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Abstract

We analyze a distributed algorithm for estimation of scalar parameters belonging to nodes in a mobile network from noisy
relative measurements. The motivation comes from the problem of clock skew and offset estimation for the purpose of time
synchronization. The time variation of the network was modeled as a Markov chain. The estimates are shown to be mean square
convergent under fairly weak assumptions on the Markov chain, as long as the union of the graphs is connected. Expressions
for the asymptotic mean and correlation are also provided.
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1 Introduction

We consider the problem of estimation of variables in a
network of mobile nodes in which pairs of communicat-
ing nodes can obtain noisy measurement of the difference
between the variables associated with them. Specifically,
suppose the u-th node of a network has an associated
node variable xu ∈ R. If nodes u and v are neighbors at
discrete time index k, then they can obtain a measure-
ment ζu,v(k) where

ζu,v(k) = xu − xv + ǫu,v(k). (1)

The problem is for each node to estimate its node vari-
able from the relative measurements it collects over time,
without requiring any centralized information process-
ing or coordination. We assume that at least one node
knows its variable. Otherwise the problem is indetermi-
nate up to a constant. A node that knows its node vari-
able is called a reference node. All nodes are allowed to
be mobile, so that their neighbors may change with time.

The problem of time synchronization (also called clock-
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synchronization) through clock skew and offset estima-
tion falls into this category, and provides the main moti-
vation for the study. Time synchronization in ad-hoc net-
works, especially in wireless sensor networks, has been
a topic of intense study in recent years. The utility of
data collected and transmitted by sensor nodes depend
directly on the accuracy of the time-stamps. In TDMA
based communication schemes, accurate time synchro-
nization is required for the sensors to communicate with
other sensors. Operation on a pre-scheduled sleep-wake
cycle for energy conservation and lifetime maximization
also requires accurate knowledge of a common global
time. We refer the interested reader to the review pa-
pers [1–3] for more details on time synchronization.

The relationship between local clock time τu(t) of node u
and global time t is usually modeled as τu(t) = αut+βu,
where the scalars αu, βu are called its skew and off-
set, respectively [1,3]. A node can determine the global
time t from its local clock time by using the relationship

t̂ = (τu(t) − β̂u)/α̂u as long as it can obtain estimates

α̂u, β̂u of the skew and offset of its local clock. Hence the
problem is clock synchronization in a network can be
alternatively posed as the problem of nodes estimating
their skews and offsets. It is not possible for a node to
measure its skew and offset directly. However, it is possi-
ble for a pair of neighboring nodes to measure the differ-
ence between their offsets and logarithm of skews by ex-
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changing a number of time stamped messages. Existing
protocols to perform so-called pairwise synchronization,
such as [4–6], can be used to obtain such relative mea-
surements. The details will be described in Section 2.1.
The problem of clock offset and skew estimation can
therefore be cast as a special case of the estimation from
relative measurements described above. If an algorithm
is available to solve the scalar node variable estimation
problem, nodes can execute two copies of this algorithm
in parallel to estimate both skew and offset. Therefore
we only consider the scalar case. In the context of time
synchronization, the existence of a reference node means
that at least one node has access to the global time t.
This is the case when at least one node is equipped with
a GPS receiver, in which case that node has access to
the UTC (Coordinated Universal Time). If no node has
a GPS receiver, then one node has to be elected to be
the reference so that it’s local clock time is considered
the global time that everyone has to synchronize to.

1.1 Related work

Time synchronization in sensor networks can be classi-
fied into pairwise synchronization and global synchro-
nization methods. In pairwise synchronization, a pair of
nodes try to synchronize their clocks to each other. In
practice this is often achieved by one of the nodes es-
timating its relative offset and/or skew with respect to
the other node, so that the local time of the other node
serves as a reference [4–7]. Precise definitions of relative
offset and relative skew are postponed till Section 2.1.
In global synchronization, also called network-wide syn-
chronization, all nodes synchronize themselves to a com-
mon time.

A common approach for global synchronization in sen-
sor networks is to first elect a root node and construct a
spanning tree of the network with the root node being
the “level 0” node. Every node thereafter synchronizes
itself to a node of lower level (higher up in the hierarchy)
by using a pairwise synchronization method. Examples
of such spanning-tree based protocols include Timing-
Sync Protocol for Sensor Networks (TPSN) [8] and
Flooding Time Synchronization Protocol (FTSP) [9].
Change in the network topology due to node mobility or
node failure requires recomputing the spanning tree and
sometimes even re-election of the root node. This adds
considerable communication overhead. The situation
gets worse if nodes move rapidly.

Recently, a number of fully distributed global synchro-
nization algorithms have been proposed that do not need
spanning tree computation. Distributed protocols are
therefore more readily applicable to mobile networks
than tree-based protocols. Among the distributed syn-
chronization protocols proposed, some are based on es-
timation of the skew and/or offset of each clock with re-
spect to a reference clock (called absolute time synchro-
nization). The algorithms proposed in [10–14] belong to

this category. Another class of protocols estimate a com-
mon global time that may not be related to the time
of any clock in the network. The algorithms proposed
in [15–17] belong to this category, which we call virtual
time synchronization.

