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Abstract— The technique of effective resistance has seen
growing popularity in problems ranging from escape probabil-
ity of random walks on graphs to asymptotic space localization
in sensor networks. The results obtained thus far deal with
such problems on Euclidean lattices, on which their asymptotic
nature already reveals that the crucial issue is the large
scale behavior of such lattices. Here we investigate how such
results have to be amended on a class of graphs, referred
to as Gromov hyperbolic, which behave in the large scale
as negatively curved Riemannian manifolds. It is argued that
Gromov hyperbolic graphs occur quite naturally in many
situations. Among the results developed here, we will mention
the nonvanishing probability of escape of a random walk to
a Cantor set Gromov boundary and the facts that the space
localization error of sensors networked in a Gromov hyperbolic
fashion grows linearly with the distance to a sensor whose
geographical position is known, but would become uniformly
bounded in an idealized situation in which the geographical
locations of the nodes at the Gromov boundary are known

I. INTRODUCTION

The effective resistance between two nodes in a graph

is the voltage drop that would be observed in a electrical

network obtained by placing one resistor at each edge of the

graph, when a unit current is injected in one of the nodes

and removed from the other. In this paper, we extend the

result of Doyle and Snell [12] on the effective resistance

of a regular tree of degree bounded but greater than 2 and

its ramifications in various asymptotic space localization and

coordination problems for autonomous agents as initiated by

Barooah and Hespanha [5], [3], [4].

A tree is regular if the degree of its nodes, except for the

root, is constant. Under this degree condition, the effective

resistance from the root of the tree to “infinity” is finite. The

latter has the important consequence that a random walk on

the tree has a finite probability of escaping to infinity. In the

context of computer security, it follows that a worm is more

likely to escape to infinity and therefore cause more damage

than one that is recurrent (see Remark 1). In the context of

localization based on relative measurements, this means that

if only the absolute positions of the far-away leafs of a large

tree are available, all nodes in the tree can still be accurately

localized just based on noisy relative measurements between

adjacent nodes in the graph [4]. The reader is referred to

[5] for other connections between effective resistance and

distributed control problems.
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The natural generalization of the concept of tree is that

of Gromov hyperbolic graph [14]. Intuitively, a Gromov

hyperbolic graph is a graph that has the property that it looks

like a tree when viewed at a distance, where the concept of

“viewing at a distance” is formalized in large-scale geometry,

also referred to as coarse geometry or asymptotic metric

theory [15]. The importance of Gromov hyperbolic graphs

is that scale free, and hence Internet, graphs have that

property [18], [23], [19]. Since Gromov hyperbolic graphs

are a generalization of trees, the natural question is, “What

is the effective resistance of a Gromov hyperbolic graph?”

The importance of effective resistance of Gromov hyperbolic

graphs stems from the above mentioned fact that effective

resistances arise naturally in a variety of propagation and

localization problems.

Before extending the result of Doyle and Snell, a technical

question is whether such concept as “effective resistance

between the root and infinity” can be defined for those

hyperbolic graphs, in which the tree structure might not be

completely obvious. A “root” of a hyperbolic graph is a so-

called quasi-pole [10]. A quasi-pole Ω is a compact subset

of an infinite graph G such that for every vertex v of G
there exists a geodesic ray emanating from Ω and passing

within a bounded distance of v. One of the premises of coarse

geometry is that finite subsets, like Ω, can be coalesced

to points. As such, Ω can be coalesced to ω ∈ Ω, which

becomes the “root” of the graph. Once a root is chosen, the

next issue is to define “infinity” so as to be able to define

the effective resistance between the quasi-pole and infinity.

In the context of the coarse geometry of Gromov hyperbolic

graphs, “infinity” is the Gromov boundary at infinity of the

graphs, ∂∞G. The latter is defined as the equivalence class of

infinite geodesic rays emanating from the quasi-pole under

the equivalence relation that two rays are equivalent if their

Hausdorff distance remains finite [9, III.H.3].

While the Gromov boundary ∂∞G of a regular tree can

be easily visualized, this is not so when all that is known

about G is that it is Gromov hyperbolic, since it could

be anything ranging from N to the circle S1, passing by

the Cantor set, the Menger curve, etc. (See [21] for a

survey.) The difficulty is that the topology of ∂∞G dictates

such application-relevant issues as the Cheeger isoperimetric

constant and the exponential growth of balls [10]. As far

as the present paper is concerned, in order to have finite

effective resistance between Ω and ∂∞G, ∂∞G must have

the cardinality of the continuum.

