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� High energy-savings are possible with only occupancy measurements.
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We present experimental evaluation of two occupancy-based control strategies for HVAC (heating, ven-
tilation, and air-conditioning) systems in commercial buildings that were proposed in our earlier simu-
lation work. We implement these strategies in a test-zone of Pugh Hall at the University of Florida
campus. By comparing their performance against a conventional baseline controller (that does not use
real-time occupancy measurements) on days when exogenous inputs—such as weather—are similar,
we establish the energy savings potential for each of these strategies. The two control strategies are of
vastly different complexity: one is a rule-based feedback controller while the other is based on MPC
(model predictive control) that requires real-time optimization based on dynamic models. The results
of the evaluation are consistent with those of our prior simulation work, that (i) both occupancy based
controllers yield substantial energy savings over the baseline controller without sacrificing thermal com-
fort and indoor air quality, and (ii) the much higher complexity MPC controller yields negligible benefit
over the simple rule-based feedback controller. The experimental evaluation provides further confidence
that high degree of energy savings is possible with simple control algorithms that use real-time occu-
pancy measurements.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the large share of building sector in the energy consump-
tion of the developed world, there is an increasing interest in
energy efficiency, in particular, in reducing energy use of heating,
ventilation and air-conditioning (HVAC) systems through
advanced control methods [1–3].

In our previous study [1], we proposed occupancy-based control
algorithms for energy-efficient control of HVAC systems and
studied their performance through simulations. In this study we
evaluate their performance through experiments in a single zone
of a commercial building at the University of Florida campus.

The focus of our work is ‘‘zone-level control’’ of variable air vol-
ume (VAV) systems. VAV systems serve 30% of the U.S. commercial
building floor area [4]. Fig. 1 shows a schematic of VAV HVAC sys-
tem in a multi-zone commercial building. The control inputs (i.e.,
commands) that need to be determined are the (i) SA (supply
air) flow rate and (ii) SA temperature at each VAV box. The control-
ler does not affect variables such as CA (conditioned air) tempera-
ture and return air ratio that are varied at the Air Handling Units
(AHUs).

Three control algorithms were tested through simulations in
our earlier work [1] against a baseline controller: a simple rule-
based controller called MOBS (Measured Occupancy Based Set-
back) that uses real-time occupancy measurements, a MPC (model
predictive control)-based controller that uses measured occupancy
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as a surrogate for occupancy predictions, and an MPC-based con-
troller that has access to perfect (error-free) occupancy predictions
for the future. The third one is of course not possible to implement
in reality, but was tested in simulation to examine the best possi-
ble performance of an MPC strategy. The baseline control strategy
they were compared against was the so-called ‘‘dual-maximum’’
controller that only uses temperature feedback but does not use
occupancy information [1]. The conclusions drawn from the study
were that (i) a significant amount of energy can be saved without
sacrificing thermal comfort and IAQ (indoor air quality) by using
real-time occupancy measurements, (ii) the rule-based feedback
controller MOBS performs as well as MPC in terms of energy sav-
ings when both of them use occupancy measurements, and (iii)
even when perfect occupancy predictions are available, MPC does
not lead to significantly larger savings over the case when only
occupancy measurements are available. The reason turned out to
be ASHRAE ventilation standard 62.1-2010 [5], which requires a
non-zero amount of outside air even during unoccupied periods
for office-type buildings. The amount required during unoccupied
times is a substantial portion of the outside air required during
occupied times, which precludes the controller from reducing air-
flow drastically even when future occupancy is known to be 0 with
certainty. An independent study [6] also arrived at a conclusion
similar to (ii).

Since the conclusions in our previous study were drawn from
simulations, they were necessarily dependent on the accuracy of
the model used in the simulations. Obtaining an accurate model
of building thermal dynamics is a challenging problem; see [7,8]
and references therein for the extensive literature on this topic.
In addition, the MPC formulations did not have any plant-model
mismatch, i.e., the MPC controller had exact knowledge of the
building dynamics in the simulation studies. In practical imple-
mentation, this is never the case. The main goal of the experimen-
tal evaluations reported here to determine how accurate the
conclusions from [1] are in reality. Since occupancy measurements
were identified to be crucial for the controllers in [1], another goal
was to test robustness of the control schemes to imprecise occu-
pancy measurements. It should be noted that we use the word
occupancy to mean the number of occupants, which are difficult
to obtain using inexpensive commercially available sensors. In
the experiments, we estimated occupancy from binary PIR sensor
measurements based on the zone size.

It turns out that the conclusions from the experimental evalua-
tion are remarkably similar to those obtained during our prior sim-
ulation study [1], in spite of the many differences between a
simulation model and a real building. In short, experiments veri-
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Fig. 1. Generic scheme for the implementation of a zon
fied the conclusions drawn from simulations, that (i) both occu-
pancy-based controllers yield substantial energy savings over the
baseline controller, and (ii) the much higher complexity MPC con-
troller yields negligible benefit over the simple rule based feedback
controller. Measurements of temperature, humidity, and CO2 levels
show that the energy savings were obtained without any reduction
in occupants’ thermal comfort or IAQ. The experiments also
showed that the controllers are robust to the inaccuracies intro-
duced by the motion-detection based occupancy estimation
scheme used.

