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Abstract

This paper proposes an aggregation-based model reduction method for nonlinear models of multi-zone building thermal dynamics. The
full-order model, which is already a lumped-parameter approximation, quickly grows in state space dimension as the number of zones
increases. An advantage of the proposed method, apart from being applicable to the nonlinear thermal models, is that thereduced model
obtained has the same structure and physical intuition as the original model. The key to the methodology is an analogy between a
continuous-time Markov chain and the linear part of the thermal dynamics. A recently developed aggregation-based method of Markov
chains is employed to aggregate the large state space of the full-order model into a smaller one. Simulations are provided to illustrate
tradeoffs between modeling error and computation time.
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1 Introduction

A typical building HVAC (Heating, Ventilation, and Air
Conditioning) system consists of AHUs, supply ducts, and
terminal boxes; see Fig. 1. The AHU (Air Handling Unit)
supplies conditioned air to terminal boxes at so-called
leaving-air temperature and humidity. Each terminal box de-
livers air to one or more zones. Using reheat coil, the supply
air temperature can be increased beyond the AHU leaving
temperature. In a VAV (Variable-Air-Volume) system, the
terminal box can vary the supply air mass flow rate through
dampers. A controller at each terminal box can be used to
maintain the temperature of a zone at a specified value by
controlling the mass flow rate of air supplied to the zone.

For a building HVAC system, conventional controls include
rule-based controls and single-loop PID controls that are
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Fig. 1. The configuration of a four-zone building HVAC system.

simple and normally work with single objective, e.g. refer-
ence tracking, offset prevention, etc. But these controls are
known not to be optimal in either thermal comfort or energy
consumption for building HVAC systems [11,20,24]. In con-
trast to conventional controls, modern controls of a build-
ing HVAC system are typically fulfilled using a two-level
control structure: a supervisory level and a local level [24].
The goal of the supervisory-level control is to optimize the
operations of building systems for minimizing energy con-
sumption while satisfying human thermal comfort. Well-
developed supervisor controls can improve the energy effi-
ciency and adapt to the changing environment. The local-
level control modulates the individual devices (e.g. a re-
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lay, an actuator, etc.) to track the set-points provided by the
supervisory-level control. A closed-loop feedback control
(e.g. PID control) is usually used to achieve the set-point
tracking performance. Well-tuned local-loop controllerscan
enhance the space thermal comfort, reduce energy use, and
extend the component life. The overall energy efficiency and
control effectiveness of the building HVAC system is deter-
mined by the performance and coordination of controls in
both levels.

Utilization of physical models in supervisory-level control
can largely minimize building-wide energy consumption and
properly satisfy thermal comfort requirements [11]. The per-
formance of model-based controls highly relies on the mod-
els that are used to describe the thermal behavior of build-
ing zone temperatures and capture the energy consump-
tion of building operations. In this paper, we capture the
building thermal dynamics using energy and mass balance
equations. A thermal resistor-capacitor (RC) network model
is established to represent thermal dynamics of a multi-
zone building with nodes representing zones or internal sur-
face points. This model can be used for many purposes
in building controls. For example, the models can be used
for off-line simulations that advise the system operators
with the best operating strategy, e.g. simulation-assisted con-
trol [24]. The models can also be used for on-line opti-
mizations and controls that determine optimal operating set-
points for local feedback controllers, e.g. Model Predictive
Control (MPC) [15,20,25]. Besides enabling advanced con-
trols, the models can also provide useful capabilities for per-
formance analysis [9] and system identification [3].

Model reduction techniques of building thermal models are
essentially important for many practical estimation and con-
trol applications. First, it is worth noting that there are com-
puter aided building modeling tools that result in complex
RC-network models similar to the one presented in this pa-
per, e.g., EnergyPlus [10] and TRNSYS [18]. These com-
plex building models could be used for off-line computer
simulations to accurately predict building temperature evo-
lution and energy consumption. But the complexity of these
models grows exponentially as the number of building zones
increases [9,13,14]. A large amount of measurement data is
required to identify the parameters used for these complex
models, which usually causes data over-fitting problems and
high modeling uncertainties [10]. Thus it is necessary to
consider the reduced models with simpler structure and less
number of parameters for the ease of parameter estimation
and data fitting. Second, the model complexity is a major
issue for implementing the online optimization-based con-
trol schemes, e.g. MPC, particularly if the optimization is
to be performed with a day-long prediction horizon to take
advantage of slow thermal responses of buildings as well as
daily variations in environment and energy prices [20, 25].
The complexity and accuracy of models both play important
roles for the success of MPC. It is essential to develop re-
duced models to achieve a trade-off between prediction ac-
curacy and model complexity. The focus of this paper is on
model reduction of multi-zone building thermal dynamics.