Since in this paper we use coarse geometric techniques

in which we do not care about distortion as long as it is
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uniformly bounded, the exact value of the effective resistance

R(ω, ∂∞G) is irrelevant. Is relevant, however, the question

of whether the effective resistance is vanishing, finite (0 <
R(ω, ∂∞G) < ∞), or infinite. In fact, the latter are coarse

geometry invariants.

Due to space limitations, most proofs have been omitted,

but they are available in [20].

II. MATHEMATICAL SET-UP

A. Graphs

A graph G is defined by its vertex set and its edge set,

(V, E). The edge with end vertices u, v will be written uv.

All graphs here have bounded local geometry, i.e., the degree

of their nodes is uniformly bounded. As such, an infinite

graph has infinitely many vertices. Edges are equipped with

a length function, ℓ : E → R
+, with the property that

ℓmin := inf
e∈E

ℓ(e) > 0, ℓmax := sup
e∈E

ℓ(e) < ∞ (1)

Upon identification of every edge with a homeomorph of the

unit interval [0, 1], the length function is easily extended to

Lebesgue-measurable subsets of the edges.

A path from x to y is a continuous map p : [a, b] → G
such that p(a) = x, p(b) = y. The length of a path joining

x to y is the sum of the lengths of the (subsets of) edges

traversed by the path. The distance d(x, y) between x, y is

the infimum of the lengths of all paths joining x to y. The

latter will sometimes be referred to as length distance. With

this length distance, (G, d) becomes a metric space.

An isometric embedding f : G → H of the graph G =
(VG, EG) into the graph H = (VH , EH) is a map (usually

induced by a vertex transformation VG → VH ) that preserves

the metric, viz., dH(f(x), f(y)) = dG(x, y).
A geodesic γ = [xy] from x to y in G is an isometric

embedding γ : [0, ℓ(γ)] → G such that γ(0) = x, γ(ℓ(γ)) =
y. Because of the bounded local geometry, every pair of

points x, y can be joined by a geodesic [xy] such that

ℓ([xy]) = d(x, y). In such a situation, (G, d) is said to be a

geodesic metric space.

B. Gromov hyperbolicity

A geodesic triangle △uvw on vertices u, v, w is defined as

[uv]∪ [vw]∪ [wu]. A graph (G, d), or an arbitrary geodesic

metric space (X, d) for that matter, is Gromov hyperbolic

if there exists a δs < ∞ such that, ∀△uvw, we have

[vw] ⊂ Nδs
([uv]) ∪ Nδs

([uw]), where Nδs
([uv]) denotes

the δs-neighborhood of [uv] for the metric d. An equivalent

characterization is the existence of a constant δi < ∞
such that, ∀△uvw, for points i(v, w) ∈ [vw], i(u,w) ∈
[uw], i(u, v) ∈ [uv] such that d(u, i(u, v)) = d(u, i(u, w)),
d(v, i(v, w)) = d(v, i(v, u)), d(w, i(w, v)) = d(w, i(w, u)),
we have diam{i(u, v), i(v, w), i(w, u)} ≤ δi. It can be

shown that δs < ∞ iff δi < ∞ (see [9, Chap. III.H,

Prop. 1.17]). Yet a third equivalent definition states that, in

any quadrilateral, the largest sum of the lengths of pairs of

opposite diagonals cannot exceed the medium sum by more

than 2δq < ∞ (see [9, p. 411]).

The most extreme example of a Gromov hyperbolic graph

is the tree, as δi = δs = δq = 0.

The following theorem formulates an important property

of Gromov hyperbolic spaces, a property that is sometimes

even taken to be the definition of Gromov-hyperbolicity [10,

Def. 1.1]:

Theorem 1: Let (X, d) be a δs-Gromov hyperbolic space.

Let γ1, γ2 be two arc length parameterized geodesics such

that γ1(0) = γ2(0) = v0. Assume that, for some R > 0,

d(γ1(R), γ2(R)) > 3δs. Then any path p joining γ1(R + r),
γ2(r + R) and outside the ball BR+r(v

0) is such that

ℓ(p) ≥ δs2
r

δs
−2

This theorem has the (negative) consequence that, if an

outage affects a ball BR+r(v
0), a message scheduled to

transit along [uv] ∋ v0 will have to make a detour of

exponential length δs2
r

δs
−2 to circumvent the outage. As

shown in [14], this bound can be refined to δs2
r+R

δs
−1.

