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Abstract—How can a building Heating, Ventilation, Air  variable speed drives. This feature makes them partigularl
Conditioning (HVAC) system vary its real time power consump  well-suited for sophisticated control. Moreover, many eom
tion to provide ancillary services to the power grid without mercial buildings are equipped with Building Automation

sacrificing occupant comfort? Prior work showed how this can . . . ..
be done if the reference power variation is of high frequency Systems (BAS), making the task of implementing additional

(seconds to a few minutes) so that the climate control system control algorithms easy and inexpensive. Finally, comiiaérc
filters out the disturbance. This paper addresses the questh of  buildings have high thermal inertia, which can be translate
how to do that when the reference power variation is of lower g effective energy storage much like a large battery.
frequency, e.g., periods of a few minutes to an hour. We prose In commercial building HVAC systems, multiple pieces of
a receding horizon approach to schedule the baseline coolin . . . h .
and heating power of a building based on weather forecasts. equ'pm_em can be used to pr0y|de ancillary Serv'ces_ at dif-
A lower level controller is then used to track the scheduled ferenttimescales. The supply air fan has fast dynamics, and
baseline plus ancillary service reference signal. Periodiupdates is suitable for high frequency ancillary services; sé@ [L5].

to the scheduler based on measurements ensure quality of Heat pumps with variable speed drives are another potential
service in spite of forecasting errors. The algorithm is teted in resource 6. Chillers, even those without variable speed

simulation. Results show that ancillary service in the fregency dri b dt id il . by indi
range of f € [1/(1 hour),1/(10 minutes)] can be extracted rives, can be used 1o provide anciliary Services by indyec

from commercial building HVAC systems while still maintaining ~ varying the load on themifl]. Due to their slow dynamics,
a comfortable indoor climate. chillers are useful for providing service at slow time sesale

When the reference signal is high-frequency compared
to the thermal dynamics of the building and its climate

Ancillary services are needed to correct the mismatcRynirol system, a low pass filter can be used to estimate
between demand and supply in a power grid to ensuffe paseline power]. However, when the reference signal
the functionality and reliability of the grid. Integrating frequency overlaps with the bandwidth of the building, the
large amount of volatile renewables into the power grighaseline estimation problem is more challenging. Building
will require a larger amount of ancillary services to handlg|imate control systems are designed to react to distugsanc
this _voIatiIity [1, 2]. Tr_aditionally, ancillary servicgs aré on the time scale of a few minutes or longer. Estimating
provided by fast ramping generators. An alternative is tgaselines on these timescales requires prediction, tjpica
explore demand-side flexibility3[ 4] which may have less \yit statistical baseline models parameterized with hisab
environmental impact and cost in the long run. Interest iBuilding data L7, 18]. Errors in predictions make it hard to
demand side resources providing ancillary services is |O”§bparate the baseline and control respoas [
standing. Florida Power & Light’s On C&l program is one In this paper, we propose a novel approach to the baseline
of the early attempts at using demand side resourges [estimation problem and a new algorithm to effectively con-
Recent research on providing various forms of ancillary| commercial building HVAC systems to provide ancillary
services with on-off loads includesfs], which consider seyices on timescales of a few minutes to an hour. Instead
thermostatic loads such as residential air conditionegat h ¢ estimating the baseline, the baselinesibeduled ahead
pumps, refrigerators etc., anf] which considers deferrable f time based on weather forecasts. Note that Borenstein
loads, such as pool pumps, with local intelligence. et al. 20] proposed a similar concept for demand response

This paper builds on prior work on using commerciakinancial settlement purposes called Build-Your-Own (BYO)
building HVAC systems for providing ancillary services)F  paseline. After scheduling the baseline, a lower level Rowe
12]. Commercial buildings account for about 40% of therracking Controller (PTC) is used for tracking the schedule

total electricity consumption in the U.S1§. The power paseline plus the filtered reference signal. The scheduler
consumption in Variable Air Volume (VAV) Heating, Venti- nqates the baseline periodically based on indoor climate