The building thermal model presented here is a nonlinear
model with a linear term capturing the nodal thermal inter-
actions and a bilinear term due to the heat flux into the zone
space. Due to the nonlinear nature of the model, the num-
ber of available techniques for model reduction is limited.
Balanced truncation methods for nonlinear systems use con-
trollability and observability energy functions of a system
to find the reduced realizations [17, 22]. Lallet al. in [19]
use empirical Gramians to determine the importance of a
particular subspace in terms of its contribution to the input-
output behavior. These energy functions or empirical Grami-
ans however are difficult to compute in practice [14]. More-
over, the reduced models generated by truncation methods
do not retain the physical intuition of the full model, i.e.,
truncated states of the reduced model usually have no phys-
ical meanings.

In this paper, we propose anaggregation-basedmodel re-
duction method that preserves the RC-network structure of
the nonlinear building thermal model. This is achieved by
obtaining super-nodes via aggregation of building nodes.
The aggregation-based approach proposed in this paper is
based on model reduction method of Markov chains that
has recently been developed in [8]. The main idea here is
to connect the linear part of building thermal model to a
continuous-time Markov chain, and apply the aggregation
method of Markov chains to systematically find optimal co-
ordination of aggregation and the optimal linear dynamics.
The nonlinear model part is then aggregated accordingly
based on the same optimal coordination. The major advan-
tage of the proposed aggregation-based method compared to
truncation-based methods is thestructure-preservingprop-
erty in the sense that the reduced model is still a RC-network
with parameters and nodes maintaining the same physical
meaning as the full building model. The other advantage is
that it does not suffer from the computational difficulties of
empirical Gramians or energy functions.

For practical control applications, a linear model could be
obtained by linearizing the nonlinear model around operat-
ing points. Then the linearized model can be used for de-
signing linear quadratic regulator, Kalman filter, and linear
model predictive control, etc. If the actual operation points
move away from the vicinity of system linearization point,
the performance of the linearized model will be degraded
and a running linearization is needed to ensure the control
performance [21]. Besides considering linearzied models,
the direct utilization of nonlinear models such as the full and
reduced models presented in this paper could also be benefi-
cial for the building HVAC community. Interests in nonlin-
ear optimization techniques with nonlinear building models
have been on the increase in recent years [11]. Some novel
control methods are also proposed by exploring the specific
structure of the nonlinear building thermal model. In [24],a
Hammerstein-Wiener nonlinear MPC is proposed and stud-
ied, where the original nonlinearities included in a building
thermal dynamics are handled through nonlinear static map-
pings. In [5], a decentralized optimal control strategies is
proposed to improve the building energy efficiency, where
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the reduced models developed in this paper is used to cap-
ture the net effect of the entire building envelope on any
individual zone.

The method proposed in this paper is an extension of its
conference version [6], where we only apply the aggrega-
tion method to a linear building thermal model. This paper
extends the aggregation method to a more realistic nonlinear
building thermal model, and assesses the performance and
computational complexity of reduced-order models through
numerical simulations. The aggregation-based method pro-
posed here are related to model reduction techniques for
grey-box models [4], where the model structure and param-
eters are obtained through the physical insights. The aggre-
gated building model can be thought as a grey-box model
and coordination of aggregation specifies the model struc-
ture. The aggregation-based method described here can also
be used to creates zoning approximations for building mod-
els by combining zones together. In a very recent work [12],
a Koopman operator approach is proposed to systematically
create zoning approximation for buildings, where the domi-
nant modes of thermal behavior are extracted from the build-
ing simulations. Then modes information is used to combine
multiple zones into single zones. The major difference is
that our method is directly based on the knowledge of build-
ing descriptions, while the method in [12] is mainly based
on data from building simulations.

2 Full-order Building Thermal Model

The focus of this paper is on model reduction of the build-
ing zone thermal dynamics, which suffer more of modeling
complexity than the AHU dynamics [6]. As a result, the
AHU dynamics are replaced by static gains in this paper
without significant loss of accuracy. A lumped parameter
model of resistances and capacitances is constructed to de-
scribe the thermal dynamics of a multi-zone building, with
current and voltage being analogous to heat flow and tem-
perature, respectively. We only consider the interzone con-
ductive heat transfer but ignore the convective heat transfer
that occurs through the open windows, doors, and hallways.
The3R2C models of surface elements (e.g., walls, windows,
ceilings, and floors) are inter-connected to construct a RC-
network model for building thermal dynamics [13]. The set
V :={1, . . . , n+1} denotes the set of nodes of the network.
The nodes are assumed to be re-indexed so that the firstN
nodes correspond to1, . . . , N physical zones, and the next
(n−N) nodes correspond to the points internal to the sur-
faces that appear due to the3R2C models. The last(n+1)th
node corresponds to the outside.