1.2 Contribution

In this paper we consider the problem of distributed es-
timation of skews and offsets with respect to a refer-
ence clock in a mobile network for global absolute time
synchronization, where the network changes with time
due to nodes’ motion. The common thread among vir-
tual time synchronization methods mentioned earlier is
the use of consensus-type algorithms to construct vir-
tual skew and offsets that every node agrees to. In many
applications, absolute time synchronization is preferable
over virtual time synchronization. This occurs when the
user of the sensor network is interested in the time of
an event that is measured in an absolute reference time,
such as UTC provided by a GPS unit on a base station.
Therefore, in this paper we consider only absolute time
synchronization.

We analyze an algorithm for estimating absolute skews
and offsets from noisy pairwise relative measurements of
skews and offsets, which is a slight modification of the
algorithms proposed in [18,10,12]. Though the algorithm
is adopted from these earlier papers, the analysis in those
papers were limited to static networks. Thus, little is
known about how such an algorithm will perform in a
mobile network.

The main contribution is that we analyze the con-
vergence of the algorithm when the network topology
changes due to the motion of the nodes, as well as ran-
dom communication failure. We model the resulting
time-varying topology of the network as the state of a
Markov chain. Techniques for the analysis of jump lin-
ear systems from [19] are used to study convergence of
the algorithm. We show that under fairly weak assump-
tions on the Markov chain, the proposed algorithm is
mean square convergent if and only if the union of the
graphs that occur is connected. Mean square conver-
gence means the expected value and the variance of the
estimates obtained by each node converges to fixed val-
ues that do not depend on the initial conditions. When
the relative measurements are unbiased, then limiting
mean is the same as the true value of the variable,
meaning the estimates obtained are asymptotically un-
biased. Formulas for the limiting mean and variance are
obtained by utilizing results from jump linear systems.

The algorithm we analyze bears a close resemblance to
consensus algorithms. In fact, the estimation error dy-
namics turns out to be a leader-follower consensus al-
gorithm, where the leader states - corresponding to the
estimation error of the reference nodes - are always 0.
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However, existing results from consensus cannot be di-
rectly used to analyze the scenario examined in this
paper. Consensus literature almost always treats the
problem where all nodes participates in the consensus
algorithm, i.e., “leaderless consensus”, while ours is a
“leader-follower” consensus since the reference nodes er-
ror state stays at 0. One may expect analysis of this case
would be easier, but that turns out to be not the case.
Even though the literature on consensus is extensive, the
topic of consensus with both time-varying graph topol-
ogy and additive measurement noise is considered only
in a limited number of papers, e.g. [20–23]. There are sev-
eral differences between the consensus algorithms stud-
ied in [20–23] and the error dynamics examined in this
paper, which preclude using their results to perform the
analysis. These include requirement of symmetry or bal-
ance in graphs/matrices, preassignment of time-varying
gains that must be synchronized among all nodes, etc.
None of these restrictions are imposed in our analysis.
In addition, use of Markov jump linear systems theory
allows us to provide formulas for limiting mean and cor-
relation. In [24], we show that when nodes move accord-
ing to the Random Waypoint Mobility model [25], the
resulting switching dynamics can indeed be modeled by
a Markov chain. This provides justification for assuming
the switching of topology is Markovian when analyzing
mobile networks. An more detailed discussion on the re-
lation between this work and existing results on consen-
sus with switching networks can be found in Remark 4
of [24].

A preliminary version of this paper was presented in [26].
Compared to that paper, we make several additional
contributions. While the paper [26] provided only suffi-
cient conditions for mean square convergence, here we
provide both necessary and sufficient conditions. An as-
sumption of symmetry of certain matrices were made
in [26], which is removed in the present paper.

The rest of the paper is organized as follows. Section 2
describes the connection between the problem of esti-
mation from relative measurements and the problem of
skew/offset estimation, and then states the problem pre-
cisely. Section 3 describes the proposed algorithm and
states the main result (Theorem 3). It also discusses the
relevance of the Markovian switching topology model.
Section 4 is devoted to the proof of the theorem. Simu-
lation studies are presented in Section 5.