C. Quasi-isometry

A (λ, ǫ)-quasi-isometric embedding of the graph G =
(VG, EG) into the graph H = (VH , EH) is a (not necessarily

continuous) function f : G → H (usually induced by a

vertex transformation VG → VH ) such that

1

λ
dG(x, y) − ǫ ≤ dH(f(x), f(y)) ≤ λdG(x, y) + ǫ,

∀x, y ∈ G. Such an f is quasi-injective in the sense that

f(x) = f(y) ⇒ dG(x, y) ≤ ǫλ, ∀x, y ∈ G.

f is said to be a quasi-isometry if, in addition, there exists

a constant c such that

dH(f(G), z) ≤ c, ∀z ∈ H

which means that f is quasi-surjective. In this case, f has at

least one quasi-inverse f−q : H → G in the sense that there

exists a constant d for which

dG(f−q ◦ f(x), x) ≤ d, ∀x ∈ G, (2)

dH(f ◦ f−q(z), z) ≤ d, ∀z ∈ H, (3)

and this quasi-inverse is both quasi-injective and quasi-

surjective. Quasi-isometry is an equivalence relation.

D. Gromov boundary

A geodesic ray r emanating from ω ∈ V is an isometric

embedding r : [0,∞) → G such that r(0) = ω. The same

ray will sometimes be written as r(0)/r(∞). Two rays r, r′

are said to be equivalent iff sups∈[0,∞) d(r(s), r′(s)) < ∞;

equivalently, if dH(r, r′) < ∞, where dH denotes the

Hausdorff distance. The set of equivalence class of rays

is the Gromov boundary, ∂∞G. The equivalence class of

the ray r is written r∞. Given two rays, ru
∞, rw

∞ ∈ ∂∞G,

parameterized by the arc length s, we define

ρ∞(ru
∞, rw

∞) := lim inf
s→∞

e−ǫ(s− 1
2 dG(ru(s),rw(s)))

The above is a semimetric [6, I.1.5] on ∂∞G. The idea

behind this definition is that, in a tree-like graph, two rays
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ru, rw emanating from the same quasi-pole ω will first follow

the same path and then separate at some vertex a(ru, rw),
the “common ancestor” of the points ru(∞), rw(∞). Then

ρ∞(ru
∞, rw

∞) = e−ǫd(ω,a(ru,rw)). Another intuition behind

ρ∞ is as follows: Write the hyperbolic law of cosines in

△ωru(s)rw(s) as embedded in a surface of small negative

sectional curvature κ = −ǫ2:

cosh ǫdG (ru(s), rw(s)) =

cosh ǫd(ω, ru(s)) cosh ǫd(ω, rw(s))

− sinh ǫd(ω, ru(s)) sinh ǫd(ω, rw(s)) cos ω̂

where ω̂ is a short for ∠ru(s)ωrw(s). Since the arc

length parameterization of geodesic rays is an isometry,

d(ω, ru(s)) = d(ω, rw(s)) = s. Then, for a distance d
such that ǫd ≫ 1, cosh ǫd ≈ eǫd and, for a small angle ω̂,

cos ω̂ ≈ 1 − ω̂2

2 . With these approximations, the hyperbolic

law of cosines yields

eǫdG(ru(s),rw(s)) = 1 + e2ǫs ω̂

2
In light of the above, ρ∞ turns up to be the angle metric

ρ∞(ru
∞, rw

∞) = lim inf
s→∞

∠ru(s)ω̂rw(s)√
2

Now we make the semimetric ρ∞ a metric by enforcing the

triangle inequality

d∞(ru
∞, rw

∞) := inf
ru=a0,a1,...,an=rw

n−1
∑

i=0

ρ∞(ai, ai+1)

For ǫ < log 2/δG, d∞ is a visual metric in the sense that

1

4
ρ∞(ru

∞, rw
∞) ≤ d∞(ru

∞, rw
∞) ≤ ρ∞(ru

∞, rw
∞)

(See [16, Sec. 2], [9, III.H.3.19].) This distance in turn

defines a topology on ∂∞G.