lation, Air Conditioning (HVAC) systems, which serve 30%measurements to ensure indoor climate conditions remain
of all commercial building floor space in the U.9.4], can  comyortable. This also ensures robustness to load forecast
be varied continuously between a low and high value usingor and other uncertainties. The benefits of the proposed
YL and PB are with the Department of Mechanical and AerospacénethOd _are tWO'fOI_d: (i) the baselm_e is clearly de_f'ned \Mh_IC
Engineering,  University of  Florida; yashenl @i ch. edu, makes implementing and evaluating the service provided
pbarooah@f|.edu. IJM is with the Department of Electrical possible, and (i) by smart scheduling, we can minimize
Engineering and Computer Science, University of Michigan; h ) f the HVAG Followi
j I math@ni ch. edu. This research was supported by the NSFUN€ energy consumption of the SVSt?m- ollowing
grant ECCS-0925534. Borenstein et al., we call our approach a Bring-Your-Own-
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Baseline (BYOB) scheme. ‘ i"""'
The algorithm is tested in simulation where the model is :

built to resemble a portion of Pugh Hall on the University of

Florida campus. Results show the algorithm could provide }

satisfactory ancillary services in the frequency rang¢ ef $PPA [Bandpase

[1/(1 hour), 1/(10 minuteg] while maintaining comfortable filter * PTC Building |

Scheduler

indoor climate. r r
The rest of the paper is organized as follows: Section

describes the proposed algorithm; Sectibh present a

stability analysis of the algorithm; Sectid¥ introduces the Fig. 1. Schematic illustration of the proposed algorithm.

model used in the simulation, the simulation setup, and the

results; Sectior’/ concludes the paper and discusses future

k. . .
wor power P, (t) is the sum of the baseline pow&f(t) and the
I[I. CONTROL ARCHITECTURE power deviation P(t) introduced by the BYOB system for
We start with a description of VAV HVAC systems. The providing ancillary service, i.e.,
algorithm leaves certain parts of the climate control syste P.(t) = P°(t) + 6P(t) (1)

untouched while overriding others. ] ) ] o
As described in Sectioh, the baseline ischeduled ahead

A. VAV HVAC systems of time to match the forecasted thermal load. The scheduled

In a variable air volume HVAC system, the indoor climatPaseline chiller power is calle_Bc"._The reference command
and Indoor Air Quality (IAQ) are maintained by varying thefor th\_e total power consumpﬂon is the sum of the scheduled
flow rate of air through the building. Fresh air brought inP@seline and the ancillary services reference signal:
from the outside and return air collected from the zones are Pr(t) = PI(t) + P (t). )
mixed and sent through a cooling coil in the Air Handling
Unit (AHU), where the air is cooled and dehumidified. There The goal of the proposed system, whose schematic is
may also be a reheat coil to increase the temperature aiter ishown in Fig.1, is to ensure that the outpi#. tracks P",
dehumidified. The conditioned air is then sent to the teriinavhile maintaining indoor climate. A low level controllehe
VAV boxes by a supply air fan for distribution to zones.PTC, varies the airflow rate so that the power consumption
We consider a chilled-water based HVAC system, where @f the HVAC systemP. tracks the reference”. A high level
chiller produces chilled water which is then used in the AHUscheduler” schedules references for cooling and rehgatin
cooling coils to condition the air. Similarly, a boiler praces ~Power consumptionf’?” andQ7,, (both have units of Watts)
the hot water used for reheating. ahead of time. Note that to ensure a comfortable room

Among the three main sources of power consumptioflimate, the scheduler computes reference signals for both
in an HVAC system — mechanical, cooling, and heatinghiller power and reheat power. The scheduled reheat power
— we On|y consider chiller power (Coonng) for providing will be prOVided by local controllers in the BAS. Since rehea
ancillary services. Cooling and heating power dominate thiegower is not used for providing ancillary services, we will
mechanical power, and in heating is often provided by steaf@cus on designing the PTC for chiller power tracking.

whose generation uses little electricity. The existing building climate control system that is used to
vary the air flow rate to maintain indoor climate is overridde
B. Proposed BYOB system for power tracking. In order to maintain the indoor climate,