2 The estimation problem

We consider the problem of estimating the scalar param-
eters (called node variables) xu, u = 1, . . . , nb, where
nb is the number of nodes in the network that do not
know their node variables. We assume that there are
nr additional nodes that knows their node variables,
where nr ≥ 1. These define a node set V = {1, . . . , n},
where n = nb + nr is the total number of nodes. For

later reference, we define V b := {1, . . . , nb} and V r =
{nb + 1, . . . , nb + nr}, so that V = V b ∪ V r. Note that
n = nb + nr. Time is measured by a discrete time-index
k = 0, 1, . . . . The mobile nodes define a time-varying
undirected measurement graph G(k) = (V ,E (k)), where
(u, v) ∈ E (k) if and only if u and v can obtain a rel-
ative measurement of the form (1) during the time in-
terval between the time indices k and k + 1. Specifi-
cally, for each (u, v) ∈ E (k), there is a measurement
ζu,v(k) = xu−xv+ǫu,v(k) that is available to both u and
v at time k. In practice, one of the two nodes computes
this measurement from sensed information. We assume
that if u computes the measurement ζu,v, it then sends
this measurement to v so that v also has access to the
same measurement. We follow the convention that the
relative measurement between u and v that is obtained
by the node u is always of xu−xv while that used by v is
always of xv−xu. Since the same measurement is shared
by a pair of neighboring nodes, if v receives the measure-
ment ζv,u from u, then it converts the measurement to
ζv,u by assigning ζv,u(k) := −ζu,v(k). We assume, with-
out any loss of generality, that between a pair of nodes
u and v, the node with the lower index obtains the rel-
ative measurement between them first, and then shares
with the node with the higher index.

The neighbors of u at k, denoted by Nu(k), is the set
of nodes that u has an edge with in the measurement
graph G(k). We assume that if v ∈ Nu(k), then u and v
can also exchange information through wireless commu-
nication at time k. Therefore, if one prefers to think of
a communication graph, we assume that it is the same
as the measurement graph.

The task is to estimate the node variables xu for
u = 1, . . . , n by using the relative measurements
ζu,v(k), (u, v) ∈ E (k) that becomes available over time
k = 0, 1, . . . . In addition, the algorithm has to be dis-
tributed in the sense that each node has to estimate its
own variables, and at every time k, a node u can only ex-
change information with its neighbors Nu(k). Note that
the estimation problem is indeterminate unless nr > 0.

2.1 Relation to skew and offset estimation

To see the connection between skew/offset estimation
and the problem of estimation from noisy relative mea-
surements introduced in the previous section, we first
discuss the notion of pairwise synchronization between a
pair of neighboring nodes u and v. By exchanging a num-
ber of time-stamped messages, it is possible for node u
to estimate the so-called relative skew αu,v and relative
offset βu,v between itself and v, where

τu(t) = αu,vτv(t) + βu,v. (2)

That is, the parameters αu,v and βu,v relate the local
time of u to the local time of v at the same global time t.
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A number of methods are available that allows pairwise
synchronization between a node pair from time-stamped
messages [4,5,27,13,6]. The parameters αu,v and βu,v are
also referred to as the skew and offset of node u with
respect to node v [7].

The relationship between the absolute skew and offset
αu, βu, αv, βv and relative skew and offset αu,v, βu,v is
given by

αu,v :=
αu

αv

βu,v := βu − βv

αu

αv

. (3)

This relationship is obtained by expressing the local time
τu(t) of node u at global time t in terms of the local time
τv(t) at node v at the same time t by using (1):

τu(t) = αu(
τv(t)− βv

αv

) + βu =
αu

αv

τv(t) + βu − βv

αu

αv

,

and comparing with (2). Suppose a node u obtains noisy

estimates α̂u,v, β̂u,v of the parameters αu,v, βu,v by using
a pairwise synchronization protocol.

(1) We model the noisy estimate of αu,v as

α̂u,v = exp(ǫsu,v)αu,v (4)

where exp(·) is exponential function and ǫsu,v is a
random variable. If the estimation error is small,
then ǫsu,v is close to 0. Taking log, we get

log α̂u,v = logαu,v + ǫsu,v = logαu − logαv + ǫsu,v.

(5)

Eq. (5) can be rewritten as ζs
u,v = xs

u − x
s
v + ǫsu,v,

with the definitions ζs
u,v := log α̂u,v and xs

i :=
logαu, which makes ζs

u,v a noisy relative measure-
ment of the node variables xs

u and xs
v; cf. (1). It is

important to notice that ζs
u,v is a measured quan-

tity – since α̂u,v is measured – while the variables
xs

u, x
s
v, which are logarithms of the skews, are un-

known.
(2) Similarly, the noisy estimate β̂u,v of βu,v with ran-

dom estimation error eo
u,v can be written as

β̂u,v = βu,v + eo
u,v = βu − βv + ǫou,v, (6)

where ǫou,v := βv(1− αu/αv) + eo
u,v. Again, (6) can

be rewritten as ζo
u,v = xo

u−x
o
v + ǫou,v, with the defi-

nitions ζo
u,v := β̂u,v and xo

u := βu, which makes ζo
u,v

a noisy relative measurements of the node variables
xo

u and xo
v; cf. (1). In this case the node variables

are the clock offsets βu’s. The noise ǫou,v in the offset
measurement is in general biased even if the mea-
surement of the relative offset βu,v is unbiased.