For each nodei ∈ V , the associated temperature and thermal
capacitance are denoted asTi andCi, respectively. LetE
denote the set of all edges of the RC-network, where edges
represent pathways for conductive heat transports. For any
nodesi, j ∈ E , the thermal resistance betweeni and j is
represented as a lumped parameterRij , with Rji = Rij by

convention. The inputs to the building model are summa-
rized here:ṁin

i denotes the mass flow rate of the supply air,
Q̇ri denotes the heat gain due to reheating that may occur
at the VAV box, Q̇inti denotes the internal heat gain (i.e.,
the rate of heat generated by occupants, equipments, lights,
etc.), andQ̇exti denotes the external heat gain (i.e., the rate
of solar radiation). It is assumed that (i) the values ofCi
andRij are known parameters obtained based on building
structures and materials, (ii) the supply air temperatureT s

is assumed to be a constant here, and (iii) the (estimation of)
the outside temperatureTo and the heat gainṡQr, Q̇int, Q̇ext

are available based on historical data, weather forecast, and
sensor measurements.

A good estimate of the major parameters (e.g. thermal resis-
tance, thermal conductivity, heat exchange coefficient, etc.)
is very important for the effectiveness of the building ther-
mal model. These parameters can be either extracted from a
well-established building information model (BIM) or from
a data-driven system identification process. In the first ap-
proach, the goodness of the estimated parameters can be val-
idated by comparing the simulation of the building thermal
model with an EnergyPlus simulation of the BIM [9]. In the
second approach, a (wireless) sensor network can be used to
collect the measurement data of indoor space temperature,
ambient temperature, occupancy information, supplied air
mass flow rate, and electricity usage [3]. Then system identi-
fication techniques can be employed to estimate parameters
using the building thermal model and the measured data. In
this paper, we assume all parameters used in the model have
already been well estimated using aforementioned methods.

In the following, a compact state-space representation is pre-
sented for building thermal dynamics. To establish a Markov
chain analogy in the next section, the outside temperature is
also taken as a “virtual state”Tn+1 to the building system.
We assign a very large “virtual capacitance” to the outside
node:Cn+1 ≫ Ci, for i = 1, . . . , n. LettingCn+1 → ∞,
the dynamic equations are derived from the energy balance
laws:

dT

dt
= AT + L(T, U, Q̇) (1)

where the state vectorT := [T1, . . . , Tn+1]
T , the control

vectorU := [ṁin
1 , . . . , ṁ

in
N , 0, . . . , 0]T , and the heat gain

vectorQ̇ := [Q̇1, . . . , Q̇N , 0, . . . , 0]T .

• The transition rate matrixA is a(n+1)× (n+1) matrix
is given by

Aij =





0, if j 6= i, (i, j) /∈ E

1/(CiRij), if j 6= i, (i, j) ∈ E

−
∑
k 6=i Aik, if j = i, (i, j) ∈ E

(2)
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• The nonlinear function is given by





Li(T, U, Q̇) =
CpaUi(T

s − Ti) + Q̇i
Ci

, i = 1, . . . , N

Li(T, U, Q̇) = 0, i = N + 1, . . . , n

Li(T, U, Q̇) = η, i = n+ 1

whereCpa is the specific heat capacitance of the supply
air andQ̇i is the total heat gains from all sources

Q̇i(t) = Q̇ri (t) + Q̇inti (t) + Q̇exti (t).

The functionη(t) ∈ R is chosen such thatη(t) = Ṫo(t),
the derivative of the outside temperature. Note that the
entries in the last row ofA approach0 asCn+1 → ∞
(since they are of the form1/(Cn+1Rn+1,j)). In the limit,
Ṫn+1 = η(t), which givesTn+1(t) = To(t) for all t ≥ 0.

Remark 1 Note that the linear termAT in (1) captures
the thermal interactions of neighboring nodes. The nonlin-
ear termL(T, U, Q̇) in (1) can be interpreted as a current
source injected into the RC-network, except that the source
strength depends on the “voltage”T . Thus, the building ther-
mal model can be thought as a RC-network model with ad-
ditional current sources, where the source strengths depend
on the voltage of nodes they are connected to.

3 Reduced-order Building Thermal Model

3.1 Markov chain analogy to linear dynamics

In this section, we show that the linear part of the building
thermal model (1), given below

dT

dt
= AT (3)

is analogous to acontinuous-time Markov chain. This anal-
ogy will be used later in this paper to obtain the optimal
aggregation of the state space through a recently developed
Markov chain aggregation method [8].

