
whose generation uses little electricity.

B. Proposed BYOB system

As in [10–12], it is assumed that a reference signal for
power deviation,δPBA(t), is transmitted by the Balancing
Authority (BA) to all the ancillary services providers, includ-
ing smart buildings. For demand side resources, this signalis
the desired deviation of the loads’ power consumption from
its baseline value, i.e., what the loads would have consumed
if they were not providing ancillary services. We assume that
δPBA(t) is band-pass filtered at every building to obtain
a reference signalδP r(t) (in Watts) with magnitude and
frequency that is appropriate for that building. The objective
of the BYOB control system is twofold: to vary the power
consumption of the HVAC system so that the deviation from
its baseline tracksδP r, and ensure that the indoor climate
and IAQ are maintained within their bounds.

As discussed in SectionII-A , we only consider chiller
power for ancillary services in this paper. The total chiller
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Fig. 1. Schematic illustration of the proposed algorithm.

powerPc(t) is the sum of the baseline powerP b
c (t) and the

power deviationδP (t) introduced by the BYOB system for
providing ancillary service, i.e.,

Pc(t) = P b
c (t) + δP (t) (1)

As described in SectionI, the baseline isscheduled ahead
of time to match the forecasted thermal load. The scheduled
baseline chiller power is calledP r

c . The reference command
for the total power consumption is the sum of the scheduled
baseline and the ancillary services reference signal:

P r(t) = P r
c (t) + δP r(t). (2)

The goal of the proposed system, whose schematic is
shown in Fig.1, is to ensure that the outputPc tracksP r,
while maintaining indoor climate. A low level controller, the
PTC, varies the airflow rate so that the power consumption
of the HVAC systemPc tracks the referenceP r. A high level
“scheduler” schedules references for cooling and reheating
power consumption,P r

c andQr
rh (both have units of Watts)

ahead of time. Note that to ensure a comfortable room
climate, the scheduler computes reference signals for both
chiller power and reheat power. The scheduled reheat power
will be provided by local controllers in the BAS. Since reheat
power is not used for providing ancillary services, we will
focus on designing the PTC for chiller power tracking.

The existing building climate control system that is used to
vary the air flow rate to maintain indoor climate is overridden
for power tracking. In order to maintain the indoor climate,
the scheduled power consumption is periodically updated
using receding-horizon optimization based on load forecasts
and corrections. The steps are described next. Time is divided
into a number of slots for scheduling and implementation
purposes, with length∆tS and∆tI , respectively.

1) At the beginning of thek-th scheduling periodT S
k :=

(k∆tI , k∆tI + ∆tS ], forecast thermal load for this
period. The forecasting algorithm is described in Sec-
tion II-C.1.

2) Decide the desired baseline power duringT S
k by

solving an optimization problem: minimize cooling
and reheating energy duringT S

k while ensuring that
thermal comfort and IAQ constraints are satisfied and
actuation limits are respected.

3) During the implementation periodT I
k := (k∆tI , (k+

1)∆tI ], trackP r(t) by varying the supply air flow rate.



The PTC is designed for this purpose.
4) At the end of implementation period, update the load

estimation for the next scheduling periodT S
k+1, and go

back to step 1.

C. Baseline scheduling

The primary task for an HVAC system is to maintain a
comfortable indoor climate. Thus, forecasting the load is a
key part of scheduling the baseline.

1) Load forecasting model: We use the baseline model
developed in [21] to forecast the future load on the HVAC
system based on outdoor air temperature forecasts and time-
of-week, which acts as a proxy for occupant behavior and
appliance use. In [19, 21], the model is used to predict the
baseline power consumption ofa whole building during a
demand response event that occurredin the past, using past
outdoor air temperature measurements and time-of-week. In
contrast, here we use it to forecast thefuture thermal load
of the building.

Before describing the model, we have to define the term
“thermal load” precisely and describe how to measure it so
that measurements can be used to fit a model. Consider the
whole building as a single capacitorC, and let T (t) be
the indoor temperature. The temperature dynamics of the
building can be approximated by:

CṪ (t) =−Qcc(t) +Qrh(t) +Ql(t) (3)

whereQrh(t), Qcc(t) are the rate of heat provided to and
extracted from the building, respectively, by the heating and
cooling coils, and the last termQl(t) is the rate of heat
entering the building from all other sources, such as from
outside air, solar irradiation, occupants and plug loads.

Ignoring the modeling error,Ql(t) is called thethermal
load experienced by the HVAC system. It is the rate of
heat the HVAC system has to remove from the building in
order to maintain indoor temperature at a constant set-point,
T sp, so that Ṫ (t) = 0. Thus, assuming that the existing
climate controller is able to do its job perfectly, the following
relationship should hold:

0 = −Qcc(t) +Qrh(t) +Ql(t) (4)

This equation gives usQl(t) from measurements ofQcc(t)
andQrh(t), which are obtained from energy meters installed
in the cooling and heating systems.