This discussion shows that the estimates of the relative
skew and the relative offset between a pair of neighbor-
ing nodes, which can be obtained by existing algorithms
for pairwise synchronization, can be expressed as a noisy
relative measurement of node variables by appropriate
redefinitions. The node variables are log-skews and off-
sets. Once node u obtains estimates x̂s

u and x̂o
u of its two

node variables xs
u and xo

u, it can estimate its skew and

offset as α̂u := exp(x̂s
u) and β̂u := x̂o

u. Thus, the prob-
lem of estimating the skews and offsets of all the clocks
in a network can be transformed to an estimation from
relative measurements problem, where relative measure-
ments are of the form (1).

Remark 1 From this point on, we only consider the es-
timation problem involving scalar node variables. This
entails no loss of generality since estimation of the two
scalar variables, skew and offset, can be performed in par-
allel. In the skew estimation problem, log-skews take the
role of node variables and log α̂u,v’s obtained from pair-
wise synchronization take the role of relative measure-
ments. In the offset estimation problem, node variables

are the offsets and relative measurements are the β̂u,v’s
obtained from pairwise synchronization. The assumption
on the existence of the reference node is equivalent to
at least one node knowing the global time. This can be
achieved by either one or more nodes having access to
GPS time, or by arbitrarily electing a node as a reference
and choosing its local time as the global time.

3 Algorithm and results

3.1 Algorithm for distributed estimation from relative
measurement

The algorithm we consider is adopted from [10,12,18],
with minor modification to make it applicable to time
varying networks. Each node u maintains in its local
memory an estimate x̂u(k) of its node variable xu ∈ R.
Every node - except the reference nodes - iteratively up-
dates its estimate as we’ll describe now. The estimates
can be initialized to arbitrary values. In executing the
algorithm at iteration k, node u communicates with its
current neighbors to obtain measurements ζu,v(k) and
their current estimates x̂v(k), v ∈ Nu(k). Since ob-
taining measurements require exchanging time-stamped
messages, the current estimates can be easily exchanged
during the process of obtaining new measurements. Node
u then updates its estimate according to

x̂u(k + 1) = (7)










wuu(k)x̂u(k)+
∑

v∈Nu(k)
wvu(k)(x̂v(k)+ζu,v(k))

wuu(k)+
∑

v∈Nu(k)
wvu(k)

, u ∈ V b

xu(k), u ∈ V r,

where the weights wvu(k) and wuu(k) are arbitrary pos-
itive numbers. The update law is well-defined even at
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times when u has no neighbors. Nodes continue this it-
erative update unless they see little change in their local
estimates, at which point they can stop updating. The
update procedure in each node u ∈ V b is specified in
Algorithm 1.

Algorithm 1 Distributed update at node u

1: Initialize estimate x̂u(0) ∈ R and local iteration
counter k = 0

2: while u is performing iteration do
3: if Nu(ku) 6= ∅ then
4: for v ∈ Nu(k) do
5: if u does not have ζu,v(k) then
6: 1.u and v perform pairwise synchro-

nization: u obtains ζu,v(k), v obtains ζv,u(k);
7: 2.u and v exchange their current esti-

mates: u saves x̂v(k); v saves x̂u(k);
8: else
9: u does not communicate with v;

10: end if
11: end for
12: u updates x̂u(k + 1) using (7);
13: else
14: x̂u(k + 1)← x̂u(k);
15: end if
16: k=k + 1;
17: end while

Each node u is allowed to vary its local weights wuv(k)
with time and use distinct weights for distinct neighbors
to account for the heterogeneity in measurement qual-
ity. Between two neighbors p, q of node u at time k, the
relative measurement ζu,p(k) between u and p may have
lower measurement error than the relative measurement
ζu,q(k) between u and q. This occurs, for example, if u
and p were able to exchange more time stamped mes-
sages than u and q before computing the relative mea-
surements [6,7]. In this case, node u should choose its lo-
cal weights at k so that wpu(k) > wqu(k). Due to the de-
nominator in (7), it is only the ratios among the weights
that matter, not their absolute values.

3.1.1 Asynchronous implementation

The description so far is in terms of a common global it-
eration index k. In practice, nodes do not have access to
such a global index. Instead, each node keeps a local iter-
ation index. After every increment of the local index, the
node tries to collect a new set of relative measurements
with respect to one or more of its neighbors within a
pre-specified time interval. At the end of the time inter-
val, whether it is able to get new measurements or not,
it updates its estimate according to the update law (7)
and increments its local iteration counter. Now the in-
dex k in (7) has to be interpreted as the local iteration
index. The process then repeats. It follows from (7) that
if a node is unable to gather new measurements from

any neighbors, then its updated estimate is precisely the
previous estimate.