Consider a scalar-valued functionV (t) :=
∑

i∈V CiTi(t).
As shown in [6],V (t) is an invariant quantity, i.e.,V (t) =
V (0) for all t ≥ 0 due to the fact that the matrixA is a
intensity matrix, i.e., every row sum is equal to zero, all
diagonal entries are negative, and all non-diagonal entries
are non-negative (see (2)). Define a row vectorf with fi =
CiTi/V (0) for i ∈ V . Then, one can verify that

• The vectorf is a probability distribution vector, i.e.,∑
i∈V fi(t) ≡ 1 for all t ≥ 0.

• The vectorf satisfies the following dynamic equation

df

dt
= fA ⇒ f(t) = f(0)eAt.

Due to the special structure of the matrixA, the set{P (t):=
eAt}t≥0 forms a transition semigroup: For any t, s ≥ 0,
(i) P (0) = I, (ii) P (t) is a stochastic matrix, and (iii)
P (t+ s) = P (t)P (s). Consider a continuous-time Markov
chain {X(t)}t≥0 on the state spaceV with the transition
semigroup{P (t)}t≥0 [23]. Let g(t) denote its probability
distribution at timet, i.e., gi(t) = Prob(X(t) = i) for
any i ∈ V . If we take f(0) as the initial distribution of
{X(t)}t≥0, then

g(t) = g(0)P (t) = f(0)eAt = f(t).

The Markov chain analogy is now clear. Starting from the
same initial distribution, the probability distribution of the
continuous-time Markov chain{X(t)}t≥0 is equal to the
thermal distribution of the linear thermal model (3).

For any ergodic Markov chain, there exists a unique
stationary distribution π (obtained as a solution to
πA = 0), whereby starting from any initial distribution,
limt→∞ g(t) = π. For linear thermal model (3), the associ-
ated Markov chain is shown to be ergodic in [6], and the
stationary distribution is given by:

πi =
Ci∑
j∈V Cj

, i ∈ V . (4)

The notation(π, P ) is used to denote a Markov chain with
the transition matrixP and the stationary distributionπ. For
more details on continuous-time Markov chains, we refer
the reader to [23] and references therein.

3.2 Model reduction via aggregation

An aggregation methodology is considered in this paper for
the model reduction purpose: Mathematically, suppose the
goal is to reduce the state space dimension fromn to m,
wherem ≤ n is a (user-specified) number of super-nodes or
degree of reduction. The coordinate information of aggre-
gation is defined by apartition functionφ : V → V̄, where
V̄ = {1, . . . ,m + 1} denotes the set of “super-nodes” for
the reduced-order model, and recall thatV = {1, . . . , n+1}
denotes the set of nodes for the full-order model. A partition
function is an onto function but possibly many-to-one. The
elements of̄V are the super-nodes, and for everyk ∈ V̄ , the
inverse mappingφ−1(k) ⊂ V denotes the group of nodes in
the full-order model that are aggregated into thekth super-
node using the partition functionφ.

For each super-nodek ∈ V̄, we introduce a super-
temperatureT̄k, a super-capacitancēCk, and a super-
resistanceR̄kl. For a givenφ, the reduced-order model for
(3) has the form:

dT̄

dt
= Ā(φ)T̄ , (5)

whereT̄ = [T̄1, . . . , T̄m+1]
T denotes the super-temperature

vector, andĀ(φ) denotes the(m + 1) × (m + 1) super-
transition-rate matrix. The Markov chain analogy also works
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for the reduced-ordermodel (5) with the associated transition
semigroup{P̄ (t) := eĀ(φ)t}t≥0.

Recall that the outside node is a virtual(n+1)th node inV .
We also take the outside node as a virtual(m+1)th node in
V̄. Thus, we are interested in those partition functions such
that the building node set{1, . . . , n} is partitioned into the
super-node set{1, . . . ,m}, and the(n+ 1)th outside node
has a one-to-one correspondence to the(m + 1)th super-
node. In this paper, the optimal partition function is chosen
through the Markov aggregation method described below.

3.3 Optimal aggregation of Markov chain

In this section, we summarize our recently developed
Markov aggregation method [8]. Consider two Markov
chains (π, P ) and (π̄, P̄ ) defined on two different state
spacesV and V̄ , respectively. To compare two chains on
the same state spaceV , we apply the lifting technique by
defining theπ-lifting transition matrix of(π̄, P̄ ) as:

P̂
(π)
ij (φ) =

πj∑
k∈ψ(j) πk

Pφ(i)φ(j), i, j ∈ V (6)

whereψ(j) = φ−1 ◦φ(j) denotes the set of states belonging
to the same group as thejth state. The Kullback-Leibler
(KL) divergence rate is employed as a “probability distance”
to quantify the differences between(π, P ) and(π̄, P̄ ):

Rφ(P‖P̄ )) =
∑

i,j∈V

πiPij log
(
Pij/P̂

(π)
ij (φ)

)
.

