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Abstract

This paper proposes an aggregation-based model reducgtimochfor nonlinear models of multi-zone building thermghdmics. The
full-order model, which is already a lumped-parameter apipnation, quickly grows in state space dimension as thebarmof zones
increases. An advantage of the proposed method, apart feamg bpplicable to the nonlinear thermal models, is thatr¢itkiced model
obtained has the same structure and physical intuition @sotlyinal model. The key to the methodology is an analogyeeh a
continuous-time Markov chain and the linear part of the it@rdynamics. A recently developed aggregation-based adetti Markov
chains is employed to aggregate the large state space ofitherder model into a smaller one. Simulations are progtide illustrate
tradeoffs between modeling error and computation time.
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1 Introduction o Upstream
Outside Air VAV

A typical building HVAC (Heating, Ventilation, and Air l T
Conditioning) system consists of AHUs, supply ducts, and )4 ™

. Downstream

in in
ym m;

terminal boxes; see Fig. 1. The AHU (Air Handling Unit) S—AHU '

supplies conditioned air to terminal boxes at so-called

leaving-air temperature and humidity. Each terminal box de >
|

Zone 1 Zone 2

livers air to one or more zones. Using reheat coil, the supply
air temperature can be increased beyond the AHU leaving Zone 3 Zone 4
temperature. In a VAV (Variable-Air-Volume) system, the > 15 E
terminal box can vary the supply air mass flow rate through Return Air m? m;
dampers. A controller at each terminal box can be used to | <@ <—(o) =
maintain the temperature of a zone at a specified value by

controlling the mass flow rate of air supplied to the zone. Fig. 1. The configuration of a four-zone building HVAC system

For a building HVAC system, conventional controls include simple and normally work with single objective, e.g. refer-
rule-based controls and single-loop PID controls that are ence tracking, offset prevention, etc. But these contras a