Once the question of obtaining measurements for the
building’s load is resolved, the next question is fitting a
model to this data. The model in [21] is a linear regression
model, where the load is a piecewise linear function of
outdoor air temperature and of time-of-week. Ordinary least
squares is used to parameterize the model with historical
load/temperature measurements. The model is then used to
forecast the building’s load at a particular time-of-week given
a forecast of outdoor air temperature.

2) Baseline scheduling at t = 0: The baseline power con-
sumption is scheduled by solving an optimization problem:
minimize energy consumption during thek-th scheduling
time intervalT S

k while satisfying constraints such as thermal

comfort, ventilation requirements, and equipment saturation
limits. The algorithm for updating the baseline at subsequent
scheduling intervals builds on the algorithm used at the first
scheduling periodT S

0 = [0, ∆tS ], so we first describe that
in detail.

The power consumption we consider in the optimization
is the sum of cooling coil power and reheat power, i.e.,
Qcc(t) + Qrh(t). The reheat power is assumed to be con-
trolled directly, which makesQrh(t) a decision variable. The
cooling coil power is controlled indirectly by controllingthe
mass flow rate of air through the cooling coil.

The problem of minimizing the energy consumption can
be stated as follows, fort ∈ T S

0 = [0,∆tS]:

minimize
m(t),Qrh(t)

∫

T S

0

(Qcc(t) +Qrh(t))dt (5)

subject to

−Qcc(t) +Qrh(t) + Q̂l(t) = 0 (6)

m(t) ∈ [mlb,mub], Qrh(t) ∈ [Qlb, Qub] (7)

wherem(t) is the supply air mass flow rate;mlb andmub

are the bounds for supply air flow rate;Qlb and Qub are
the bounds for reheat power;̂Ql(t) is the forecast of load
from the load forecasting model described in SectionII-C.1.
The cooling powerQcc(t) equals the product ofm(t) and
enthalpy difference between the air stream before the cooling
coil (mixed air) and after the cooling coil (discharge air):

Qcc(t) = m(t)(hma(t)− hda(t)) (8)

wherehma andhda are the enthalpies of the mixed air and
discharged air. Under the assumptions that all set points are
constants and local control loops maintain their outputs at
their set points, the specific enthalpies do not depend on the
actuationm(t). The energy minimization is then equivalent
to power minimization at every instant over the scheduling
period. Therefore, the baseline power schedule is computed
by solving the following optimization problem for everyt ∈
T S
0 :

mr(t), Qr
rh(t) = arg min

m(t),Qrh(t)

(Qcc(t) +Qrh(t)) (9)

subject to the load and actuator constraints specified by (6)
and (7). This is a linear program in two decision variables,
m(t) andQrh(t), and can be solved easily. The scheduled
baseline cooling powerQr

cc(t) is obtained from (8) once
mr(t) is determined. The chiller dynamics are modeled as a
first order LTI system, withQcc as input andPc as output.
With this model, the scheduled chiller powerP r

c (t) can be
calculated fromQr

cc(t).

D. Baseline update

In practice, the scheduled power will not lead to an indoor
temperature exactly equal to the set-point due to uncertainties
such as load forecast error. In subsequent scheduling periods,
these uncertainties are accounted for by examining how far
the actual space temperature varies from the set-point, and
adding correction terms.



The baseline is updated at any scheduling periodT S
k , k ≥

1, by solving the optimization problem (9), with only one
difference, specifically the load constraint (6) is replaced by:

−Qcc(t) +Qrh(t) + Q̂l(t) +Qk
c1(t) +Qk

c2(t) = 0, t ∈ T S
k

(10)

where Qk
c1(t), Q

k
c2(t) are two correction terms. We now

describe these correction terms and the rationale behind their
design.

The uncertainties in the temperature dynamics (3) are
captured by a disturbance term,δQl(t), so that (3) now
becomes:

CṪ (t) = −Qr
cc(t) +Qr

rh(t) + Q̂l(t) + δQl(t) (11)

where the termδQl(t) also captures any deviation of the ac-
tual cooling and heating power from their scheduled values.
Since the scheduledQr

cc(t) andQr
rh(t) have to satisfy the

constraint (10), we have:

CṪ (t) = −Qk
c1(t)−Qk

c2(t) + δQl(t) (12)

Note that for the first scheduling period, the correction terms
are 0.

The first correction term is chosen as

Qk
c1(t) := γ1Ṫ (k∆tI)e

−λ(t−k∆tI ), t > k∆tI (13)

whereγ1 andλ are design parameters. The rationale behind
this term is thatγ1Ṫ estimates load forecast error. We expect
the actual load tends to return to the estimated value, i.e.,
δQl(t) tends to go to 0 for larget.