As in [10-12), it is assumed that a reference signal fothe scheduled power consumption is periodically updated
power deviationgP54(t), is transmitted by the Balancing using receding-horizon optimization based on load fortscas
Authority (BA) to all the ancillary services providers, Ind- ~ and corrections. The steps are described next. Time isetivid
ing smart buildings. For demand side resources, this signalinto a number of slots for scheduling and implementation
the desired deviation of the loads’ power consumption froraurposes, with lengti\¢s and A¢;, respectively.
its baseline value, i.e., what the loads would have consumedl) At the beginning of thé-th scheduling period;® :=
if they were not providing ancillary services. We assumé tha (kAtr, kAt; + Atg], forecast thermal load for this

§PBA(t) is band-pass filtered at every building to obtain period. The forecasting algorithm is described in Sec-
a reference signadP"(t) (in Watts) with magnitude and tion 11-C.1.

frequency that is appropriate for that building. The obiject ~ 2) Decide the desired baseline power durifif’ by

of the BYOB control system is twofold: to vary the power solving an optimization problem: minimize cooling
consumption of the HVAC system so that the deviation from and reheating energy durin§® while ensuring that
its baseline track§ P", and ensure that the indoor climate thermal comfort and IAQ constraints are satisfied and
and IAQ are maintained within their bounds. actuation limits are respected.

As discussed in Sectiofi-A, we only consider chiller  3) During the implementation periofi! := (kAtr, (k+
power for ancillary services in this paper. The total chille 1)At;], track P (t) by varying the supply air flow rate.



The PTC is designed for this purpose. comfort, ventilation requirements, and equipment saitomat
4) At the end of implementation period, update the loatimits. The algorithm for updating the baseline at subsegue
estimation for the next scheduling peri@'ﬁw and go scheduling intervals builds on the algorithm used at the firs
back to step 1. scheduling period/® = [0, Atg], so we first describe that
. . in detail.
C. Baseline scheduling The power consumption we consider in the optimization
The primary task for an HVAC system is to maintain &js the sum of cooling coil power and reheat power, i.e.,
comfortable indoor climate. Thus, forecasting the load is & _.(¢) + Q,(t). The reheat power is assumed to be con-
key part of scheduling the baseline. trolled directly, which makeg),.(¢) a decision variable. The
1) Load forecasting model: We use the baseline model cooling coil power is controlled indirectly by controllirtge
deVeIOped in 21] to forecast the future load on the HVAC mass flow rate of air through the Coo|ing coil.
system based on outdoor air temperature forecasts and timeThe problem of minimizing the energy consumption can
of-week, which acts as a proxy for occupant behavior ange stated as follows, fare 75 = [0, Ats]
appliance use. In1, 21], the model is used to predict the
baseline power consumption af whole building during a minimize/ (Qee(t) + Qurn(t))dt (5)
demand response event that occurirethe past, using past m(1),Qrn(t) J 78
outdoor air temperature measurements and time-of-week. dibject to
contrast, here we use it to forecast tiuure thermal load .
of the building. —Qec(t) + Qra(t) + Qu(t) =0 (6)
Before describing the model, we have to define the term m(t) € [mp, mw), Qrn(t) € [Qu, Qus) @)

“thermal load” precisely and describe how to measure it so

that measurements can be used to fit a model. Consider '}ngrem(t) is the supply air mass flow raten;, andm.,
whole building as a single capacite?, and letT(t) be '€ the bounds for supply air flow rat€, and Q. are

: . bounds for reheat powef};(t) is the forecast of load
the indoor temperature. The temperature dynamics of t ge . . .
building can be approximated by: IAirom the load forecasting model described in Sectie@.1.