The optimal aggregation problem is given below:

min
φ,P̄

Rφ(P‖P̄ )

s.t. P̄1 = 1, P̄ ≥ 0.

As shown in Theorem2 of [8], for a fixed (whether optimal
or not) partition functionφ, the optimal aggregated Markov
chain(π̄(φ), P̄ (φ)) has the form:

P̄kl(φ) =

∑
i∈φ−1(k)

∑
j∈φ−1(l) πiPij∑

i∈φ−1(k) πi
, k, l ∈ V̄ (7)

where the stationary distribution of̄P (φ) is given by

π̄k(φ) =
∑

i∈φ−1(k)

πi, k ∈ V̄ . (8)

As a result, the optimal aggregation problem reduces to find-
ing only anoptimal partition functionφ∗ : V → V̄ such that

φ∗ ∈ arg min
φ

Rφ(P‖P̄ (φ)). (9)

It is shown in [8] that solving the optimization problem (9)
exactly is difficult when degree of reductionm ≥ 2. Instead,
a heuristic spectral partitioning algorithm is proposed toob-
tain a suboptimal solution of (9): For the bi-partition prob-
lem, φ∗ is obtained using the sign-structure of the second
eigenvector of the symmetric matrix̃P = 1

2 (Π
1

2PΠ− 1

2 +

Π− 1

2PTΠ
1

2 ), whereΠ = diag(π). The sub-optimal solu-
tion of the multi-partition problem is obtained via recursive
application of the bi-partition algorithm.

3.4 Optimal reduced linear dynamics

In this section, we apply the Markov aggregation method to
obtain the optimal reduced linear thermal model. Discretiz-
ing the system with a small step-size∆t, we consider the
Markov transition matricesP (∆t) and P̄ (∆t) associated
with the full and reduced building models, respectively. We
can approximately expressP (∆t) = I + A∆t + O(∆t2)
andP̄ (∆t) = I + Ā(φ)∆t + O(∆t2). SubstitutingP (∆t)
andP̄ (∆t) into (7), fork, l ∈ V̄, we have

1l{k=l} + Ākl(φ)∆t+O(∆t2)

=

∑
i∈φ−1(k)

∑
j∈φ−1(l) πi(1l{i=j} +Aij∆t+O(∆t2))

∑
i∈φ−1(k) πi

= 1l{k=l} +

∑
i∈φ−1(k)

∑
j∈φ−1(l) πiAij∑

i∈φ−1(k) πi
∆t+O(∆t2).

By matching terms on both sides of above equation, we ob-
tain the formula for the optimal super-transition-rate matrix

Ākl(φ) =

∑
i∈φ−1(k)

∑
j∈φ−1(l) πiAij∑

i∈φ−1(k) πi
, k, l ∈ V̄. (10)

By substituting (2) and (4) into (10), we can expressĀ as:

Ākl(φ) =





∑
i∈φ−1(k)

∑
j∈φ−1(l) 1/Rij∑

i∈φ−1(k) Ci
, k 6= l

−
∑

k̃ 6=k

Ākk̃(φ), k = l
(11)

The transition rate matrix structure of̄A implies that we can
also define super-quantities to form a RC-network. For the
kth super-node, by substituting (4) into (8), we obtain the
optimal stationary distribution:

π̄k(φ) =
∑

i∈φ−1(k)

πi =

∑
i∈φ−1(k) Ci∑

l∈V̄

∑
j∈φ−1(l) Cj

. (12)

Recall that the stationary distribution of the aggregated
Markov chain can also be represented as (see (4)):

π̄k(φ) =
C̄k(φ)∑
l∈V̄ C̄l(φ)

(13)
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where C̄k(φ) denotes thesuper-capacitancefor the kth
super-node. By comparing (12) and (13), we obtain:

C̄k(φ) =
∑

i∈φ−1(k)

Ci. (14)

By using (11) and (14), we obtain the formula for thesuper-
resistancefor any two adjacent super-nodesk andl:

R̄kl(φ) =
1

C̄k(φ)Ākl(φ)
=

1∑
i∈φ−1(k)

∑
j∈φ−1(l) 1/Rij

.

The above well-defined super-quantities provide an intuitive
justification of the aggregation approach. The reduced-order
linear model (5) corresponds to a reduced RC-network with
super-capacitances and super-resistances given above.

Consider a scalar-valued functionV̄ (t):=
∑
k∈V̄ C̄k(φ)T̄k(t).