The Gromov boundary might have varying cardinalities,

and even Gromov boundaries with the same cardinality

might be quite different. An example of card(∂∞G) =
ℵ0 is provided by Figure 1. It should also be obvious

that the cardinality of the Gromov boundary of a binary

tree T2 is 2ℵ0 , which is the cardinality of the continuum

c. Another example of card(∂∞G) = c is provided by

G = Cay(π1(M
n)), the Cayley graph of the fundamental

group of a compact Riemannian manifold Mn of curvature

uniformly bounded from above by κ < 0 (see [11, V.58]).

The significant difference between the continua ∂∞T2 and

∂∞Cay(π1(M
n)) is that the former is a Cantor set while the

latter is Sn−1.

Other examples of Gromov boundaries that are circles

include the Poincaré disk or any of its tessellation by the

image of a fundamental domain [22, 4.10].

Theorem 2: Under a quasi-isometry f : G → H , G =
(VG, EG) is Gromov hyperbolic iff H = (VH , EH) is

Gromov hyperbolic; furthermore, f induces a (quasi-Möbius)

homeomorphism f∞ : ∂∞G → ∂∞H .

It transpires form the above that, for a Gromov hyperbolic

graph to be quasi-isometric to a tree, it is necessary that its

Gromov boundary be a Cantor set.
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Fig. 1. A tree, the Gromov boundary of which has cardinality ℵ0.

E. Isoperimetric behavior and exponential growth of balls

Given an infinite graph G, the combinatorial Cheeger

isoperimetric constant is defined as

h(G) = inf
S⊆VG

|∂S|
|S|

where the infimum is over all finite subsets, |S| denotes the

cardinality, and

∂S = {v ∈ V \ S : v ∈ N(s) for some s ∈ S}.

Observe that ∂S can be interpreted as the boundary of S and

therefore if h(G) > 0 the above means that the “volume”

|S| of a subset of vertices is bounded by a linear function

of the “area” |∂S| of its boundary.

The exponential growth of balls is clearly related to the

condition h(G) > 0. Indeed, if a subset S of vertices is

“infected” at time t = 0, the number of vertices infected prior

to or at time t ≥ 0 is bounded from below by |S|(1+h(G))t.

It turns out that a Gromov hyperbolic graph need not have

h(G) > 0. For the latter to hold, an extra condition on the

boundary at infinity is needed:

Theorem 3: Let G be a infinite, bounded geometry, com-

plete, Gromov hyperbolic graph with a quasi-pole. If, in

addition, the infimum of the diameters of the connected

components of ∂∞G is > 0, then h(G) > 0, which implies

that λmin(L(G)) > 0.

There is a slight refinement of the preceding result:

Theorem 4: λmin(L(G)) ≥ h2(G)
4 .

III. INSTANCES OF COARSE GEOMETRY

Here we make the preceding concepts a little more pallat-

able by linking them with known engineering concepts.

A. Instances of hyperbolic graphs

Gromov hyperbolic graphs are an idealization of situations

that readily occur in practice. Typically, we are given a

set of agents {vi} =: V , which attempt to form an ad

hoc network, and which in doing so define a distance

function d : V × V → R
+. Typically, the distance

d(vi, vj) is the communication delay between vi and vj .

As such, (V, d) becomes a metric space. The question is

to determine the manifold Mn and its Riemannian met-

ric g such that the agents can be thought of as oper-

ating on the manifold; precisely, the question is whether
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there exists an isometric embedding (V, d) →֒ (Mn, g).
Specifically, there exists an isometric embedding (V, d) →֒
(Hn, g), where H

n denotes the standard n-dimensional Rie-

mannian manifold of constant sectional curvature κ < 0,

iff det{cosh
(

d(vi, vj)
√
−κ

)

}{1,...,k}×{1,...,k} = (−1)k+1.