. The cooling powerQ..(t) equals the product of.(t) and
CT(t) = — Qeelt) + Qrn(t) + Qu(t) (3) enthalpy difference between the air stream before the rgoli
coil (mixed air) and after the cooling coild{scharge air):

where Q.1 (t), Q..(t) are the rate of heat provided to and
extracted from the building, respectively, by the heatind a Qec(t) = m(t)(hma(t) — haa(t)) (8)
cooling coils, and the last tern®;(¢) is the rate of heat
entering the building from all other sources, such as frorﬁ’_
outside air, solar irradiation, occupants and plug loads. :
Ignoring the modeling errorQ;(¢) is called thethermal

hereh,,, andhy, are the enthalpies of the mixed air and
scharged air. Under the assumptions that all set poiets ar
constants and local control loops maintain their outputs at

load experienced by the HVAC system. It is the rate 01their set points, the specific enthalpies do not depend on the

heat the HVAC system has to remove from the building iIg;lctuationm(t). The energy minimization is then equivalent

order to maintain indoor temperature at a constant set:poi o power minimization at every instant over the §chedullng
TP s0 thatT(t) — 0. Thus, assuming that the existingper'Od' Therefore, the baseline power schedule is computed

climate controller is able to do its job perfectly, the foling by;@lving the following optimization problem for evetye
relationship should hold: o

0= ~Quelt) + Qun(t) + Q) @ T ) oty e T A )
This equation gives ug)(t) from measurements @..(t)  subject to the load and actuator constraints specifiedspy (
and@,,(t), which are obtained from energy meters installeénd (7). This is a linear program in two decision variables,
in the cooling and heating systems. m(t) and @, (t), and can be solved easily. The scheduled
Once the question of obtaining measurements for thgaseline cooling powef)” (t) is obtained from §) once
building’s load is resolved, the next question is fitting &, (¢) is determined. The chiller dynamics are modeled as a
model to this data. The model i2]] is a linear regression first order LTI system, withQ.. as input andP, as output.

model, where the load is a piecewise linear function ofvith this model, the scheduled chiller powg} (¢) can be
outdoor air temperature and of time-of-week. Ordinarytleagalculated fromQ’,_(t).

squares is used to parameterize the model with historical )
load/temperature measurements. The model is then usedRo Baseline update
forecast the building’s load at a particular time-of-wealeg In practice, the scheduled power will not lead to an indoor
a forecast of outdoor air temperature. temperature exactly equal to the set-point due to uncéigain

2) Baseline scheduling at ¢ = 0: The baseline power con- such as load forecast error. In subsequent schedulingdserio
sumption is scheduled by solving an optimization problenthese uncertainties are accounted for by examining how far
minimize energy consumption during theth scheduling the actual space temperature varies from the set-point, and
time interval7,® while satisfying constraints such as thermahkdding correction terms.



The baseline is updated at any scheduling pefigd & > I1l. STABILITY ANALYSIS
1, by solving the optimization problen®), with only one

' < : The baseline update provides a feedback mechanism. Con-
difference, specifically the load constraif) (s replaced by:

sider the case where there is no update: the Qdd) is pre-
—0u.(t () + Oyt k(¢ E ) —0. ¢ s calculated from_the Iqad model based on weat.her forecasts.
Qeelt) + Qra(t) + Qu(t) + Qer (1) + Qa(t) ’ %13’)“ The reference signal is then calculated frd ([This control
strategy works in a feed-forward fashion, where the input
where Q% (t), Qk,(t) are two correction terms. We now (Qc.(t) andQ7, (t)) is decided ahead of time and does not
describe these correction terms and the rationale beh@id thdepend on the real time room temperature measurement.
design. Now consider the case with update. The dynamics after
The uncertainties in the temperature dynamig} gre 2dding the two correcting terms are given 'mSZX- For
captured by a disturbance terni;(t), so that 8) now Cconvenience of analysis, we let () = T'(¢) — T, and

. R Consider the k-th implementation periad € 7,/ =
CT(t) = —QL.(t) + Qr,(t) + Qi(t) + 6Qi (1) (11) (kAts;, (k+ 1)At;]. With the definition in (3) and (4),
we have:

where the terndQ, (¢) also captures any deviation of the ac-
tual cooling and heating power from their scheduled values. QF () = mma(kAty)e AI—kAL) (15)
Since the schedule@?.(t) and Q7, (t) have to satisfy the ’g QF,(t) = v2Cz1 (kALy) (16)
constraint {0), we have:
We assume— > At; so that the second correction term
CT(t) = —QF,(t) — Q% (t) + 6Qu(t) (12) k() remalns constant during;’. This simplifies the
expression. In the case (#— < Aty, c2() becomes a