One can verify that̄V (t) = V̄ (0) for all t ≥ 0 due to the
RC-network structure of the reduced linear model. Choose
the initial condition for the reduced-order model (5) as
T̄k(0) =

∑
i∈φ−1(k)(Ci/C̄k(φ))Ti(0) for k ∈ V̄ , then

V̄ (0) =
∑

k∈V̄

∑

i∈φ−1(k)

CiTi(0) =
∑

i∈V

CiTi(0) = V (0).

This implies that the invariant quantity of the linear thermal
dynamics is unchanged after the aggregation. Thus, we can
define an aggregated probability distribution:

f̄k =
C̄k
V̄ (0)

T̄k, k ∈ V̄ . (15)

Using the lifting technique similar to (6), we define a lifted
probability distribution

f̂i =
πi∑

j∈ψ(i) πj
f̄φ(i), i ∈ V . (16)

Let T̂ denote the lifted temperature on the original state
spaceV . The lifted distribution can also be expressed as

f̂i =
Ci
V (0)

T̂i, i ∈ V . (17)

Substituting (4) and (15) into (16), we have

f̂i =
Ci∑

j∈ψ(i) Cj

C̄φ(i)

V̄ (0)
T̄φ(i) =

Ci
V (0)

T̄φ(i) (18)

where we use the fact that̄Cφ(i) =
∑

j∈ψ(i) Cj andV̄ (0) =

V (0). By comparing (17) and (18), we have the explicit
expression for the lifted temperature

T̂i = T̄φ(i), i ∈ V .

Thus, we can compare the full and reduced-order models by
directly comparingTi andT̄φ(i) for each nodei.

3.5 Reduced nonlinear building thermal model

In this section, we aggregate the nonlinear part of building
thermal model using the same partition function obtained
from the analysis of the linear thermal dynamics. Due to the
current source interpretation of nonlinear termL(T, U, Q̇)
(see Remark 1), the current sources connecting to the same
super-nodes are directly added up to form a super-current
source for the corresponding super-node:

• For k = 1, . . . ,m, the aggregated nonlinear part thermal
dynamics is given by:

L̃k(T, U, Q̇) =
∑

i∈φ−1(k)

CiLi(T, U,Q)/C̄k(φ)

= (Cpa(T
sŪk(φ) − W̃k(φ)) + ˙̄Qk(φ))/C̄k(φ) (19)

whereŪk(φ) :=
∑

i∈φ−1(k) Ui,
˙̄Qk(φ) :=

∑
i∈φ−1(k) Q̇i,

andW̃k(φ) :=
∑

i∈φ−1(k) UiTi.
• Fork = m+1, the aggregated nonlinear thermal dynamics

is given by:
L̃m+1(T, U, Q̇) = η.

The construction here is to make sureT̄m+1(t) = To(t)
in the reduced-order model (21) described later.

SinceU andQ are external inputs to the full-order model,
we can also takēU(φ) and ˙̄Q(φ) as thesuper-inputsto the
reduced-order model. One problem is that the term̃W (φ)
depends onT , which is the state vector of the full-order
model. We usēTk to approximate theTi that belongs to the
samekth group, and obtain an approximation tõWk(φ):

W̄k(φ) :=
∑

i∈φ−1(k)

UiT̄k = Ūk(φ)T̄k, k = 1, . . . ,m.

ReplacingW̃k(φ) by W̄k(φ) in (19), we can approximate
L̃k(T, U, Q̇) by

L̄k(T̄ ,Ū(φ), ˙̄Q(φ))

=
(
CpaŪk(φ)(T s − T̄k) + ˙̄Qk(φ)

)
/C̄k(φ)

(20)

for k = 1, . . . ,m andL̄m+1(T̄ , Ū(φ), ˙̄Q(φ)) = η. By com-
bining the aggregated linear dynamics (5) with the aggre-
gated nonlinear dynamics (20), we obtain the reduced-order
building thermal model:

dT̄

dt
= Ā(φ)T̄ + L̄(T̄ , Ū(φ), ˙̄Q(φ)). (21)
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Fig. 2. RC-network representation of the four-zone building shown
in Fig. 1, whereQ̇i and∆Hi = CpaUi(T

s
−Ti) denote the total

heat gain and heat exchange for theith zone, respectively.

Remark 2 Similar to the full model (1), the reduced
model (21) also corresponds to a RC-network defined with
super-nodes and super-edges. The linear termĀ(φ)T̄ cap-
tures the aggregated thermal interactions of the neighboring
super-nodes, and the nonlinear termL̄(T̄ , Ū(φ), ˙̄Q(φ)) can
be interpreted as the aggregated current sources connecting
to the super-nodes. Thus, the model reduction method pro-
posed in this paper preserves the RC-network structure of
the building thermal model.