(See [6], [7].) Practically speaking, we cite a few specific

situations that naturally lead to negatively curved networks.

a) Growth/preferential attachment graphs: They have

been shown to be scaled Gromov hyperbolic [18], [19].

b) High power transceivers in a wireless sensor net-

work: They have a tendency to network in a negatively

curved graph, while the low power transceivers rather net-

work in a positively curved graph [2].

c) Geometric optics propagation reflecting on convex

obstacles: Assume that in the two-dimensional Euclidean

space R
2, we define a set of transceivers {vi} along with

convex obstacles. Assume that, at least for some pairs of

agents, communication can only be established by radio

waves reflecting on convex obstacles. It can be shown that

the embedding is in a negatively curved surface of a genus

equal to the number of convex obstacles.

d) Delaunay triangulation of nonuniformly distributed

vertices: Assume a set of agents {vi} are nonuniformly

distributed in R
2. The Delaunay triangulation (V, E) of a

set of Gauss distributed agents is shown in Fig. 2 and is

negatively curved in the following sense. Define the clus-

tering coefficient as cluster(vi) = #{(vivj ,vivk):vjvk∈E}

(deg(vi)
2 )

∈
[0, 1]. When 0 ≤ cluster(vi) ≤ 1

2 , the curvature is locally

negative [2], [13]. The distribution of cluster is shown in

Fig. 3, indicating negative curvature.
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Fig. 2. Delaunay triangulation of nonuniformly distributed agents.
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Fig. 3. Clustering coefficient distribution of Delaunay triangulation.

B. Instances of quasi-isometries

The examples are plentiful, the most obvious being that a

Euclidean lattice is quasi-isometric to the Euclidean space of

the same dimension. Precisely, the natural embedding Z
n →

R
n is a (λ = 1, ǫ = 1)-quasi-isometry. More generally, we

have the following:

Theorem 5: The drawing function f : G → E
n of a

graph G that is both sparse and dense in the n-dimensional

Euclidean space E
n is a (λ, ǫ)-quasi-isometry for finite

constants λ, ǫ > 0.

IV. EFFECTIVE RESISTANCE: A GENERALIZED RAYLEIGH

MONOTONICITY PRINCIPLE

The graph G = (V, E) can be made into an electrical

network by replacing every edge by a resistor of resistance

Re = ℓ(e). If j(vi) denotes the current injected at node vi,

and v(vi) denotes the voltage at node vi relative to some

ground potential, then j = Lv, where L is the Laplacian

operator defined as (Lv)i =
∑

vj∈N(vi)
(vi−vj)

R
e(vi,vj)

, where

N(vi) := {v ∈ V : vvi ∈ E} and Re(vi,vj) is the

resistance of the edge vivj . If ℓ(e) = Re = 1, ∀e ∈ E,

then L = diag(deg(vi)) − A, where A is the adjacency

matrix. It is easily verified that L ≥ 0. To define the effective

resistance at a driving point vertex vi, a subset V0 of short-

circuited vertices, connected to the graph, is declared at

ground potential, v(V0) = 0. If V0 is finite and at finite

distance from some driving point vertex vi 6∈ V0, the effective

resistance is defined as R(vi, V0) =
(

L−1
0

)

ii
, where L0 is the

operator obtained after removing the rows and columns of L
corresponding to V0, easily seen to be invertible. If the graph

is infinite, viewing L : ℓ2(N) → ℓ2(N) as a bounded Hilbert

space operator requires v(∂∞G) = 0, so that the 0 reference

potential is naturally set across ∂∞G. By the same token,

boundedness of L requires i(vi) = 0, ∀vi ∈ ∂∞G. Assuming

for a moment that λ1(L) > 0, where λ1(L) = inf spec(L),
then

(

L−1
)

ii
is the effective resistance R(vi, ∂∞G) between

vi and ∂∞G. The latter consideration makes λ1(L) > 0 a

crucial issue:

Theorem 6: R(vi, ∂∞G) < R̄ < ∞, ∀vi ∈ VG iff

λ1(L(G)) > 0.

One can also show that effective resistance satisfies the

following triangle inequality

RG(u,w) ≤ RG(u, v) + RG(v, w), ∀u, v, w ∈ VG.

Hence effective resistance is a distance, which is different

from the length distance, unless G is a tree.