Note that for the first scheduling period, the correctiomigr step function which drops to 0 at— kAtH- L From (12),

are 0.
The first correction term is chosen as . 1 &

22(t) =T(t) = 7(=Qar(t) — () +8Qu(1) (A7)

k ~A(t—katr)
a(t) =T (kAtr)e Yot> kAt (13) We now define the discrete states:

Where'yl f';md/\ are des_ign parameters. The rationale behind ok = a1 (kAL 2k = 2o (kAL). (18)
this term is thaty; T' estimates load forecast error. We expect

the actual load tends to return to the estimated value, i.et time ¢ = (k + 1)Aty, ’f“ = b+ fkiﬁ )AL zo(t)dt.
6Qu(t) tends to go to O for large. By using (L7), it follows that

The second correction term is designed to remove the total . M, . .
extra heat that has remained in the building at the end of theti t' = (1 — y2Aty)z] + —~ (e A — 1)af + SWH

the last (k-1 -th) implementation period, which is simply oA (19)
Eena = C(T(kAty) — T°P) where
1 [EDAL
The correction term is chosen as SWHHL .= —/ 5Q(t)dt (20)
kAty
1
kQ(t) — YoEena t€ (kAt[, kAt + %] (14) Also, we have:
¢ 0 t € (kAtr + L, kAt + Ats] bt o
Ty = T((k + 1)At1)
where~, is a design parameter which indicates how fast we 1 k &
would like the temperature to be driven back to the set-point = 5(_ c((k+1)AL) = Qcy((k + 1)Atr) (21)
If we wish to return the zone temperature to its set-point +06Qi((k +1)Aty))
quicker, a largery; should be used.
k_ 0L —AAtr, k §Qk+1

I S

E. PTC design Combining, we get

the total reference signd!” (¢) during every implementation k+1:| _ {1 — 24l V—i(f;m;;t] 1)} [501] {5Wk:l
period: ¢t € 7,/. A dynamic compensator is used for this "2 2 [ehs 75 0Q
purpose, with power tracking errd?” — P. as input and (22)
air flow rate commanan”™ as output. Classical compensatorThe values ofy;, v2, and A used in the simulation studies
design techniques are used to design the PTC based r@ported in this paper are given in TableFor those values
a linear plant model, which is obtained by linearizing eof the parameters, the eigenvalues of the state matridn (
non-linear model of the HVAC system around a nominaare0.52 and0.04, which shows the discrete system is BIBO
operating point. stable.

The objective of the PTC is to make the chiller power tracT .



TABLE | —— Actual power deviation = = =5 p"

PARAMETER VALUES USED IN SIMULATION. 5
Parameter| Value Parameter| Value E 0
[} 8 x 107 JK || 71 3.2 x 10% J/K
Atg 1 hour Y2 1/(1 hour) -5 ‘ ‘ ‘
Atg 24 hours TSP T2°F 0 6 12 18 24

Hours

IV. SIMULATION STUDY

The algorithm is studied in simulations on a high-fidelity
model of a building and its HVAC system.

A. Reference signals 6 6> Ho7urs 2 8

In this simulation, the Area Control Error (ACE) signal
from PJM on 05/04/2009 is used éEBA, which is bandpass Fig. 2. Power deviation tracking performance. The 2nd po& i2-hour
filtered by al10*-order Butterworth filter with a pass bandCIOS&Up'
of f € [1/(1 hour), 1/(10 minuteg] and a passband gain of
5.5 x 1075, The resultingd P" has a maximum magnitude
of 5kW.

TABLE Il
PERFORMANCE RESULTS FOR SIMULATIONS

” PJM performance score
i RS S, 1 S, | S
Filtered ACE | 0.016 | 0.999 | 0.953 | 0.931 | 0.961

B. Building and HVAC system model for simulations
The model of the building and its HVAC system used in

simulations is constructed and calibrated to resemblege lar
zone in Pugh Hall at the University of Florida that is serdice

by a dedicated AHU. The model consists of the dynamice measured chiller power deviation from the baseline.
of the zone, supply air fan, distribution duct, cooling ¢oil o natyral metric to quantify the quality of tracking error

and chiller, as well as the feedback interconnections of thé?t) .= §P"(t) — §P(t) is the ratio

components. Due to lack of space, we do not describe

the model in detail here; the time constant of the chiller 1 T

dynamics is chosen to be 200 seconds, and other components TR = W /0 e(t)?dt. (23)

of the model are described in]].
We also evaluate the algorithm using PJM Interconnection’s