The global iteration index is useful to describe the algo-
rithm from the point of view of an omniscient spectator.
Let T the time interval, say, in seconds, between two
successive increments of the global index k. The param-
eter T is arbitrary, as long as is small enough so that no
node updates its local estimate more than once with the
time interval T . In that case, one of only two events are
possible for an arbitrary node u at the end of the time
interval when the global counter is increased from k to
k+1: (i) u either increases its local index by one, or (ii) u
does not increases its local index. If a node increases its
local index, both the local and global indices increase by
one. A node does not increase its local iteration index if
it is not able to gather new measurements. In the omni-
scient spectator’s view, the node’s neighbor set is empty
at this time index; so according to (7), the next estimate
of the node’s variable is the same as the previous one.
Thus, a node’s local asynchronous state update can be
described in terms of the synchronous algorithm (7); the
latter being more convenient for exposition. We there-
fore consider only the synchronous version in the sequel.

3.2 Convergence analysis with Markovian switching

In this paper we model the sequence of measurement
graphs {G(k)}∞k=0 that appear as time progresses as the
realization of a (first order) Markov chain, whose state
space G = {G1, . . . ,GN} is the set of graphs that can oc-
cur over time. The Markovian switching assumption on
the graphs means that P (G(k + 1) = Gi|G(k) = Gj) =
P (G(k + 1) = Gi|G(k) = Gj ,G(k − 1) = Gℓ, . . . ,G(0) =
Gp) where Gi,Gj ,Gℓ, . . . ,Gp ∈ G and where P (·) denotes
probability. We assume that the Markov chain is homo-
geneous, and denote the transition probability matrix of
the chain by P , in which pij is the (i, j)-th entry of P .

Remark 2 The examination of the applicability of the
Markovian model of graph switching is provided in [24,
Appendix A]. We examine the Random Waypoint Mo-
bility model by using an empirical conditional entropy
based method suggested in [28]. The analysis in [24] re-
veals that the graph switching process can be modeled as
a (first order) Markov chain.

Let eu(k) := x̂u(k)− xu be the estimation error at node
u. Since ζu,v(k) = xu − xv + ǫu,v(k), the update law (7)
can be rewritten as

eu(k + 1) = (8)










wuu(k)eu(k)+
∑

v∈Nu(k)
wvu(k)(ev(k)+ǫu,v(k))

wuu(k)+
∑

v∈Nu(k)
wvu(k)

, u ∈ V b

0, u ∈ V r.

The right hand side of (8) is a weighted average of esti-
mation errors of xu and measurement noise. If the mea-

5



surement noise ǫu,v(k) is zero-mean and the initial es-
timates are unbiased, i.e. E[eu(0)] = 0, ∀u ∈ V b, then
E[eu(k)] = 0 for all k, where E[·] denotes expectation.

The main result of the paper - on the mean square con-
vergence of (8) - is stated below as a theorem. In the
statement of theorem, e(k) := [e1(k), . . . , enb

(k)]T is the
estimation error vector. Moreover, µ(k) := E[e(k)] is the

mean and Q(k) := E[e(k)e(k)
T
] is the correlation ma-

trix of the estimation error vector. We say that a stochas-
tic process y(k) is mean square convergent if E[y(k)] and
E[y(k)yT (k)] converges as k → ∞ for every initial con-

dition. The union graph Ĝ is defined as follows:

Ĝ := ∪N
i=1Gi = (V ,∪N

i=1E i), (9)

where E i is set of edges in Gi. We assume that the mea-
surement noise ǫu,v(k) affecting the measurements on
the edge (u, v) is a wide sense stationary process. We also
assume that the measurement noise sequence ǫu,v(k) and
the initial condition x̂u(0), for any u, v, k is independent
of the Markov chain that governs the time-variation of
the graph.

Due to technical reasons, we make an additional assump-
tion that there exists a time k0 after which the edge-
weights do not change. The choice of weights during the
transient period (up to k0) will affect initial reduction of
the estimation errors but will not change the asymptotic
behavior.

Recall that e(k) is the estimation error vector for the
nodes who do not know their node variables, the main
theorem is as follows:

Theorem 3 Assume that the temporal evolution of the
communication graph G(k) is governed by an N -state
homogeneous Markov chain that is ergodic, and pii > 0
for i = 1, . . . , N . The estimation error e(k) is mean

square convergent if and only if Ĝ is connected.

Remark 4 The formulas for computing the limiting
values limk→∞ µ(k) and limk→∞ Q(k) are provided
in Lemma 6 (Section 4). It follows directly from the
formulas (see Lemma 6), that if additionally all the
measurements are unbiased, then limk→∞ µ(k) = 0.

The implication of the theorem is that as long as nodes
are connected in a “time-average” sense characterized by
Ĝ being connected, the estimates of the node variables
will converge to random variables with a constant mean
and variance, irrespective of the initial conditions. Thus,
after a sufficiently long time, the nodes can turn off the
synchronization updates without much loss of accuracy.
The assumption of ergodicity of the Markov chain en-
sures that there is an unique steady state distribution
and that the steady state probability of each state is non-
zero [19]. This means every graph in the state space of

1

2 3

G ~G

w12
w21
w32

w23

w31
w13

w11

w22 w33

Fig. 1. A measurement graph G and the corresponding weight

graph ~G.

the chain occurs infinitely often. Since their union graph
is connected, ergodicity implies that information from
the reference node(s) will flow to each of the nodes over
time. None of the graphs that ever occur is required to
be a connected graph. The assumption pii > 0 means
P (G(k + 1) = Gi|G(k) = Gi) > 0. This can be assured if
the nodes move slowly enough.