1.1. Contribution over related work

Since the focus of this paper is experimental evaluation of occu-
pancy based controllers, we limit the discussion here to papers that
present experimental results of control strategies that use occu-
pancy information. For a review of literature on simulation-based
work, the interested reader may consult our previous study [1]
and references therein. We classify prior work in two categories:
MPC-based algorithms and RBC (rule-based control) algorithms.
The references [9,2,10–12] belong to the former while [13–17]
belong to the latter. The energy savings reported in prior work
are shown in Table 1.

There is a great variety of approaches within the rule based con-
trollers implemented by various researchers. The controller pro-
posed by Balaji et al. [13] detects presence/absence from PIR and
door sensors to turn on/off the HVAC system. In another study
done by Balaji et al. [14], Wi-Fi signatures of smartphones are used
to detect whether the rooms are occupied. The controller changes
the cooling and heating set points during unoccupied times [14].
The controller proposed by Gao and Keshav [15] uses Kinect� to
detect presence/absence in the room, and changes the threshold
of thermal comfort during unoccupied times. Padmanabh et al.
[16] propose a method for energy-efficient HVAC control in confer-
ence rooms through the use of sound and light sensors. By putting
a threshold on the measurements obtained from the light and
sound sensors, the controller decides whether the room is unoccu-
pied and turns off the HVAC system and lights during the unoccu-
pied time. The controller proposed by Erickson et al. [17] changes
the ventilation rate and set point of room temperature based on
the occupancy measurements and predictions. Occupancy esti-
mates are obtained using data from a PIR sensor and a camera with
predictions from a model using a particle filter.

The MPC controller proposed by Dong et al. [9] uses tempera-
ture, CO2, humidity, acoustics, light, and motion sensors to predict
occupancy through Markov Models. The controller sets back the
Control
Algorithm

Zone
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CA Temperature (TCA), Solar Radiation (Qs),
OA Temperature (T OA), and RA Ratio (RRA)

Occupancy (np), CA Humidity Ratio (WCA),
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e-level control algorithm for a VAV HVAC system.



Table 1
Energy savings in percentage reported in earlier work.

MPC RBC

[9] [2] [10] [11] [12] [13] [14] [15] [16] [17]

17–30 15–28 30–70 N/A 12–42 9–16 17 25 13 30
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zone temperature during times it predicts the zone to be unoccu-
pied. The MPC controller proposed by Siroky et al. [2] reduces
the desired room temperature during nights and weekends to save
on heating energy by utilizing thermal inertia of the building. The
MPC scheme tested in [12] controlled both zone commands (tem-
perature of zone discharge air) and AHU commands (hot and cold
deck temperature, flow rate) based on forecasts of thermal loads.
The controller sought to maintain temperature in each zone within
a tight bound around the thermostat value, but ventilation con-
straints were not explicitly considered.

Prior work did not report the effect of their control strategies on
IAQ and humidity. While humidity and temperature together
determine thermal comfort according to ASHRAE guidelines [18],
only indoor temperature is reported. We provide measurements
of humidity and CO2 apart from temperature. These measurements
show that both thermal comfort and IAQ are not compromised by
our controllers in the interest of energy efficiency.

Among the prior work, refs. [9,2] report results based on imple-
mentation for long periods of time (a few months), while the oth-
ers base their energy saving estimates on results from one or a few
days. However, only [12] accounted for the variations due to
weather. Difference in weather can and does cause large changes
in cooling and heating energy use even without a change in the
control strategy. The sensitivity of estimated savings to changes
in weather are particularly severe if the time duration of the con-
trol experiments is short. Even in [12], weather-related variation
was addressed by using ‘‘. . .data for days when ambient, as well
as indoor conditions, were similar . . .’’, without clarifying how to
measure such similarity. In this paper we present a formal method
for identifying the ‘‘best’’ days for comparing the performance of
distinct controllers.

Earlier work has compared either MPC with conventional con-
trollers [9,2,10,11] or rule-based feedback controllers with conven-
tional controllers [13–17]. No study has compared all three types
of controllers together. However, since the cost of MPC implemen-
tation is substantially larger than that of a rule-based controller, it
is imperative to determine what is the additional benefit obtained
from that extra cost. Our previous study attempted to answer this
question through simulations by comparing all three types of con-
trollers together under similar conditions. This is precisely what
the work presented here does, but though experiments in a real
building.