known not to be optimal in either thermal comfort or energy
T . consumption for building HVAC systems [11,20,24]. In con-
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lay, an actuator, etc.) to track the set-points providechigy t The building thermal model presented here is a nonlinear
supervisory-level control. A closed-loop feedback conhtro model with a linear term capturing the nodal thermal inter-
(e.g. PID control) is usually used to achieve the set-point actions and a bilinear term due to the heat flux into the zone
tracking performance. Well-tuned local-loop controlleas space. Due to the nonlinear nature of the model, the num-
enhance the space thermal comfort, reduce energy use, antler of available techniques for model reduction is limited.
extend the componentlife. The overall energy efficiency and Balanced truncation methods for nonlinear systems use con-
control effectiveness of the building HVAC system is deter- trollability and observability energy functions of a syste
mined by the performance and coordination of controls in to find the reduced realizations [17,22]. Lall al. in [19]
both levels. use empirical Gramians to determine the importance of a
particular subspace in terms of its contribution to the tapu
Utilization of physical models in supervisory-level camitr  output behavior. These energy functions or empirical Grami
can largely minimize building-wide energy consumptionand ans however are difficult to compute in practice [14]. More-
properly satisfy thermal comfortrequirements [11]. Thepe over, the reduced models generated by truncation methods
formance of model-based controls highly relies on the mod- do not retain the physical intuition of the full model, i.e.,
els that are used to describe the thermal behavior of build-truncated states of the reduced model usually have no phys-
ing zone temperatures and capture the energy consumpical meanings.
tion of building operations. In this paper, we capture the
building thermal dynamics using energy and mass balanceln this paper, we propose aggregation-basednodel re-
equations. A thermal resistor-capacitor (RC) network nhode duction method that preserves the RC-network structure of
is established to represent thermal dynamics of a multi- the nonlinear building thermal model. This is achieved by
zone building with nodes representing zones or internal sur obtaining super-nodes via aggregation of building nodes.
face points. This model can be used for many purposesThe aggregation-based approach proposed in this paper is
in building controls. For example, the models can be used based on model reduction method of Markov chains that
for off-line simulations that advise the system operators has recently been developed in [8]. The main idea here is
with the best operating strategy, e.g. simulation-agssbe- to connect the linear part of building thermal model to a
trol [24]. The models can also be used for on-line opti- continuous-time Markov chain, and apply the aggregation
mizations and controls that determine optimal operatitg se method of Markov chains to systematically find optimal co-
points for local feedback controllers, e.g. Model Pregieti  ordination of aggregation and the optimal linear dynamics.
Control (MPC) [15, 20, 25]. Besides enabling advanced con- The nonlinear model part is then aggregated accordingly
trols, the models can also provide useful capabilitiesé¥p  based on the same optimal coordination. The major advan-
formance analysis [9] and system identification [3]. tage of the proposed aggregation-based method compared to
truncation-based methods is thgucture-preservingrop-
Model reduction techniques of building thermal models are erty in the sense that the reduced model is still a RC-network
essentially important for many practical estimation ana-co  with parameters and nodes maintaining the same physical
trol applications. First, it is worth noting that there amc meaning as the full building model. The other advantage is
puter aided building modeling tools that result in complex that it does not suffer from the computational difficultids o
RC-network models similar to the one presented in this pa- empirical Gramians or energy functions.
per, e.g., EnergyPlus [10] and TRNSYS [18]. These com-
plex building models could be used for off-line computer For practical control applications, a linear model could be
simulations to accurately predict building temperature-ev  obtained by linearizing the nonlinear model around operat-
lution and energy consumption. But the complexity of these ing points. Then the linearized model can be used for de-
models grows exponentially as the number of building zones signing linear quadratic regulator, Kalman filter, and déine
increases [9,13,14]. A large amount of measurement data ismodel predictive control, etc. If the actual operation p®in
required to identify the parameters used for these complexmove away from the vicinity of system linearization point,
models, which usually causes data over-fitting problems andthe performance of the linearized model will be degraded
high modeling uncertainties [10]. Thus it is necessary to and a running linearization is needed to ensure the control
consider the reduced models with simpler structure and lessperformance [21]. Besides considering linearzied models,
number of parameters for the ease of parameter estimatiorthe direct utilization of nonlinear models such as the fotla
and data fitting. Second, the model complexity is a major reduced models presented in this paper could also be benefi-
issue for implementing the online optimization-based con- cial for the building HVAC community. Interests in nonlin-
trol schemes, e.g. MPC, particularly if the optimization is ear optimization techniques with nonlinear building madel
to be performed with a day-long prediction horizon to take have been on the increase in recent years [11]. Some novel
advantage of slow thermal responses of buildings as well ascontrol methods are also proposed by exploring the specific
daily variations in environment and energy prices [20, 25]. structure of the nonlinear building thermal model. In [2#],
The complexity and accuracy of models both play important Hammerstein-Wiener nonlinear MPC is proposed and stud-
roles for the success of MPC. It is essential to develop re- ied, where the original nonlinearities included in a builyli
duced models to achieve a trade-off between prediction ac-thermal dynamics are handled through nonlinear static map-
curacy and model complexity. The focus of this paper is on pings. In [5], a decentralized optimal control strategies i
model reduction of multi-zone building thermal dynamics. proposed to improve the building energy efficiency, where



the reduced models developed in this paper is used to cap-convention. The inputs to the building model are summa-
ture the net effect of the entire building envelope on any rized herern!™ denotes the mass flow rate of the supply air,

individual zone. Q7 denotes the heat gain due to reheating that may occur

at the VAV box, Q" denotes the internal heat gain (i.e.,

The method proposed in this paper is an extension of its the rate of heat generated by occupants, equipments, lights
conference version [6], where we only apply the aggrega- etc.), andQ¢** denotes the external heat gain (i.e., the rate
tion method to a linear building thermal model. This paper of solar radiation). It is assumed that (i) the values(tf
extends the aggregation method to a more realistic nomlinea and Rr,; are known parameters obtained based on building
building thermal model, and assesses the performance andtructures and materials, (ii) the supply air temperatfite
computational complexity of reduced-order models through s assumed to be a constant here, and (iii) the (estimatjon of
numerical simulations. The aggregation-based method pro-the outside temperatuf®, and the heat gain@”, Q"*, Q¢

posed here are related to model reduction techniques forgre available based on historical data, weather forecadt, a
grey-box models [4], where the model structure and param- sensor measurements.