C. Controller performance score, based on the formula giver2@.[The
Recall that the algorithm has two main componentdptal performance scoré; is the mean of three scores:

a baseline scheduler and a PTC. The baseline scheduberrelation scores.., delay scoreS;, and precision scorg,,.

needs the data-driven load model described earlier. Hig- score ofS; > 0.75 is required to pass the PJM test.

torical data of Q.. and Q,, are collected from sensors For indoor climate, we use the temperature violation

installed in Pugh Hall. Weather data are collected fronDr defined in R3]. This score is based on the minimum

www.wunderground.com. Two weeks of data (01/13/2014 and maximum temperature allowed when the building is

to 01/26/2014) are used in estimating the parameters otcupied, set t&r0°F and 75°F according to the thermal

the model. Though little data are used to parameterize tltemfort specifications described i64).

model, the receding horizon approach provides robustoess t Variation in supply air flow rate is quantified by

model inaccuracy. Values of other parameters needed by the 1 [T |m(t) — m"(t)

baseline scheduler and updater are shown in Table OMarng = / —
The model of the HVAC system described in SectigiB 0 m"(t)

is linearized to obtain the transfer functidh,, ,(s) (mé to  wherem,m” denote the actual and scheduled (reference)

P,) for controller design. The controllefpr¢ is designed supply air flow rates.

based onH,, ,(s), so that the sensitivity function of the

closed loop P to P.) is S(s) = —%=, which makes the

‘ dt (24)

E. Results
s40.1"7

tracking error less thar3 dB whenw < 0.1 rad/s. Although ~ Tracking performance is shown in Fig. Performance
designed with a linearized model, the PTC is applied to theetrics are shown in Tabl. We see that our controller has
high fidelity non-linear model of the HVAC system in thea performance score 6f961; cf. PIJM’s requirement a.75.

simulations.
The resulting room temperature and airflow rate are shown

D. Performance metrics in Fig. 3. The room temperature remained in the comfort-

The dual goals of the algorithm are frequency regulatioable range during the whole simulation, so the temperature
to the grid, while maintaining 1AQ. Metrics to quantify violation D7 is 0. The average variation in supply air flow
performance are described here. gt := P. — P" be rate is around 5% of the scheduled baseline.
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Fig. 3. Room temperature and supply air (SA) flow rate durihg t
simulation. The red horizontal lines in top figure indicalte tomfortable
temperature range. The black horizontal line in top figurdicates the
temperature set-point.
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V. CONCLUSION AND FUTURE WORK [11]

The proposed approach avoids the baseline estimation
problem by scheduling the baseline and periodically updati (12
it based on measurements in a receding horizon optimization
framework. Load is forecasted from a data-driven regressio
model, which is calibrated from cooling and heating energy 5
use data. Load forecasting with the model only requires am-
bient temperature forecasts, which are available fromezat [14]
forecasts. Although there are many sources of uncertainty i
the load forecast, the feedback introduced through periodi
baseline update makes the overall scheme robust to these
uncertainties. In the future, we plan to develop methods for)
on-line estimation of the baseline instead of scheduling it
and compare the two architectures. [16]

The scheduling process requires very little information
about the building - only the total thermal capacitance qfi7]
the building is needed which can be estimated from data.
This feature makes the algorithm easily deployable in anysg;
building since the calibration effort required to determin
a building specific model is small. The algorithm can b?lg]
deployed easily in a building with a BAS, without requiring
installation of any new hardware. The reference signal from
the BA to the building can be communicated over the existingo]
public Internet.

In this paper, our algorithm was tested in simulations;
experimental investigation are planned in the future. Ir[h]
addition, in the case of an off-site chiller, a transportagel
occurs between actuation (air flow rate variation) and power
consumption. Addressing the reference tracking problem 72
presence of this delay is another research avenue. 23]
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