To the best of our knowledge, only one prior study [12] has
shown an MPC controller implementation on a VAV HVAC system.
Such an implementation faces a number of challenges. First, it
needs a calibrated dynamic model that can be used to prediction
of thermal variables. We use a non-linear RC network model [19]
for the thermal dynamics that includes both temperature and
humidity dynamics. In HVAC systems with forced air circulation
and dehumidification through a cooling coil, moist air enthalpy
exchange—and therefore humidity—plays a key role in the thermal
dynamics as well as occupant comfort. Incorporating humidity
dynamics in the model makes the model non-linear, which intro-
duces non-convex constraints in the optimization problem solved
by the MPC controller. Second, the cost function we use during
on-line optimization in MPC is the most natural one: total energy
consumption over the optimization horizon, which includes cool-
ing, reheating, and mechanical (fan) energy. This cost function is
non-convex in the decision variables. Coupled with the non-linear
dynamics, which leads to non-convex constraints, the overall opti-
mization problem becomes a non-convex problem. Third, real-time
computation constraints bring further challenges. Here ‘‘real-time
computation’’ means computations have to be completed in a
much shorter time compared to the time interval at which control
commands are updated. Due to non-convexity, the optimizer in
MPC may either fail to converge to a local optimal solution within
the allowed time or fail to converge to a highly sub-optimal solu-
tion that may in fact be less energy-efficient than a baseline con-
troller. In addition, a state-observer needs to be implemented to
estimate the state of the dynamic model from the observations
since the model has more states than what can be measured.
Due to the non-linear nature of the dynamic model, an EKF
(extended Kalman filter) was used. Unlike the linear counterpart
(KF), the EKF does not come with a guaranteed stability, so that
the state estimates can potentially diverge. Finally, the optimiza-
tion problem may not be feasible. During real-time implementa-
tion, the controller needs to be able to handle these special cases.
The implemented controller was therefore a hybrid between MPC
and rule-based controllers, where the rules become active when
the optimizer fails to provide a ‘‘good’’ solution. In contrast, all pre-
viously mentioned work on MPC used a convex optimization prob-
lem formulation through quadratic cost function and linear
dynamic constraints, making implementation considerably sim-
pler, but with possible loss of model accuracy.
1.2. Organization of the paper

The rest of the paper is organized as follows. Section 2 briefly
describes the zone-level control algorithms, which are imple-
mented in real-time inside the zone of a building at the University
of Florida Campus. The experimental setup, which includes the
zone configurations, calibration/validation of the models used by
the controllers, and selection of the controller design parameters,
are presented in Section 3. Experimental results comparing the
performance of the controllers are shown in Section 4. Section 5
concludes the results, discusses the potential impact of this study
in selecting an appropriate controller for zone-level building HVAC
control, and proposes ways to extend this work in future.
2. Control algorithms

In the interest of being self-contained, we briefly describe the
two zone-level control algorithms, MOBS (Measured Occupancy
Based Setback) and MOBO (Measured Occupancy Based Optimal),
which were earlier proposed in [1]. For details the interested
reader is referred to [1].

The outputs, i.e., actuation signals, of all three controllers are
the same: (i) flow rate and (ii) temperature, of air supplied to the
zone. The commanded set points are maintained by lower level
PI controllers. The VAV terminal box can only increase the temper-
ature of the air by using a reheat valve, but cannot decrease it
beyond the AHU discharge air temperature.
2.1. Measured Occupancy Based Setback (MOBS) Controller

The MOBS controller is a combination of the dual maximum [20,
Chapter 47] and occupancy based feedback, which requires occu-
pancy ðnpÞ measurements and zone temperature ðTzÞ measure-
ments. In this strategy, the control logic is divided into four
modes based on the zone temperature: (i) Re-heating (ii) Heating
(iii) Dead-Band and (iv) Cooling, which are shown schematically
in Fig. 2.



Fig. 2. Schematic representation of the baseline control strategy (‘‘dual maximum’’).

Fig. 3. Schematic representation of the implementation of MOBO controller.
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The re-heating mode is turned on if the zone temperature stays
below the ‘‘Re-heating Set-Point (RTG)’’ for more than 10 min. Sim-
ilarly, the cooling mode is turned on if the zone temperature
remains above the ‘‘Cooling Set-Point (CLG)’’ for more than 10 min-
utes. The heating mode is turned on if the zone temperature stays
between RTG and ‘‘Heating Set-Point (HTG)’’ for more than 10 min-
utes. The dead-band mode is turned on if the zone temperature
stays between HTG and CLG for more than 10 minutes. In the re-
heating mode, the temperature of supply air is set to maximum
possible value TSA

high

� �
, and the flow rate of supply air is varied using

a PID controller to maintain the zone temperature to a desired
set-point Tset . In the heating mode, the supply air flow rate is set
to the minimum allowed value, and the temperature of supply
air is controlled by a PID controller so that the zone temperature
is maintained close to the set-point ðTsetÞ. The minimum allowed
value for the flow rate at time t is determined as follows:

Minimum Allowed Flow Rate at time t ¼ mSA
p ðtÞnpðtÞ þ amSA

lowðtÞ;

where mSA
p ðtÞ ¼

mOA
p

1 � RRAðtÞ
; mSA

lowðtÞ ¼
mA

z Az

1 � RRAðtÞ
; ð1Þ

where Az denotes the zone floor area, npðtÞ and RRAðtÞ represent the
occupancy and return air ratio, respectively, measured at time t.
Constants mOA

p and mA
z denote the minimum outside air require-

ments per person and per floor area, respectively, in that zone.
The IAQ factor of safety is denoted by a. When a ¼ 1, these calcula-
tions yield the minimum airflow requirements specified by ASHRAE
ventilation standard 62.1-2010 [5]. In the dead-band mode, no
re-heating is performed, i.e., TSA ¼ TCA, and supply air flow rate is
set to the minimum allowed value (1). In the cooling mode, no heat-
ing or re-heating is performed, i.e., TSA ¼ TCA, but the flow rate of
supply air is varied to maintain the desired set-point Tset in the
zone.

Note that the temperature set-points during all the modes are
determined based on whether the zone is occupied or not:

RTGðtÞ ¼ Tunocc
RTG

HTGðtÞ ¼ Tunocc
low

CTGðtÞ ¼ Tunocc
high

9>=
>; if npðtÞ ¼ 0;

RTGðtÞ ¼ Tocc
RTG

HTGðtÞ ¼ Tocc
low

CTGðtÞ ¼ Tocc
high

9>=
>; if npðtÞ–0: ð2Þ

The choice of design variables Tunocc
RTG ; Tocc

RTG; T
unocc
low ; Tocc

low; T
unocc
high ; Tocc

high

involves a trade-off between energy savings and thermal comfort;
see [1] for a detailed discussion on the choice of design variables.

2.2. Measured Occupancy Based Optimal (MOBO) Controller

The MOBO controller is an MPC-based control algorithm. The
block diagram of the implementation of the MOBO controller is
shown in Fig. 3. Time is measured with a discrete index
k ¼ 0;1; . . ., where the time period between k and kþ 1 is denoted
by Dt. The MOBO controller computes the control inputs
ðuðkÞ ¼ TSAðkÞ;mSAðkÞÞover K time indices by solving an optimization
problem, which minimizes total energy consumption over that
period while maintaining thermal comfort and IAQ. The control
inputs are applied at the current time index k, and the optimization
problem is solved again at time index kþ 1 to compute the control
inputs for the next K time steps. The whole process is repeated at
the ðkþ 1Þ-th time index.

To solve the underlying optimization problem, MOBO needs (i) a
model of the zone hygro-thermal dynamics, (ii) initial state of the
hygro-thermal dynamics model, and (iii) predictions of the exoge-
nous inputs such as TOA;WOA;Q s and np, over the time horizon of
optimization. Models of the zone hygro-thermal dynamics and
power are the same as previously described in [19,1] , respectively.
An EKF (extended Kalman filter)-based state observer is used to
estimate the initial state of the model at the start of the optimiza-
tion. The linear part of the original 14 state model for a single zone
(13 states for the zone temperature and the temperature interior to
the walls, and 1 state for humidity ratio) is non-observable, we
have reduced the model order using a non-linear balanced trunca-
tion scheme [19]. The reduced order model has 8 states, which has
an observable linear part. The predictions of exogenous inputs
TOA;WOA, and Qs are assumed available from weather forecasts.
We assume that the predicted occupancy for the next K time
indices is same as the measured occupancy at the k-th time
period: npðiÞ ¼ npðkÞ; i P k. Based on the occupancy measurements,
we divide the control logic into two modes: (i) Occupied and
(ii) Unoccupied, which are briefly explained.

Occupied mode: The controller operates in the occupied mode if
the zone is occupied at the k-th time index, i.e., the measured occu-
pancy at the beginning of the time interval ½kDt; ðkþ 1ÞDt� is at
least 1. The optimal control inputs for the next K time indices are
computed by solving the following optimization problem:

UH :¼ argmin
U

GðUÞ; ð3Þ

where U ¼ ½uðkÞT ; . . . ;uTðkþ KÞ�
T
2 R2ðKþ1Þ and GðUÞ ¼

PkþK
i¼k EðiÞ,

subject to the following constraints:

Tocc
low 6 TzðiÞ 6 Tocc

high;

Wocc
low 6WzðiÞ 6Wocc

high;

TCA
6 TSAðiÞ 6 TSA

high

mSA
p npðiÞ þ amSA

low 6 mSAðiÞ 6 mSA
high

9>>>>>=
>>>>>;
8i ¼ k; . . . ; kþ K; ð4Þ

where E represents the total energy consumption.
Unoccupied mode: The controller operates in the unoccupied

mode if the measured occupancy at the time index k, i.e., at the
beginning of the k-th time period, is observed to be 0. At the k-th
time index, the optimal control inputs for the next K time indices
are obtained by solving the following optimization problem:

UH :¼ argmin
U

GðUÞ; ð5Þ
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subject to the following constraints:

Tunocc
low 6 TzðiÞ 6 Tunocc

high

Wunocc
low 6WzðiÞ 6Wunocc

high

amSA
low 6 mSAðiÞ 6 mSA

high

TCA
6 TSAðiÞ 6 TSA

high

9>>>>>=
>>>>>;
8i ¼ k; . . . ; kþ K: ð6Þ

The reason for these constraints are described in [1].
An energy related performance metric (% Savings), which is used

to present the energy savings over the baseline controller, is
defined as

% Savings ¼ EBC � EC

EBC
; ð7Þ

where EC and EBC are the energy consumed by the controller C and
the baseline controller, respectively, over DT time period.