eters are obtained through the physical insights. The aggre

gated building model can be thought as a grey-box model . , .
and coordination of aggregation specifies the model struc-A 900d estimate of the major parameters (e.g. thermal resis-
ture. The aggregation-based method described here can alsfnce, thermal conductivity, heat exchange coefficient) et

be used to creates zoning approximations for building mod- 'S Very important for the effectiveness qf the building ther
els by combining zones together. In a very recent work [12], Mal model. These parameters can be either extracted from a
a Koopman operator approach is proposed to Systemaﬂcm|ywell-estak_JI|shed bwldmg qurmgtlon model (BIM) or_from
create zoning approximation for buildings, where the domi- & data-driven system identification process. In the first ap-
nant modes of thermal behavior are extracted from the build- Proach, the goodness of the estimated parameters can be val-
ing simulations. Then modes information is used to combine idated by comparing the simulation of the building thermal
multiple zones into single zones. The major difference is M0del with an EnergyPlus simulation of the BIM [9]. In the
that our method is directly based on the knowledge of build- S€cond approach, a (wireless) sensor network can be used to

ing descriptions, while the method in [12] is mainly based colle_ct the measurement data of indoor space temperature,
on data from building simulations. ambient temperature, occupancy information, supplied air

mass flow rate, and electricity usage [3]. Then system identi

fication techniques can be employed to estimate parameters

2 Full-order Building Thermal Model using the building thermal model and the measured data. In
this paper, we assume all parameters used in the model have

already been well estimated using aforementioned methods.
The focus of this paper is on model reduction of the build-
ing zone thermal dynamics, which suffer more of modeling
complexity than the AHU dynamics [6]. As a result, the
AHU dynamics are replaced by static gains in this paper . : . X .
without significant loss of accuracy. A lumped parameter chain analogy in the next section, the outside temperasgure i

model of resistances and capacitances is constructed to de@/SC taken as a *virtual statd’,.,; to the building system.
scribe the thermal dynamics of a multi-zone building, with V& @ssign a very large “virtual capacitance” to the outside

current and voltage being analogous to heat flow and tem—nhOdS:CnH. > G, fori = 121. ' ’”d I];ett'n%C”H - Ot?,l
perature, respectively. We only consider the interzone con € dynamic equations are derived from the energy balance

ductive heat transfer but ignore the convective heat teansf 12WS:
that occurs through the open windows, doors, and hallways.

In the following, a compact state-space representatioreis p
sented for building thermal dynamics. To establish a Markov

The3R2C models of surface elements (e.g., walls, windows, ar :

ceilings, and floors) are inter-connected to construct a RC- dt AT+ L(T.U,Q) @)
network model for building thermal dynamics [13]. The set

V:={1,...,n+1} denotes the set of nodes of the network. \; hare the state vectdF :— [T4,...,Tni1)7, the control

The nodes are assumed to be re-indexed so that theé\irst

nodes correspond tb ..., N physical zones, and the next

(n — N) nodes correspond to the points internal to the sur-

faces that appear due to tBe2C models. The lastn +1)th

node corresponds to the outside. e The transition rate matri¥ is a(n + 1) x (n+ 1) matrix
is given by

vector U := [ini",...,m%,0,...,0]7, and the heat gain
vectorQ :=[Q1,...,Qn,0,...,0]T.

For each nodé € V, the associated temperature and thermal
capacitance are denoted Asand C;, respectively. Le€

denote the set of all edges of the RC-network, where edges 0, it j#4, (5) ¢ €
represent pathways for conductive heat transports. For any Aij =19 1/(CiRij), if j#14,(i,5)e€E (2)
nodesi,j € &, the thermal resistance betweemnd j is S A f i (i) eE
represented as a lumped paramdigy, with R;; = R;; by = Lpi A W j =1, (1)) €



e The nonlinear function is given by

CoaUi(T* — T;) + Q;

Lz(TaUaQ): C. ’ Z:175N
Li(T,U,Q)=0, i=N+1,...,n

whereC,,, is the specific heat capacitance of the supply
air andQ); is the total heat gains from all sources

Qi(t) = Qi (t) + Q" (1) + Q5™ (¢).