Remark 3 The reduced-order model so far depends on the
choice of the partition functionφ. The optimal partition func-
tionφ∗ can be obtained by applying the recursive bi-partition
algorithm to Markov chain corresponding to the linear ther-
mal dynamics. We should also mention that, in practice, one
can also directly choose a sub-optimalφ∗ based on physi-
cal intuition (e.g., floor plans in a multi-zone building), or
some other kinds of expert-based heuristics.

4 Simulation and Discussion

In this section, we consider the four-zone building shown in
Fig. 1 to demonstrate the aggregation-based model reduction
method proposed in this paper. Each of the four zones/rooms
has an equal floor area of5m×5m and each wall is3m tall.
Room1 has a small window (5m2) on the north facing wall,
whereas rooms2 and 4 have larger windows (7m2 each)
on the east facing wall. Room3 does not have a window.
The supply air temperature of the HVAC system is fixed at
T s = 12.8◦C. The maximum supply air mass flow rate for
each room is0.25kg/s. The outside temperatureTo and heat
gainsQ̇ are taken as the same as those used in our previous
work (see Figure 2 in [5]). All temperatures are initialized
at 24◦C. The time step size is chosen as∆t = 10 minutes
and the total simulation time is24 hours.
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Fig. 3. Modeling error and computation time for aggregatingthe
linear thermal dynamics with respect to the number of partitions.
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Fig. 4. Four zone temperaturesT1, . . . , T4 simulated by the full
36th-order model.

4.1 Recursive bi-partition of building graph

The RC-network representation of the four-zone build-
ing model is shown in Fig. 2. There are total36 build-
ing nodes plus1 outside node:4 zone nodes{1, . . . , 4},
8 internal-wall nodes{5, . . . , 12}, 8 internal-floor nodes
{13, . . . , 20}, 8 internal-ceiling nodes{21, . . . , 28}, 8 ex-
ternal wall nodes{29, . . . , 36}, and1 outside node{37}.
The values of thermal resistances and thermal capacitances
are obtained from Carrier Hourly Analysis Program [1]. The
outside node is assumed to have a very large capacitance
C37 = 1010KJ/(m2K) for constructing the Markov chain.

The recursive bi-partition algorithm, described in Sec-
tion 3.3, is used to find multiple partitions of the building
graph based on the analysis of the linear thermal dynam-
ics. For example, for the5-partition, the algorithm returns
five groups of nodes with clear physical intuition: groupi
contains all nodes connected to roomi, for i = 1, . . . , 4,
and group5 consists of the single outside node{37}. More
detailed partition results were reported in our previous
work [6]. In Fig. 3, we plot the modeling error in terms
of KL divergence rate with respect to the number of parti-
tions. Note that them-partition corresponds to the(m− 1)
super-nodes and1 outside node. In Fig. 3, we also plot
the computation time for obtaining each partition function
through the recursive bi-partition algorithm. We observe
that the modeling error monotonically decreases and com-
putation time monotonically increases as the number of
partitions increases. The modeling error plot in Fig. 3 will
also be used in the next section as a conservative guideline
for the model reduction of the nonlinear model.
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Fig. 5. Simulation comparison of nonlinear building thermal model
with its linearized model. The simulation errors are given by
ei = T̃i − Ti for i = 1, . . . , 4, whereTi is the temperature simu-
lated by the full-order nonlinear model and̃Ti is the temperature
simulated by the linearized model.

1st-order reduced model

4th-order reduced model

18th-order reduced model

Fig. 6. Four zone temperature simulation errors are given by
ei = T̂i − Ti for i = 1, . . . , 4, whereTi is the temperature simu-
lated by the full-order model and̂Ti is the lifted temperature sim-
ulated by the1st-order,4th-order, and18th-order reduced models.

4.2 Simulation of reduced-order models

The full-order model (1) is used to represent the full build-
ing thermal dynamics, with36 building nodes plus1 outside
node. The partition functions obtained in Section 4.1 are
used to construct the reduced-order model (21). All simula-
tions reported here are open-loop simulations with mass flow
ratesṁin

i for i = 1, . . . , 4 taken as random binary signals
in the range of0kg/sec to 0.25kg/sec. The Matlab function
idinput is used to generate the required random binary sig-
nals. To test the goodness of the reduced-order models, we
compare the four zone temperatures simulated by the full
and reduced-order models. When simulated by the full-order
model, the temperature of roomi is denoted byTi. When
simulated by the reduced-order model, the lifted tempera-
ture of roomi is denoted byT̂i. The ith zone temperature
simulation error is given byei(j∆t) = T̂i(j∆t) − Ti(j∆t)
for j = 0, . . . , Ns, whereNs = 144 here.