3. Experimental setup

Experiments are performed in a single room on the second floor
of Pugh Hall at the University of Florida campus, Gainesville, FL,
which is shown in Fig. 4. One terminal VAV box with reheat is
solely dedicated to this room, making it an HVAC zone. Identity
of the zone is not disclosed due to privacy reasons. We call this
zone ‘‘test-zone’’. It is a typical small office, which has a North-fac-
ing window of area 2:8 m2. The test-zone has three internal walls
(Wall1, Wall2, and Wall3) and one external wall (Wall4), with
dimensions of 4:4 m� 2:7 m;4:4 m� 2:7 m;4:8 m� 2:7 m, and
4:8 m� 2:7 m, respectively.

3.1. Comparison between controllers tested on distinct days

Comparison between distinct controllers tested on different
days is difficult because external conditions (e.g., weather) and
internal conditions (e.g., occupancy, conditioned air, etc.) can never
be exactly the same. A method to measure the distance between
two days has been proposed in [21], which can be used to identify
pairs of days that have the minimum distance in terms of these
external and internal variables. In this paper we extend this
method to determine a ‘‘best’’ set of three days for comparison
on which the three controllers (baseline, MOBS, and MOBO) were
in operation.

Let I ¼ ði1; i2; i3Þ be a set of three distinct days such that the fol-
lowing condition, which we denote by C1, is satisfied: day i1 used
the baseline controller, day i2 used the MOBS controller and day i3

used the MOBO controller, respectively. The function lðIÞ defined
below is a measure of similarity among the days in I:

lðIÞ :¼
Z 1

0
hi1

ambðtÞ�hi2
ambðtÞ

���
���þ hi2

ambðtÞ�hi3
ambðtÞ

���
���þ hi3

ambðtÞ�hi1
ambðtÞ

���
���þ

h
ð8Þ

hi1
CAðtÞ�hi2

CAðtÞ
���

���þ hi2
CAðtÞ�hi3

CAðtÞ
���

���þ hi3
CAðtÞ�hi1

CAðtÞ
���

���
i
dt; ð9Þ
Fig. 4. Layout of the test-zone in Pugh Hall at the Un
where the subscript ‘‘amb’’ denotes the ambient air outside of the
building, the subscript ‘‘CA’’ represents the conditioned air, hðjÞðtÞ
is the specific enthalpy of air at time t of the j-th day. Note that t
has the unit of days, meaning t ¼ 0 corresponds to 00:00 h and
t ¼ 1 corresponds to 24:00 h.

Let I be a set of triplets of days such that each element I 2 I

satisfies the condition C1. For every element in I, the triple with
the most similarity measure was identified by performing the fol-
lowing optimization through direct search:

I� ¼ arg min
I2I

lðIÞ: ð10Þ

The search set I was constructed to ensure similarity of internal
conditions as well. This was done by making sure for every
I ¼ ði1; i2; i3Þ, if i1 is a working day, both i2 and i3 are working days,
and all holidays/semester-breaks are excluded. The search set I

was also limited by the number of days for which we had relevant
measurements.

3.2. Measurements, computation, and actuation

Only a temperature sensor is pre-installed in the test-zone that
is connected to the building automation system (BAS), since the
baseline controller that usually operates the VAV box uses only
temperature measurements. For the purpose of our experiments,
we installed a wireless sensor node that provides measurements
of humidity, CO2, and occupant’s presence through a PIR sensor.
Fig. 5 shows pictures of such a sensor node. More details on the
sensor node are available in [22].

Measurements of all four sensors in the node are transmitted
wirelessly to a base station, which transmits the data from multi-
ple nodes to a database hosted on a remote computer. A control
computer reads the PIR sensor data from the database and space
temperature measurements from the BAS, and computes the con-
trol commands. Since the PIR sensor only provided presence/
absence of occupants but not the number of people, we scaled
the binary measurements to an estimated occupancy by multiply-
ing by three. This scaling was done due to two reasons. The test-
zone is an office with a designed occupancy of two persons, so
the chances of more than three people being present are small.
In addition, even though most of the time only one occupant was
present, by assuming presence of humans indicates the presence
of three persons, a factor of safety was built against the controller
commanding too little airflow rate, which could adversely affect
IAQ.