The following monotonicity result can be viewed as a gen-

eralization of Rayleigh’s Monotonicity Law [12] to “quasi-

embeddings”:

Theorem 7 (Rayleigh Monotonicity Principle): Consider

two uniformly-bounded degree graphs G = (VG, EG),
H = (VH , EH) for which there exists a quasi-injective

function f : G → H and constants λ, ǫ < ∞ such that

dH(f(x), f(y)) ≤ λ dG(x, y) + ǫ, ∀x, y ∈ G. (4)
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Then there exists a finite constant α > 0 such that

RH(f(x), f(y)) ≤ αRG(x, y), ∀x, y ∈ VG. (5)

If, in addition, f is quasi-surjective then we also have that

RH(z, w) ≤ αRG(f−q(z), f−q(w)) + β, ∀z, w ∈ VH , (6)

where f−q(·) is a quasi-inverse of f and β a finite constant.

When f is actually surjective, then (6) holds with β = 0.

In the expressions above, RG and RH denote effective

resistances in electrical networks constructed from the graphs

G and H , respectively.

The following result can be obtained by applying Theo-

rem 7 to a quasi-isometry f and to its quasi-inverse f−q.

Corollary 1: Suppose that f is a (λ, ǫ)-quasi-isometry be-

tween two uniformly-bounded degree graphs G = (VG, EG),
H = (VH , EH). Then there exist finite constants α, β > 0
such that

1

α
RG(x, y) − β ≤ RH(f(x), f(y)) ≤ αRG(x, y), (7)

∀x, y ∈ VG, where RG and RH denote effective resistances

in electrical networks constructed from the graphs G and H ,

respectively. When f is actually injective, then (7) holds with

β = 0.

V. TWO ASYMPTOTIC PROBLEMS

Here we formulate two asymptotic problems amenable to

effective resistance methods:

1) The escape probability of a random walk on a Gromov-

hyperbolic graph, closely related to the effective resis-

tance between the root and the Gromov boundary of

the graph.

2) The asymptotically space localization error at large

distance from the reference sensor, closely related to

the asymptotic effective resistance between two points

in the limit of large distance.

A. Escape probability of random walks

The exponential growth of balls is relevant to a propaga-

tion scheme in which every node infects every neighboring

node. Other processes include random walks on a graph—

that is, processes through which an infected node infects only

one of its neighbors chosen at random. More specifically, if

the walker is at vi, the probability of jumping to vj ∈ N(vi)
is

p(vi, vj) =

1
R

e(vi,vj)
∑

v∈N(vi)
1

R
e(v,vj)

The problem is to determine whether there is a nonvanishing

probability of the walk reaching the Gromov boundary at

infinity. The latter is called escape probability. A slight

generalization of [12, Sec. 1.3.4] yields

pesc(ω, ∂∞G) =

1
R(ω,∂∞G)

∑

vi∈N(ω)
1

R
e(ω,vi)

where ω is a vertex of a quasi-pole. In other words, the

probability of escape from a vertex of a quasi-pole to the

boundary at infinity is proportional to the reciprocal of the

effective resistance between ω and the Gromov boundary.

As already said, the mere fact that the graph is Gromov

hyperbolic with a quasi-pole does not provide enough data

to determine an exact value for R(ω, ∂∞G), but it is enough

to determine whether or not R(ω, ∂∞G) is finite.

Remark 1. The difference between a randomly walking

worm escaping to infinity and an exponentially growing

percolating worm is a matter of the gap between λ1(L(G))
and h2(G)/4, as specified by Theorem 4.

B. Space localization

Assume that autonomous agents distributed in the Euclid-

ean space E
2 or E

3 communicate via the graph G. Assume

that a subset of vertices V0 has known geographical position

and that the position of the other agents has to be computed

from noisy measurement of the distances dG(vi, vj), vivj ∈
E, and azimuth data. The following is proved in [4]:

Theorem 8: If V0 = {v0}, then the unbiased least square

estimation error of the geographical position x(vi) of vi is

given by

E(||x(vi) − x̂(vi)||2) = RG(vi, v0).

If G is Gromov hyperbolic, and under the idealized situation

where V0 = ∂∞G, we have

E(||x(vi) − x̂(vi)||2) = R(vi, ∂∞G).

VI. RESULTS

The solution to the two problems defined in the previous

section relies on a generic theorem, stating that a Gromov

hyperbolic graph is quasi-isometric to a tree. Several such

results are already known (see, e.g., [8]), but here we need

to set-up the quasi-isometry in a specific way that easily

translates to effective resistance and geographic estimation

errors.