4 Proof of Theorem 3

We consider a weighted directed graph ~G(k) = (V , ~E (k),
W (k)) associated with undirected measurement graph
G(k) = (V ,E (k)). In particular, there exists an undi-
rected edge (u,v) in G(k), then there exist two directed

edges (u, v) and (v, u) in ~G(k). The weight matrix W (k)
defined as

Wuv(k) :=















wvu(k) > 0 for (u, v) ∈ ~E (k)

wuu(k) > 0 for v = u

0 o.w.

(10)

Thus, given a measurement graph G(k) and W (k), ~G(k)
is specified. See Figure 1 for an example of an undirected
measurement graph and an associated directed weighted
graph. The square non-negative matrices, D(k), M(k)
and N(k) is defined as follows: D(k) is a n × n diago-
nal matrix made up of the diagonal entries ofW (k), and
N(k) := W (k)−D(k). M(k) is a n×n diagonal matrix
with entry Muu(k) =

∑

u6=v Wuv(k). Furthermore, we

define the nb×nb basis matrix Db(k), Mb(k) and Nb(k)
as the principle submatrix of D(k), M(k) and N(k) ob-
tained by removing those rows and columns correspond-
ing to the reference nodes. Now, (8) can be compactly
expressed as

e(k + 1) = Jb(k)e(k) +Bb(k)ǫ(k), (11)

where

Jb(k) := (Mb(k) +Db(k))
−1(Nb(k) +Db(k)),

Bb(k) := (Mb(k) +Db(k))
−1Ab(k),

ǫ(k) := [ǭ1(k)
T , . . . , ǭnb

(k)T ]T ,

ǭu(k) := [ǫu,1(k), . . . ǫu,n(k)]T ,

Ab(k) := diag(N̄1(k), . . . , N̄nb
(k)),

N̄u(k) := [Nu1(k), . . . , Nun(k)],

(12)
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where vector ǭu(k) and N̄u(k) do not contain ǫu,u(k) and
Nuu(k) respectively. Note that diagonal matrixMb(k)+
Db(k) is always non-singular because diagonal entries
in Db(k) are always positive as Wuu(k) > 0 for all u,
and Mb(k) is nonnegative. When Nuv(k) = 0, the cor-
responding ǫu,v(k) is taken to be an arbitrary random
variable with mean and variance such that the station-
ary assumption is satisfied. Since these noise terms are
multiplied by 0, this entails no loss of generality. More-
over, recall that ǫu,v(k) = −ǫv,u(k).

As a result of the assumption that there exists a time k0

after which the weight between two nodes do not change,
the graph G(k) uniquely determines the weight matrix
W (k) for k > k0. Since there areN distinct graphs in G,
a set W := {W1, . . . ,WN} is also defined, with Wi asso-
ciated with Gi. As a result, for k ≥ k0, if G(k) = Gi then
W (k) = Wi. Therefore,Di,Mi, Ni, Dbi,Mbi, Nbi, Jbi are
uniquely defined by {Gi,Wi}.

With these choices stated above, the state of the follow-
ing system is identical to that of (11) for the same initial
conditions:

e(k + 1) = Jb θ(k)e(k) +Bb θ(k)ǫ(k), k ≥ k0 (13)

where θ : Z+ → {1, . . . , N} is the switching process that
is governed by the underlying Markov chain G(k). The
reason for the qualifier k ≥ k0 is that weights are not
limited to the set W before k0, so technically the ma-
trices Jb θ(k) and Bb θ(k) are uniquely determined by the
Markov chain only for k ≥ k0. The error dynamics (13)
is a Markov jump linear system (MJLS) [19]. To pro-
ceed with the analysis of the mean square convergence
of (13), we need some terminology.

γ := E[ǫ(k)], Γ := E[ǫ(k)ǫT (k)], (14)

µ(k) := E[e(k)], Q(k) := E[e(k)eT (k)]. (15)

Furthermore, for a set of matrices Xi ∈ Rℓ1×ℓ2 , Yij ∈
Rℓ1×ℓ2 , i, j = 1, . . . , N , denote the ℓ1N × ℓ2N block
diagonal matrix diag[Xi] = diag{X1, . . . .XN} and

[Yij ] :=











Y11 . . . Y1N

...
. . .

...

YN1 . . . YNN











ℓ1N×ℓ2N

.