The functiony(t) € R is chosen such that(t) = T,(t),

the derivative of the outside temperature. Note that the

entries in the last row ofA approach) asC,+; — o
(since they are of the fordy/ (Cp,+1Rp+1,5))- In the limit,

Tnt+1 = n(t), which givesT,, 1 (t) = T,(t) forall ¢ > 0.

Remark 1 Note that the linear termrdT in (1) captures

the thermal interactions of neighboring nodes. The nonlin-

ear termL(T, U, Q) in (1) can be interpreted as a current

source injected into the RC-network, except that the source

strength depends on the “voltadgE” Thus, the building ther-

mal model can be thought as a RC-network model with ad-
ditional current sources, where the source strengths depen

on the voltage of nodes they are connected to.

3 Reduced-order Building Thermal Model
3.1 Markov chain analogy to linear dynamics

In this section, we show that the linear part of the building
thermal model (1), given below

dr

= AT 3)

is analogous to aontinuous-time Markov chaifT his anal-
ogy will be used later in this paper to obtain the optimal

Due to the special structure of the matrxthe setf{ P(¢):=
e'},>o forms atransition semigroupFor anyt,s > 0,
(i) P(0) = I, (i) P(t) is a stochastic matrix, and (iii)
P(t+ s) = P(t)P(s). Consider a continuous-time Markov
chain {X (¢)}:>0 on the state spacg with the transition
semigroup{ P(t)}:>0 [23]. Let g(¢) denote its probability
distribution at timet, i.e., g;(t) = Probh( X (¢) = i) for
anyi € V. If we take f(0) as the initial distribution of
{X(t)}+>0, then

The Markov chain analogy is now clear. Starting from the
same initial distribution, the probability distributiorf the
continuous-time Markov chaifX (¢)},>¢ is equal to the
thermal distribution of the linear thermal model (3).

For any ergodic Markov chain, there exists a unique
stationary distribution = (obtained as a solution to
wA = 0), whereby starting from any initial distribution,
lim;_,~ g(t) = w. For linear thermal model (3), the associ-
ated Markov chain is shown to be ergodic in [6], and the
stationary distribution is given by:

_ G
Zjev Cj’

The notation(r, P) is used to denote a Markov chain with
the transition matrixP and the stationary distribution For
more details on continuous-time Markov chains, we refer
the reader to [23] and references therein.

1€V, 4)

T =

3.2 Model reduction via aggregation

An aggregation methodology is considered in this paper for
the model reduction purpose: Mathematically, suppose the
goal is to reduce the state space dimension froto m,
wherem < n is a (user-specified) number of super-nodes or
degree of reduction. The coordinate information of aggre-
gation is defined by gartition function¢ : ¥V — V), where

V = {1,...,m + 1} denotes the set of “super-nodes” for

aggregation of the state space through a recently developedhe reduced-order model, and recall tWat {1,...,n+1}

Markov chain aggregation method [8].

Consider a scalar-valued functidn(t) := 3, ., CiT;(t).

As shown in [6],V(¢) is an invariant quantity, i.e¥ (¢) =
V(0) for all ¢ > 0 due to the fact that the matrix is a
intensity matrix, i.e., every row sum is equal to zero, all
diagonal entries are negative, and all non-diagonal entrie
are non-negative (see (2)). Define a row vegtarith f;
C;T;/V(0) for i € V. Then, one can verify that

e The vector f is a probability distribution vector, i.e.,

Y icy fi(t) =1forallt > 0.
e The vectorf satisfies the following dynamic equation

4 _

dt =

fA

denotes the set of nodes for the full-order model. A partitio
function is an onto function but possibly many-to-one. The
elements of/ are the super-nodes, and for evérg V, the
inverse mapping (k) C V denotes the group of nodes in
the full-order model that are aggregated into iile super-
node using the partition functiop.