The second correction term is designed to remove the total
extra heat that has remained in the building at the end of the
the last (k-1 -th) implementation period, which is simply

Eend = C(T (k∆tI)− T sp)

The correction term is chosen as

Qk
c2(t) :=

{

γ2Eend t ∈ (k∆tI , k∆tI +
1
γ2

]

0 t ∈ (k∆tI +
1
γ2

, k∆tI +∆tS ]
(14)

whereγ2 is a design parameter which indicates how fast we
would like the temperature to be driven back to the set-point.
If we wish to return the zone temperature to its set-point
quicker, a largerγ2 should be used.

E. PTC design

The objective of the PTC is to make the chiller power track
the total reference signalP r(t) during every implementation
period: t ∈ T I

k . A dynamic compensator is used for this
purpose, with power tracking errorP r − Pc as input and
air flow rate commandmr as output. Classical compensator
design techniques are used to design the PTC based on
a linear plant model, which is obtained by linearizing a
non-linear model of the HVAC system around a nominal
operating point.

III. STABILITY ANALYSIS

The baseline update provides a feedback mechanism. Con-
sider the case where there is no update: the loadQ̂l(t) is pre-
calculated from the load model based on weather forecasts.
The reference signal is then calculated from (9). This control
strategy works in a feed-forward fashion, where the input
(Qr

cc(t) andQr
rh(t)) is decided ahead of time and does not

depend on the real time room temperature measurement.
Now consider the case with update. The dynamics after

adding the two correcting terms are given in (12). For
convenience of analysis, we letx1(t) = T (t) − T sp, and
x2(t) = Ṫ (t). Note thatẋ1(t) = x2(t).

Consider the k-th implementation periodt ∈ T I
k =

(k∆tI , (k + 1)∆tI ]. With the definition in (13) and (14),
we have:

Qk
c1(t) = γ1x2(k∆tI)e

−λ(t−k∆tI) (15)

Qk
c2(t) = γ2Cx1(k∆tI) (16)

We assume1
γ2

≥ ∆tI so that the second correction term
Qk

c2(t) remains constant duringT I
k . This simplifies the

expression. In the case of1
γ2

< ∆tI , Qk
c2(t) becomes a

step function which drops to 0 att = k∆tI +
1
γ2

. From (12),

x2(t) = Ṫ (t) =
1

C
(−Qk

c1(t)−Qk
c2(t) + δQl(t)) (17)

We now define the discrete states:

xk
1 = x1(k∆tI) xk

2 = x2(k∆tI). (18)

At time t = (k + 1)∆tI , xk+1
1 = xk

1 +
∫ (k+1)∆tI

k∆tI
x2(t)dt.

By using (17), it follows that

xk+1
1 = (1− γ2∆tI)x

k
1 +

γ1
Cλ

(e−λ∆tI − 1)xk
2 + δW k+1

(19)

where

δW k+1 :=
1

C

∫ (k+1)∆tI

k∆tI

δQl(t)dt (20)

Also, we have:

xk+1
2 = Ṫ ((k + 1)∆tI)

=
1

C
(−Qk

c1((k + 1)∆tI)−Qk
c2((k + 1)∆tI)

+ δQl((k + 1)∆tI))

= −γ2x
k
1 −

γ1
C

e−λ∆tIxk
2 +

1

C
δQk+1

l

(21)

Combining, we get
[

xk+1
1

xk+1
2

]

=

[

1− γ2∆tI
γ1
Cλ

(e−λ∆tI − 1)
−γ2

γ1
C
e−λ∆tI

] [

xk
1

xk
2

]

+

[

δW k+1

1

C
δQk+1

l

]

(22)

The values ofγ1, γ2, andλ used in the simulation studies
reported in this paper are given in TableI. For those values
of the parameters, the eigenvalues of the state matrix in (22)
are0.52 and0.04, which shows the discrete system is BIBO
stable.



TABLE I

PARAMETER VALUES USED IN SIMULATION.

Parameter Value Parameter Value
C 8× 107 J/K γ1 3.2× 106 J/K
∆tI 1 hour γ2 1/(1 hour)
∆tS 24 hours T sp 72 oF

IV. SIMULATION STUDY

The algorithm is studied in simulations on a high-fidelity
model of a building and its HVAC system.

A. Reference signals

In this simulation, the Area Control Error (ACE) signal
from PJM on 05/04/2009 is used asδPBA, which is bandpass
filtered by a10th-order Butterworth filter with a pass band
of f ∈ [1/(1 hour), 1/(10 minutes)] and a passband gain of
5.5 × 10−6. The resultingδP r has a maximum magnitude
of 5kW.