Now, define the matrices

Ji := (Mi +Di)
−1(Ni +Di) ∈ R

n×n,

Jbi := (Mbi +Dbi)
−1(Nbi +Dbi) ∈ R

nb×nb ,

Fi := Ji ⊗ Ji ∈ R
n2×n2

, Fbi := Jbi ⊗ Jbi ∈ R
n2

b×n2
b

(16)

where ⊗ denotes the Kronecker product. Furthermore,
define the matrices

D :=
(

PT ⊗ I
)

diag[Fi] = [pjiFj ] ∈ R
Nn2×Nn2

, (17)

Db := (PT ⊗ I)diag[Fbi] = [pjiFbj ] ∈ R
Nn2

b×Nn2
b , (18)

Cb := (PT ⊗ I)diag[Jbi] = [pjiJbj ] ∈ R
Nnb×Nnb ,

where I is an identity matrix of appropriate dimension.
Recall that P is the transition probability matrix of the
Markov chain.

The key to establish Theorem3, is the following technical
result. The proof is provided in [24, Appendix B] since it
requires introduction of considerable new terminology.

Lemma 5 When the temporal evolution of the graph
G(k) is governed by a homogeneous ergodic Markov
chain whose transition probability matrix P has the prop-
erty that its diagonal entries are strictly positive, then

ρ(Db) < 1 if and only if the union graph Ĝ defined in (9)
is connected, where Db is defined in (18) and ρ(·) denotes

the spectral radius. If Ĝ is not connected, ρ(Db) = 1.

The following definitions and terminology from [19] will
be needed in the sequel. Let Rℓ1×ℓ2 be the space of ℓ1×ℓ2
real matrices. Let Hℓ1×ℓ2 be the set of all N-sequences
of real ℓ1 × ℓ2 matrices, so that V ∈ Hℓ1×ℓ2 means V =
(V1, V2, . . . , VN ) where Vi ∈ Rℓ1×ℓ2 for i = 1, . . . , N . The
operators ϕ and ϕ̂ is defined to create a tall vector by
stacking together columns from these matrices, as fol-
lows: let (Vi)j ∈ Rℓ1 be the j-th column of Vi ∈ Rℓ1×ℓ2 ,
then

ϕ(Vi) := [(Vi)
T
1 , . . . , (Vi)

T
n ]T ∈ R

ℓ1ℓ2 (19)

ϕ̂(V ) := [ϕ(V1)
T , . . . , ϕ(VN )T ]T ∈ R

Nℓ1ℓ2 . (20)

Similarly, the inverse function ϕ̂−1 : RNℓ1ℓ2 → Hℓ1×ℓ2 is
defined so that it produces an element of Hℓ1×ℓ2 given a
vector in RNℓ1ℓ2 .

Lemma 6 Consider the jump linear system (13) with
an underlying homogeneous and ergodic Markov chain.
The state vector e(k) of the system (13) converges in the
mean square sense if and only if ρ(Db) < 1, where Db is
defined in (18). When mean square convergence occurs,
then µ(k)→ µ and Q(k)→ Q, where

µ :=
N

∑

i=1

qi, Q :=
N

∑

i=1

Qi, (21)

where

[qT
1 , . . . , q

T
N ]T = q := (I − Cb)

−1ψ ∈ R
Nnb ,

(Q1, . . . , QN ) = Q := ϕ̂−1
(

(I −Db)
−1ϕ̂(R(q))

)

∈ H
nb×nb ,
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Fig. 2. The three graphs G1,G2,G3 that comprises G. Node
1 is the reference.

and ψ,R(q) are given by

ψ := [ψT
1 , . . . , ψ

T
N ]T ∈ R

Nnb , ψj :=

N
∑

i=1

pijBbiγπi ∈ R
nb ,

R(q) := (R1(q), . . . , RN (q)) ∈ H
nb×nb ,

Rj(q) :=
N

∑

i=1

pij(BbiΓB
T
biπi + Jbiqiγ

TBT
bi +Bbiγq

T
i J

T
bi)) ∈ R

nb×nb .

Moreover, Q is positive semi-definite.

Proof: It follows from Theorem 3.33, Theorem 3.9, and
remark 3.5 of [19] that mean square convergence of (13)
is equivalent to ρ(Db) < 1. The expressions for the mean
and correlation, as well as the fact that Q ≥ 0, also follow
from [19, Proposition 3.37,3.38]. The existence of the
steady state distribution π (that appear in the formulas)
follows from the ergodicity of the Markov chain. �

Now we are ready to prove Theorem 3.