For each super-nodé € V, we introduce a super-
temperatureT},, a super-capacitanc€’,, and a super-
resistanceRy;. For a giveng, the reduced-order model for
(3) has the form: -

ar -, =

o = AT, (5)
whereT = [T1,...,T+1]T denotes the super-temperature
vector, andA(¢) denotes thgm + 1) x (m + 1) super-
transition-rate matrix. The Markov chain analogy also veork



for the reduced-order model (5) with the associated tramsit
semigroup{ P(t) := (@)} 5.

Recall that the outside node is a virtyal+ 1)th node inV.
We also take the outside node as a virtuaH 1)th node in

V. Thus, we are interested in those partition functions such eigenvector of the symmetric matrix =

that the building node sdtl, ..., n} is partitioned into the
super-node sefl,...,m}, and the(n + 1)th outside node
has a one-to-one correspondence to (the+ 1)th super-
node. In this paper, the optimal partition function is chrose
through the Markov aggregation method described below.

3.3 Optimal aggregation of Markov chain

In this section, we summarize our recently developed
Markov aggregation method [8]. Consider two Markov
chains (r, P) and (7, P) defined on two different state
spacesy and V), respectively. To compare two chains on
the same state spadg we apply the lifting technique by

defining ther-lifting transition matrix of(7, P) as:
p(m) T .
Pi(0) = =———Powe), “J€V  (6)
J Zkew(j) . (1) (4)
wherey(j) = ¢! o¢(j) denotes the set of states belonging

to the same group as thih state. The Kullback-Leibler
(KL) divergence rate is employed as a “probability distance
to quantify the differences betweén, P) and (7, P):

Z 7 Pyj 1og( ZJ/P W)( ))

i,jJEV

Ry (P||P))

The optimal aggregation problem is given below:

in Ry(P| P
min s(P|IP)
st. P1=1,P>0.

As shown in Theorer of [8], for a fixed (whether optimal
or not) partition functiony, the optimal aggregated Markov

chain(7(¢), P(¢)) has the form:
_ e p—1 e b—1 7Tsz —
Pulg) = e Zacomw Ty )
Dicp-i(k) i
where the stationary distribution ¢¥(¢) is given by
() = (8)

i€P

As a result, the optimal aggregation problem reduces to find-

: ¥V — V such that

(9)

ing only anoptimal partition functiony*

9" € argflin Ry(P|P(¢))

It is shown in [8] that solving the optimization problem (9)
exactly is difficult when degree of reduction > 2. Instead,

a heuristic spectral partitioning algorithm is proposedite
tain a suboptimal solution of (9): For the bi-partition prob
lem, ¢* is obtained using the sign-structure of the second
L2 P +
I1-2 PT1I2), wherell = diag(r). The sub-optimal solu-
tion of the multi-partition problem is obtained via recwesi
application of the bi-partition algorithm.

3.4 Optimal reduced linear dynamics

In this section, we apply the Markov aggregation method to
obtain the optimal reduced linear thermal model. Discretiz
ing the system with a small step-sizZet, we consider the
Markov transition matrice?(At) and P(At) associated
with the full and reduced building models, respectively. We
can approximately expresB(At) = I + AAt + O(At?)

and P(At) = I + A(¢)At + O(At?). SubstitutingP(At)
andP(At) into (7), fork,l € V, we have

Ly + Ar(9)At + O(AL?)
 Yieo1 2jeorq Tillji=jy + A At + O(AL?))
B Zieqzrl(k) i
Ziequ(k) Zg‘equ(z) miAij
Zieqﬁ*l(l@) i

= ]l{k:l} + At + O(AtQ).