All simulations reported here are implemented in Matlab us-
ing the fourth-order Runge-Kutta method with a fixed time
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Fig. 7. Simulation error and simulation time for thekth-order
reduced model. The error-bar plot depicts the mean and standard
deviation of the curve for20 independent runs.

step∆t = 10 minutes. Note that∆t is chosen as the same
for both full and reduced-order models for a fair compar-
ison of the their simulation times. We run20 independent
simulations for assessing allkth-order reduced models for
k = 1, . . . , 36. Note that thekth-order reduced model corre-
sponds to the(k+1)-partition described in Section 4.1 with
k super-building nodes and1 outside node. For each run of
simulation, we independently generate the random binary
signals as inputs and all reduced-order models are simulated
with the same generated inputs. Taking one run for example,
Fig. 4 shows the temperatures of the four zones simulated by
the full 36th-order nonlinear building thermal model. Fig. 5
compares the simulation results of the full36th-order model
and its linearized model. The system linearization point is
taken as the initial condition of the nonlinear model. We
observe that the performance of the linearized model is de-
graded as the actual operation points move away from the
vicinity of system linearization point. Fig. 6 shows the tem-
perature simulation errors corresponding to reduced-order
models with varying degree of reduction: (i)1st-order re-
duced model (1 super-node representing all building nodes),
(ii) 4th-order reduced model (4 super-nodes representing4
groups of nodes associated with4 zones), and (iii)18th-order
reduced model. We observe from Fig. 6 that, as expected,
simulation errors decrease as the order of the reduced model
increases. For the18th-order model, the simulation error for
all four zones are all between the range of−2◦C to 2◦C.
Note that even in a building that meets ASHRAE thermal
comfort standards, the temperature inside a zone may vary
by up to3◦C [2].

For each run of simulation, the simulation error for thekth-
order model is defined as a root mean squared error averaged
over four zones:

Errk :=
1

4

4∑

i=1

√∑Ns

j=0(T̂i(j∆t) − Ti(j∆t))2

Ns + 1
.

In Fig. 7, we depict the error-bar plot of the simulation er-
rors for20 independent runs, where error bars quantify the
deviations of different simulation runs. In Fig. 7, we also
depict the error-bar plot of the simulation times for running
Matlab simulations with different reduced-order models. For
different degree of reduction, the total computational com-
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plexity can be evaluated by summing up the computation
time in Fig. 3 to the simulation time in Fig. 7. As expected,
we observe from Fig. 7 that the simulation error decreases
while simulation time increases as the order of the reduced
model increases. We also observe from Fig. 7 that the simu-
lation error decreases quickly and simulation time increases
slowly when model order is less than18. For the18th-order
model, the simulation error drops down to an acceptable
level, and the simulation time still maintains in the same
level as compared to those lower-order models. Thus, one
may take18th-order model as a good candidate to approx-
imate the full-order model with acceptable simulation error
and much lower simulation time. In practice, one can make
a tradeoff between the simulation accuracy and computa-
tional complexity of the reduced order model by choosing
an appropriate order of reduction.

4.3 Discussion

First of all, the open loop tests considered in this paper may
not be sufficient for assessing the proposed model reduc-
tion method. More open loop assessments with random in-
puts need to be considered to fully excite nonlinear build-
ing dynamics. More closed loop assessments with various
building control profiles also need to be considered for prac-
tical implementation in real buildings. On the other hand,
the full-order model considered here does not have inter-
zone convection effects that is difficult to model due to the
complex physics that govern this phenomena. Recently, a
data-driven identification scheme was proposed to obtain a
RC-network model of convection among zones [16]. The
aggregation-based method is immediately applicable if the
full-order model is augmented by such convection models.

In current work, the model reduction method needs to start
from a fully parameterized baseline model. The reduced-
order models are then obtained by analyzing the baseline
model. In future, we plan to apply the learning-based ap-
proaches [7], which only require locally exploiting the build-
ing graph through simulations, to search for the optimal co-
ordination of aggregation. We are also developing decentral-
ized optimal control strategies for energy-efficient buildings
based on the aggregated building model. The main idea is to
use aggregated models to capture the mean field or net effect
of the entire building envelope on any individual zone. Then
an optimal control law for each zone is developed as a func-
tion of local zone temperature and mean field information
captured by the aggregated model. See [5] for more details.

5 Conclusions

We proposed a method to reduce the order of a multi-zone
building thermal model via aggregation of states. We first
establish a Markov chain analogy to the linear part of the
building model. A recently developed Markov aggregation
method is then applied to obtain the optimal aggregation of
the state space. Extension of the aggregation method to the

nonlinear part of the model is carried out by aggregating in-
puts accordingly into the super-inputs. A key advantage of
the proposed method is that the reduced model is still a RC-
network model with the same structure as the original model
but with less number of nodes and less parametric informa-
tion. This makes the reduced model useful not only for sim-
ulation and analysis but also for building design iterations.
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