B. Building and HVAC system model for simulations

The model of the building and its HVAC system used in
simulations is constructed and calibrated to resemble a large
zone in Pugh Hall at the University of Florida that is serviced
by a dedicated AHU. The model consists of the dynamics
of the zone, supply air fan, distribution duct, cooling coil,
and chiller, as well as the feedback interconnections of the
components. Due to lack of space, we do not describe
the model in detail here; the time constant of the chiller
dynamics is chosen to be 200 seconds, and other components
of the model are described in [11].

C. Controller

Recall that the algorithm has two main components,
a baseline scheduler and a PTC. The baseline scheduler
needs the data-driven load model described earlier. His-
torical data ofQcc and Qrh are collected from sensors
installed in Pugh Hall. Weather data are collected from
www.wunderground.com. Two weeks of data (01/13/2014
to 01/26/2014) are used in estimating the parameters of
the model. Though little data are used to parameterize the
model, the receding horizon approach provides robustness to
model inaccuracy. Values of other parameters needed by the
baseline scheduler and updater are shown in TableI.

The model of the HVAC system described in SectionIV-B
is linearized to obtain the transfer functionHm,p(s) (md

a to
Pc) for controller design. The controllerCPTC is designed
based onHm,p(s), so that the sensitivity function of the
closed loop (P r to Pc) is S(s) = s

s+0.1 , which makes the
tracking error less than−3 dB whenω < 0.1 rad/s. Although
designed with a linearized model, the PTC is applied to the
high fidelity non-linear model of the HVAC system in the
simulations.

D. Performance metrics

The dual goals of the algorithm are frequency regulation
to the grid, while maintaining IAQ. Metrics to quantify
performance are described here. LetδP := Pc − P r be
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Fig. 2. Power deviation tracking performance. The 2nd plot is a 2-hour
close-up.

TABLE II

PERFORMANCE RESULTS FOR SIMULATIONS.

δP r rR
PJM performance score

Sc Sd Sp St

Filtered ACE 0.016 0.999 0.953 0.931 0.961

the measured chiller power deviation from the baseline.
A natural metric to quantify the quality of tracking error
e(t) := δP r(t)− δP (t) is the ratio

rR =
1

max |δP r|

√

∫ τ

0

e(t)2dt. (23)

We also evaluate the algorithm using PJM Interconnection’s
performance score, based on the formula given in [22]. The
total performance scoreSt is the mean of three scores:
correlation scoreSc, delay scoreSd, and precision scoreSp.
A score ofSt ≥ 0.75 is required to pass the PJM test.

For indoor climate, we use the temperature violation
DT defined in [23]. This score is based on the minimum
and maximum temperature allowed when the building is
occupied, set to70◦F and 75◦F according to the thermal
comfort specifications described in [24].

Variation in supply air flow rate is quantified by

δmavg =
1

τ

∫ τ

0

∣

∣

∣

∣

m(t)−mr(t)

mr(t)

∣

∣

∣

∣

dt (24)

wherem,mr denote the actual and scheduled (reference)
supply air flow rates.

E. Results

Tracking performance is shown in Fig.2. Performance
metrics are shown in TableII . We see that our controller has
a performance score of0.961; cf. PJM’s requirement of0.75.

The resulting room temperature and airflow rate are shown
in Fig. 3. The room temperature remained in the comfort-
able range during the whole simulation, so the temperature
violation DT is 0. The average variation in supply air flow
rate is around15% of the scheduled baseline.
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Fig. 3. Room temperature and supply air (SA) flow rate during the
simulation. The red horizontal lines in top figure indicate the comfortable
temperature range. The black horizontal line in top figure indicates the
temperature set-point.

V. CONCLUSION AND FUTURE WORK

The proposed approach avoids the baseline estimation
problem by scheduling the baseline and periodically updating
it based on measurements in a receding horizon optimization
framework. Load is forecasted from a data-driven regression
model, which is calibrated from cooling and heating energy
use data. Load forecasting with the model only requires am-
bient temperature forecasts, which are available from weather
forecasts. Although there are many sources of uncertainty in
the load forecast, the feedback introduced through periodic
baseline update makes the overall scheme robust to these
uncertainties. In the future, we plan to develop methods for
on-line estimation of the baseline instead of scheduling it,
and compare the two architectures.

The scheduling process requires very little information
about the building - only the total thermal capacitance of
the building is needed which can be estimated from data.
This feature makes the algorithm easily deployable in any
building since the calibration effort required to determine
a building specific model is small. The algorithm can be
deployed easily in a building with a BAS, without requiring
installation of any new hardware. The reference signal from
the BA to the building can be communicated over the existing
public Internet.

In this paper, our algorithm was tested in simulations;
experimental investigation are planned in the future. In
addition, in the case of an off-site chiller, a transport delay
occurs between actuation (air flow rate variation) and power
consumption. Addressing the reference tracking problem in
presence of this delay is another research avenue.
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