By matching terms on both sides of above equation, we ob-
tain the formula for the optimal super-transition-rate rixat

. Dico-

1 o1 Tidij
A(6) = (k) 2o T

Ziequ(k) i 7
By substituting (2) and (4) into (10), we can exprekss:

Dico-1(k) 2ojes—1() L/ Rij

kleV. (10)

. k£l
Au(@) = Zoscomi) G (11)
=D Aue), k=1
k#£k

The transition rate matrix structure dfimplies that we can
also define super-quantities to form a RC-network. For the
kth super-node, by substituting (4) into (8), we obtain the
optimal stationary distribution:

@)= Y, m=

i€p—1(k)

2ico-1(k) Ci
Zle\? Zjedrl(l) Cj

(12)

Recall that the stationary distribution of the aggregated
Markov chain can also be represented as (see (4)):

Cr(9)

m(0) = ey Ci(0)

(13)



where C(¢) denotes thesuper-capacitancdor the kth
super-node. By comparing (12) and (13), we obtain:

Zc

[Aston

(14)

By using (11) and (14), we obtain the formula for theper-
resistancefor any two adjacent super-nodesand!:

1 1

Cr(®)Ar(9) Dico-1(k) 2ojed-

The above well-defined super-quantities provide an ingiti
justification of the aggregation approach. The reduceeord

Ry (¢) = I

linear model (5) corresponds to a reduced RC-network with

super-capacitances and super-resistances given above.

Consider a scalar-valued functidt{t):=>", ., Ck(¢) Tk (t).
One can verify thal/(t) = V(0) for all t > 0 due to the

RC-network structure of the reduced linear model. Choose

the initial condition for the reduced-order model (5) as

T1(0) = Y10y (Ci/ Cr(9))T;(0) for k € V, then
=Y Y GT(0) =) CTi(0) = V(0).
kevicop—1(k) %

This implies that the invariant quantity of the linear thafm

Thus, we can compare the full and reduced-order models by
directly comparindl’; and Ty, for each node.

3.5 Reduced nonlinear building thermal model

In this section, we aggregate the nonlinear part of building
thermal model using the same patrtition function obtained
from the analysis of the linear thermal dynamics. Due to the
current source interpretation of nonlinear tefn(l’, U, Q)

(see Remark 1), the current sources connecting to the same
super-nodes are directly added up to form a super-current
source for the corresponding super-node:

e Fork =1,...,m, the aggregated nonlinear part thermal
dynamics is given by:

LT U,Q) = > GCiLi(T,U,Q)/Ck(¢)
i€p—1(k)
= (Cpa(T* Ui () — Wi(9)) + Qi(9))/Ci(¢)  (19)
WhEVEUk(¢) =Dico—1(k) Ui Qn(¢) = e Qi

e Fork = m—|—1 the aggregated nonlinear thermal dynamics
is given by:

Eerl(Ta Ua Q) =1

dynamics is unchanged after the aggregation. Thus, we can The construction here is to make sufg ;1 (t) = T,(t)

define an aggregated probability distribution:
(15)

Using the lifting technique similar to (6), we define a lifted
probability distribution

-~ T

fi=—=—— i€ V.
2 jewi) T

- foi)s (16)

Let T denote the lifted temperature on the original state
space). The lifted distribution can also be expressed as

~ C; ~
f 70) iey a7)
Substituting (4) and (15) into (16), we have
~ Ci Co(i) - Ci -
fi==—F 50 Te) = Lo (18)
jevn G VO0) 0 T V(o)
where we use the fact thal; ;) = >,y C; andV(0) =

V(0). By comparing (17) and (18), we have the explicit
expression for the lifted temperature
ﬁ =

(l), i e V.

in the reduced-order model (21) described later.

SinceU and( are external inputs to the full-order model,
we can also také/ (¢) andQ(¢) as thesuper-inputgo the

reduced-order model. One problem is that the t%)
depends orfl", which is the state vector of the full-order
model. We usé’, to approximate th&; that belongs to the

samekth group, and obtain an approximationfﬁc(qs):

Z U’LTk:Uk(qs)Tka I{:l,...,
i€y (k)

m.

Fjeplacingwkw) by Wi (¢) in (19), we can approximate

Li(T,U(¢),
bl ( (20)
fork=1,...,mandL,, (T,U(¢), Q(¢)) = 7. By com-
bining the aggregated linear dynamics (5) with the aggre-

gated nonlinear dynamics (20), we obtain the reduced-order
building thermal model:

~T0) + Qu(9)) /C(0)

dr

= AT + L(T,U(6), Q(#))- 21)
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Fig. 2. RC-network representation of the four-zone bugdihown
in Fig. 1, where); andAH; = CpU;(T° — T;) denote the total
heat gain and heat exchange for tiie zone, respectively.