Control computations were performed in MATLAB�. The MPC-
based MOBO controller uses IPOPT [23] within a MATLAB� envi-
ronment to solve the underlying optimization problem. Computed
commands are executed on the VAV box by using a custom-built
software platform, which was developed for both data acquisition
from and control of HVAC equipment. We refer the interested
reader to [24] for further details on the software architecture.
iversity of Florida campus, Gainesville, FL, USA.



Fig. 5. Components of the wireless sensor node and an installed node in an office in
Pugh Hall.
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A non-linear RC network model with 13 states was used for pre-
dictions inside the MOBO controller. The structure of the model is
described in [19]. The model is calibrated with data collected from
the test-zone. The procedure and the tuned resistance and capaci-
tance values of the walls and windows are explained in our earlier
work [1]. Calibrated models of fan power, conditioning power at
AHU, and reheating power at the terminal box are also the same
as in [1].

The MPC-based controller also needs predictions of the
surrounding space temperatures and weather (temperature and
humidity), which serve as inputs to the test-zone model. The
predictions of the surrounding space temperatures, outside
temperature, and outside humidity are assumed same as their
measurements at the current time. The surrounding spaces also
have pre-installed temperature sensors which are obtained in
real-time from the BAS. The measurements for the outside weather
are obtained from the University of Florida Physics Department
Weather Station [25]. The MPC controller uses these predictions
as inputs to the hygro-thermal dynamics model of the test-zone
to obtain predictions of the zone’s temperature and humidity.
Occupancy predictions for the time horizon of optimization in
the MOBO controller were assumed to be the same as the current
estimated occupancy.
Table 2
Design parameter values used by the MOBS and MOBO controllers; the units in the
parenthesis are associated with the corresponding values in the parenthesis.

Temperature parameters

Tset �C TSA
high �C Tunocc

RTG �C Tocc
RTG �C Tocc

low �C Tocc
high �C Tunocc

low �C Tunocc
high �C

22.8 30.0 20.9 21.8 21.9 23.6 21.1 24.4

Humidity and other parameters

Wunocc
low

g
kg Wocc

low
g

kg Wunocc
high

g
kg Wocc

high
g

kg
K Dt min DT h mOA

p
kg
s ðcfmÞ mA

z
kg

sm2
cfm
m2

� �

7.4 7.4 10 10 3 10 24 0.0028 (5.0) 0.0004 (0.65)
3.3. Choice of parameters

The baseline controller in the Pugh Hall uses a nighttime set-
back in which the test-zone temperature is set to 22.8 �C from
6:30 a.m. to 10:30 p.m. and the zone temperature is set back to
21.1 �C during the time 10:30 p.m.–6:30 a.m. We could not find
concrete information on the control logic used by the baseline con-
troller at Pugh Hall to maintain the set-points. It seems from the
data that the baseline controller uses the dual maximum strategy
[20, Chapter 47]. The Minimum Allowed Flow Rate supplied by
the VAV box in the test-zone is 0:05 kg=s ð90 cfmÞ. For the baseline
controller, the maximum flow rate supplied by the VAV box in
test-zone is 0:125 kg=s ð220:0 cfmÞ. Therefore, we choose the
same maximum flow rate for the MOBS and MOBO controllers,
i.e., mSA
high ¼ 0:125 kg=s ð220:0 cfmÞ . The baseline controller closes

the outside air dampers at the AHU during the nighttime setback
time period to reduce energy consumption, which leads to 100%
return air ratio, i.e., RRA ¼ 1. However, if the MOBS and MOBO con-
trollers choose RRA ¼ 1, the minimum flow rate calculated using (1)
is infinite during that time. Therefore, the MOBS and MOBO control-
lers choose RRA ¼ 0:7 during the nighttime setback time period.
This value of RRA is used by the baseline controller during day time.
The IAQ factor of safety is chosen as a ¼ 1:1, which is motivated by
the assumption that the flow rate sensor errors are in the range of
10%. Other design parameters are shown in Table 2.

In Fig. 6, the comfort envelope specified in [26, Chapter 8] is
shown in the striped black area, and the envelope chosen here dur-
ing the occupied and unoccupied time is shown in dashed red and
blue boxes, respectively. The comfort envelope is defined by the
constraints on the test-zone temperature and humidity ratio. The
constraints on the zone temperature and humidity ratio are chosen
so that when they are met, the zone-climate meets the ASHRAE
mandated conditions [26].

4. Experimental results

We performed experiments on several days for both the MOBS
and MOBO controllers. We identify three days from the available
dataset such that a distinct controller was operational in each of
these three days, and the ambient conditions among all three days
were closest, by using the method described in Section 3.1. The
dataset used to select the closest days is shown Table 3. The three
closest days are: Aug 6th, 2013 for the baseline controller; Aug 7th,
2013 for the MOBS controller; Aug 9th, 2013 for the MOBO control-
ler, i.e., I⁄ = (6th Aug 2013, 7th Aug 2013, 9th Aug 2013). The value
of similarity measure for the corresponding set ðI�Þ is 20.05, i.e.,
lðI�Þ ¼ 20:05. The values of similarity measure l for the rest of
triplet set ðIÞ are not shown due to space limit.