Proof of Theorem 3 (Sufficiency): It follows from
the hypotheses and Lemma 5 that we have ρ(Db) < 1.
It then follows from Lemma 6 that the state converges
in the mean square sense. (Necessity): If the union of
graph is not connected, we have from Lemma 5 that
ρ(Db) = 1. This shows that (due to Lemma 6) conver-
gence will not occur. �

5 Simulation studies

As discussed in Section 2.1, skew and offset estimation
are special cases of the problem of estimation of scalar
node variables from relative measurements. Therefore
simulations are conducted only for scalar node variable
estimation. In all simulations, node variables are chosen
arbitrarily, a single reference node is present, and the
value of the its node variable is 0. The noise on each
measurement is a normally distributed random variable.
All the edge weights are assigned a value of unity at
every time.
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Empirical Steady state

(b) Variance

Fig. 3. Mean and variance of the estimate of node 3’s node
variable as a function of time. The empirical estimate of
mean and variance is computed from 1000 Monte Carlo ex-
periments. In (b), the “steady-state” corresponds to the lim-
iting standard deviation predicted by Lemma 6.

5.1 Four-node network with Markovian switching

In this scenario the nodes move in such a way that the
graphG(k) can be one of only 3 graphs shown in Figure 2.
The graphs change according to a Markov chain whose
transition probability matrix is

P =









0.3 0 0.7

0.1 0.5 0.4

0 0.5 0.5









. (22)

Notice that none of the graphs is a connected graph,
though the union of the graphs in G is connected. Also,P
is ergodic. The mean and variance of measurement noise
on every edge are chosen as 0 and 10−4, respectively.
The limiting means and variances of the estimates there-
fore can be computed from the predictions of Lemma 6.
Monte-Carlo experiments are conducted to empirically
estimate the mean and variance of the estimation error,
by averaging over 1000 sample runs. Figure 3(a) and
Figure 3(b) show the empirically estimated mean and
variance of node 3’s estimate of its node variable. As
predicted by Theorem 3, the mean of the estimate con-
verges to the true value, since the measurement noise is
0 mean. The variance also converges to the theoretical
steady state variance as predicted by Lemma 6.

5.2 A 100-node network with RWP mobility model

Here 100 nodes move in a 1000 m × 1000 m square
according to the widely used Random Waypoint
(RWP) mobility model [25]. It has been justified in
the Appendix A of [24] that the graph switching pro-
cess in this mobility model can be reasonably mod-
eled as a (first order) Markov chain. The parame-
ters maximum/minimum speed and pause time are

8



Fig. 4. Two graphs that occur during a simulation with 100
nodes moving according to the random waypoint mobility
model.
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Fig. 5. The estimates of two nodes in one of the numerical
experiments involving the 100-node mobile network.

0 50 100 150 200

−0.05

0

0.05

iteration index

m
ea

n

 

 

node 2 node 70

0 50 100 150 200
0

1

2

x 10
−3

iteration index

va
ria

nc
e

 

 

node 2 node 70

Fig. 6. Empirically estimated mean and variance of the es-
timation error for one of the nodes in the 100-node mobile
network.

vmin = 10 m/s, vmax = 50 m/s, and tp = 0.1s. The
communication range is chosen as 100 m, and a link
failure probability of 0.1 is used. The mean and variance
of the measurement noise are chosen as 0 and 10−4.
Figure 4 shows two snapshots of the network during
one of the simulations. Figure 5 shows the time trace
of the estimates of two nodes in one of the simulations.
The mean and variance of the estimation error was em-
pirically computed from 1000 Monte Carlo simulations.
Figure 6 shows mean and variance of the estimation
error for two nodes. The figure suggests that the esti-
mates of the node variables converge in the mean square
sense. Note that the transition probability matrix is not
known and the large state space makes it infeasible to
compute the theoretical predictions of limiting mean
and variances that are given in Lemma 6. One purpose
of these simulations is therefore to test the performance
of the algorithm when theoretical predictions are not
available.

6 Summary

We analyzed a distributed algorithm for estimating clock
skew and offset of the nodes of a mobile network and
examined its convergence properties. Similar algorithms
were previously proposed for skew and offset estimation
but their convergence in mobile networks were not ex-
amined. The time variation of the network was modeled
as a Markov chain, which makes the algorithm a jump
linear system. Under the assumptions that the Markov
chain is ergodic and the diagonal entries of its transi-
tion probability matrix are positive, the estimates were
shown to be mean square convergent as long as the union
of the graphs over time is connected. Expressions for the
asymptotic mean and correlation are also provided by
using results from jump linear systems from [19].

The estimation error dynamics turn out to be a leader-
following consensus scheme, where the reference nodes
(that know their global times) have their error states
fixed at 0 at all times. We do not use existing consensus
results since they are for the leaderless case and further-
more require additional assumptions than used here. In
particular, we do not assume any kind of symmetry or
balanced condition on the weighted Laplacians. Future
work includes the analysis of the convergence rate. It is
likely that the transition probabilities of the chain will
play a role in the convergence rate. In some consensus pa-
pers, the effect of noise is counteracted by using a time-
varying weights that satisfy a persistence condition. This
is another area of future research, on using specifically
designed time varying weights to obtain convergence of
the variance to 0 instead of a finite number. The chal-
lenge here is that when nodes do not have synchronized
clocks, it is not clear how to ensure the required persis-
tence conditions on the weights. Prliminary work with
promising results are reported in [29].
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