Theorem 9: A planar Gromov hyperbolic graph G with

a quasi-pole Ω and a Cantor Gromov boundary is (quasi-

surjectively) quasi-isometric to a tree T . Furthermore, if

ℓ(e) = 1, ∀e ∈ E, the quasi-isometry can be taken such

that

dG(u, v) − δi ≤ dT (u, v) ≤ λdG(u, v), ∀u, v ∈ V

with λ = 7δi + 2.

We note that, in [8], it is shown that there exists a quasi-

isometric embedding from a binary tree to a Gromov hy-

perbolic graph with Cantor Gromov boundary. The problem

is that this embedding is not in general quasi-surjective and

hence cannot be used to construct a quasi-isometry between

the graph and the binary tree.

A. Escape probability

Theorem 10: Let G be a bounded geometry, Gromov hy-

perbolic graph with a quasi-pole Ω and a Gromov boundary

that is a Cantor set. Then 0 < R(ω, ∂∞G) < ∞, i.e., there

is a nonvanishing probability of escape from the quasi-pole

to the boundary at infinity ∂∞G.
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We observe that in [8] a quasi-isometric embedding f :
T → G is set up from a binary tree T to a Gromov

hyperbolic graph G. This immediately leads to RG(u, v) ≤
RT (u, v) and the upper bound RG(ω, ∂∞G) < ∞. As the

preceding shows, the difficulty is the lower bound.

As an illustration, consider a regular tree with node degree

3. In this case, the Gromov boundary is the collection of all

paths from the root to infinity. Since on the way from the

root to ∂∞G, each edge gives birth to two other edges, the

number of paths from the root to ∂∞, hence the cardinality

of ∂∞G, is 2ℵ0 , the cardinality of the continuum. It also

follows that the paths can be binary encoded, the same way

as the Cantor set is.

To provide a counterexample that ℵ0, the cardinality of

N, is not enough to guarantee R(ω, ∂∞G) < ∞, consider

the following tree construction: Let A0 = a0
0a

0
1a

0
2... be a

semi-infinite string of vertices such that d(a0
i , a

0
j+1) = 1.

We attach, at a0
1 ∈ A0, a replica A1 of A0. Specifically,

a0
1 = a1

0. Then we attach at a1
1 ∈ A1 another replica

A2. Specifically, a1
1 = a2

0. From here on, we iterate by

attaching further replica Ak, k ≥ 3, such that ak
1 = ak+1

0 .

Clearly, the cardinality of ∂∞G is ℵ0. As far as the resistance

is concerned, R(a0
0, ∂∞G) = 1 + R(a1

0, ∂∞G). But by

symmetry, R(a0
0, ∂∞G) = R(a1

0, ∂∞G). And the second to

last inequality implies R(a0
0, ∂∞G) = ∞.

Corollary 2: In a Gromov hyperbolic graph with a quasi-

pole, the mutually exclusive properties

• R(ω, ∂∞G) = 0
• 0 < R(ω, ∂∞G) < ∞
• R(ω, ∂∞G) = ∞

are coarse geometry invariants.

B. Space localization

Theorem 11: Given a Gromov hyperbolic graph G with a

quasi-pole ω and a Cantor set Gromov boundary, the effective

resistance RG(ω, vi), for reference nodes V0 = {ω} at the

quasi-pole, grows linearly as dG(ω, vi),

E(||x(vi) − x̂(vi)||2) = O(d(ω, vi)),

For reference nodes V0 = ∂∞G at the Gromov boundary,

E(||x(vi) − x̂(vi)||2) = O(1)
It may be said that the graph G in Theorem 11 has dimen-

sion 2, because the integer dimension of its Cantor boundary

is 1. For a 2-dimensional Euclidean lattice, it was shown

in [4] that the variance of the error is O(log d(ω, vi)). The

latter and our major result are consistent, as the Euclidean

lattice is more wired up than a tree-like graph, so that it is

not surprising that the error is smaller in the former.

VII. CONCLUSION

We have shown that a Gromov hyperbolic graphs with a

quasi-pole and a Cantor Gromov boundary is quasi-isometric

to a tree and therefore exhibits finite effective resistance to

infinity. We have shown that this property has important im-

plications to problems related to propagation and localization

problems. However, some coordination problem calls for new

challenges, as some standard flocking algorithms [17], [1]

enforce a positively curved formation graph, rather than a

negatively curved graph such as a Gromov hyperbolic one.

This issues remains open for future research.
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