Fig. 7 shows the exogenous inputs during those three days.
Fig. 7(a) and (b) shows the OA temperature and OA humidity ratio,
respectively. Fig. 7(d) and (d) shows the CA temperature and CA
relative humidity, respectively. The CA temperature increases dur-
ing the nighttime setback period and its relative humidity
decreases during that time, but is almost fully saturated (95%
relative humidity) at 12.5 �C temperature for rest of the day.
Fig. 7(f) shows that the test-zone is occupied for approximately
8 h during each of the three days/experiments.

Fig. 8 shows the control inputs (SA flow rate and temperature)
and outputs (zone temperature, zone humidity, and zone CO2

concentration) obtained by implementing the baseline, MOBS,
and MOBO controllers.

4.1. Thermal comfort and IAQ

The main task of a climate control system is to maintain ther-
mal comfort and IAQ; energy efficiency is a secondary goal. So



Fig. 6. Comfort envelope chosen for the occupied and unoccupied time periods during the experiments.

Table 3
Distinct days on which the control experiments were performed.

Baseline MOBS MOBO

Days Jun 17, Jun 18, Jun 19, Jun 20, Jun 21, Jul 10, Jul 16, Jul 15, Jul 22,
(Year

2013)
Jul 9, Jul 12, Jul 17, Aug 1, Aug 6 Aug 2, Aug 7 Aug 5, Aug 9
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we discuss the effect of the controllers on comfort and air quality
first.

Zone temperature: The temperature bounds on the zone temper-
ature are represented by magenta colored lines in the zone tem-
perature plots in Fig. 8. All the controllers are able to keep the
zone temperature within the allowable bounds for most of the
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Fig. 7. Exogenous inputs: OA temperature, OA humidity ratio, OA CO2 concentration, C
during the various controllers.
time. The bounds depend on whether the zone is occupied or
not, which is determined from the PIR sensors. The baseline con-
troller, of course, does not use this information.

As shown in the figure, the baseline controller maintains the
zone temperature at a constant value of 22.8 �C during the day,
and relaxing the bounds only during the nighttime setback period
(10:30 p.m.–6:00 a.m.). However, the MOBS and MOBO controllers
let the zone temperature float in wider range during both occupied
and unoccupied times, particularly during the unoccupied times.
With the MOBS and MOBO controllers, the zone temperature drops
down to 21.2 �C during unoccupied times at night, which is a lower
bound on the zone temperature for unoccupied times. When the
zone gets occupied around 9:30 a.m., the zone temperatures
increases to 22.9 �C, which is a lower bound on the zone tempera-
ture during occupied times.
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Zone humidity: The zone humidity stays within the allowable
range throughout the day for all the controllers. In fact the com-
bined temperature-humidity values always fall inside the thermal
comfort envelope as shown in Fig. 6. For all the controllers, the
zone humidity from 10:30 p.m. to 6:00 a.m. is high, approximately
0:01 kg

kg, due to the high CA humidity ratio from the AHU. When the
CA humidity ratio decreases around 6:30 a.m., the zone humidity
ratio during the baseline control decreases at a faster rate than
the rate at which the zone humidity decreases during the MOBS
and MOBO controls. It occurs because the baseline controller sup-
plies higher flow rates than the flow rates supplied by the MOBS
and MOBO controllers during that time.

Zone CO2 concentration: CO2 concentration in the zone is less
than 650 ppm throughout the day for all the three controllers.
The CO2 concentration during unoccupied times is lower than that
of during the occupied times due to the CO2 released by occupants.

Based on the temperature, humidity and CO2 concentrations
shown in Fig. 8, we can claim that thermal comfort and IAQ of
the zone is maintained by all the controllers.

4.2. Energy consumption

The total energy consumption consists of fan energy to push the
air, conditioning energy used by the cooling coils inside the AHU,
and reheating energy used by the heating coils at the VAV box.
These energy calculations are done using the calibrated power
model described in [1]. The enthalpy calculations require the mea-
surements of the zone temperature and humidity, SA flow rate and
temperature, OA temperature and humidity, CA temperature and
humidity, and return air ratio, all of which are measured during
the experiments. The daily energy consumption during the base-
line, MOBS, and MOBO controls are estimated to be 62.5 MJ,
38.0 MJ, and 37.7 MJ, respectively. The MOBS controller therefore
results in 39% energy savings over the baseline controller. Almost
the same energy savings (40%) are obtained by the MOBO control-
ler over the baseline controller. The main contributors to the high
energy savings obtained are: reduction of the flow rate during
unoccupied times, and the relaxed temperature bounds during
both occupied and unoccupied times—especially during unoccu-
pied times—that reduce both flow rate and reheating.

4.3. Control inputs

SA flow rate: The baseline controller maintains a constant SA
flow rate in the zone throughout the day. However, the MOBS
and MOBO controllers reduce the SA flow rate during the unoccu-
pied times, and increase the flow rates during the occupied times.
We have noticed unexpected sudden peaks in the SA flow rate val-
ues twice a day around 10:00 a.m. and 10:30 p.m. These peaks are
due to the change in the static pressure set-point at the AHU. We
have also analyzed the SA flow rate values on several other days
and observed similar peaks at the same time on these days as well.

SA temperature: During the baseline control, the SA temperature
keeps on oscillating between its high and low values, especially
from 6:30 a.m. to 11:00 a.m. This is because the SA flow rate is high
and the air delivered from the AHU is cold, so periodic reheating is
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required to maintain a constant zone temperature of 22.8 �C. Dur-
ing the middle of the day this effect is less pronounced due to other
sources of heat gain. In case of the MOBS and MOBO controls, the SA
temperature increases only when the zone temperature is low and
outside the allowable temperature range. Since these controllers
supply a reduced flow rate during the unoccupied times, reheating
is not required as often. As a result, the frequency of oscillations in
the SA temperature during the MOBS and MOBO controls are lower
than those during the baseline control. It is likely that smaller
oscillations in the reheating will reduce mechanical wear and tear
in the reheat valve. So the MOBS and MOBO controllers may have
additional unintended benefits of increasing equipment life.
4.4. Experiments vs. simulations

Although MOBS and MOBO controllers show almost 40% energy
savings during the experiments, while simulation studies in [1]
predicted energy savings between 45% and 55% depending on out-
side weather. The savings during the experiments are slightly
lower than that of during the simulations because the currently
used control logic used at the AHU in Pugh Hall is more efficient
that the control logic used during the simulations. While the base-
line controller in the simulation study did not use nighttime set-
back, the one currently used in Pugh Hall does. In particular, it
closes the OA dampers supplying 100% return air during nighttime
setback period. This reduces energy consumption since it takes
more energy to condition hot and humid outside air than to condi-
tion return air.

Although the simulation study assumed that we have measure-
ments of occupancy count, in the experiments we estimated the
occupancy using a conservative approach: whenever the room
was occupied, we assumed it was occupied by its maximum design
occupancy. This estimation scheme was necessarily conservative
during most times. The experimental results thus indicate that
the control algorithm is robust to inaccuracies in occupancy mea-
surement through such conservative measures. We conclude that
for zones with small design occupancy, motion detectors or other
means of presence detection can be profitably used for occupancy
measurement.
5. Conclusion and future work

Experimental results from implementing two occupancy-based
control algorithms in a single zone are reported. The goal of the
controllers is to minimize energy consumption while maintaining
thermal comfort and indoor air quality. The results obtained here
are remarkably consistent with that from the simulation results
in [1]. In particular, both the rule-based MOBS controller and the
MPC-based MOBO controller led to large and similar reduction in
energy use over baseline. These results verify our conclusion in
the simulation study that a simple rule-based feedback control
performs as well as much more complex MPC-based control when
they use occupancy measurements for control. Without occupancy
predictions, the MPC-controller can only do what a well-designed
feedback controller will also do, that is, set back the zone temper-
ature when the zone is unoccupied, but not too much so that it can
be changed quickly when occupancy changes, and maintain a min-
imum airflow rate to ensure good IAQ. Since the cost of MPC imple-
mentation is considerably higher than that for a rule-based
controller, the additional benefit of MPC is negligible.

Another useful result of the experimental verification is that for
small zones such as offices, motion detection based occupancy
estimation—in spite of its inherent inaccuracy—can be effectively
used for occupancy based control with large energy savings. Deter-
mining occupancy for larger spaces will require sensors that go
beyond detecting presence. A sensor that can measure the number
of people (such as thermal image/array sensors and video-cameras
with image processing algorithms), are likely candidates for such
applications.

There are many ways to extend this wok in future. The control
algorithms presented here are zone-level strategies in which only
the SA temperature and flow rate at VAV boxes are manipulated
while treating the RA ratio, and CA temperature at AHU as exoge-
nous inputs. It is possible if all the four inputs, i.e., the SA temper-
ature, SA flow rate, RA ratio, and CA temperature, are controlled,
MPC may yield significant savings over rule-based control. Preli-
minary investigation in this direction is carried out in [27].

In this paper, we have compared the performance of the con-
trollers through experiments only for one day. Since energy savings
depend on outside weather and climate, a longer time-horizon
experiment needs to be conducted to obtain a more robust esti-
mate of the energy savings potential of the occupancy-based con-
trollers. In fact, we have implemented the MOBS controller in
several zones of the Pugh Hall for a week. The results of this test
will be reported elsewhere [21].

Another question that needs to be explored is the payback per-
iod of occupancy based control technology. The MOBS controller
requires minimal additional hardware, only an occupancy sensor.
The cost of sensor node is approximately $215 [22]. A detailed
study needs to be done to calculate the payback time period (that
includes the cost of the sensor node, additional equipment, and
labor for installation) and operational maintenance cost.
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