Remark 2 Similar to the full model (1), the reduced
model (21) also corresponds to a RC-network defined with
super-nodes and super-edges. The linear té{m)1T cap-
tures the aggregated thermal interactions of the neighgori

super-nodes, and the nonlinear tebti", U(4), Q(4)) can

be interpreted as the aggregated current sources congectin
to the super-nodes. Thus, the model reduction method pro-
posed in this paper preserves the RC-network structure of
the building thermal model.

Remark 3 The reduced-order model so far depends on the
choice of the partition functiod. The optimal partition func-
tion ¢* can be obtained by applying the recursive bi-partition
algorithm to Markov chain corresponding to the linear ther-
mal dynamics. We should also mention that, in practice, one
can also directly choose a sub-optingél based on physi-
cal intuition (e.qg., floor plans in a multi-zone building}, o
some other kinds of expert-based heuristics.

4 Simulation and Discussion

In this section, we consider the four-zone building shown in
Fig. 1 to demonstrate the aggregation-based model reductio

~
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Fig. 3. Modeling error and computation time for aggregating
linear thermal dynamics with respect to the number of pantst
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Fig. 4. Four zone temperaturds, ..., Ty simulated by the full
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4.1 Recursive bi-partition of building graph

The RC-network representation of the four-zone build-
ing model is shown in Fig. 2. There are totaés build-

ing nodes plusl outside noded zone noded1,...,4},

8 internal-wall nodes{5,...,12}, 8 internal-floor nodes
3,...,20}, 8 internal-ceiling nodeg21,...,28}, 8 ex-
ternal wall nodes(29,...,36}, and1 outside node{37}.

The values of thermal resistances and thermal capacitances
are obtained from Carrier Hourly Analysis Program [1]. The
outside node is assumed to have a very large capacitance
Cs7 = 10'°KJ/(m2K) for constructing the Markov chain.

The recursive bi-partition algorithm, described in Sec-
tion 3.3, is used to find multiple partitions of the building
graph based on the analysis of the linear thermal dynam-
ics. For example, for thé-partition, the algorithm returns
five groups of nodes with clear physical intuition: group
contains all nodes connected to roamfor ¢ = 1,...,4,

and groupb consists of the single outside nofi&7}. More

method proposed in this paper. Each of the four zones/roomsdetailed partition results were reported in our previous

has an equal floor area bifn x 5m and each wall iSm tall.
Room1 has a small window5m?) on the north facing wall,
whereas roomg and 4 have larger windows7n? each)
on the east facing wall. Room does not have a window.
The supply air temperature of the HVAC system is fixed at
T* = 12.8°C. The maximum supply air mass flow rate for
each room i$).25kg /s. The outside temperatuffg and heat

work [6]. In Fig. 3, we plot the modeling error in terms
of KL divergence rate with respect to the number of parti-
tions. Note that then-partition corresponds to then — 1)
super-nodes and outside node. In Fig. 3, we also plot
the computation time for obtaining each partition function
through the recursive bi-partition algorithm. We observe
that the modeling error monotonically decreases and com-

gains() are taken as the same as those used in our previougputation time monotonically increases as the number of

work (see Figure 2 in [5]). All temperatures are initialized
at 24°C. The time step size is chosen A$ = 10 minutes
and the total simulation time &4 hours.

partitions increases. The modeling error plot in Fig. 3 will
also be used in the next section as a conservative guideline
for the model reduction of the nonlinear model.
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Fig. 6. Four zone temperature simulation errors are given by
e; =T, — T fori= 1,...,4, whereT; is the temperature simu-
lated by the full-order model artd); is the lifted temperature sim-
ulated by thelst-order4th-order, andi8th-order reduced models.

4.2 Simulation of reduced-order models

The full-order model (1) is used to represent the full build-
ing thermal dynamics, witB6 building nodes plus outside

node. The partition functions obtained in Section 4.1 are
used to construct the reduced-order model (21). All simula-

tions reported here are open-loop simulations with mass flow

ratesm!" for i = 1,...,4 taken as random binary signals
in the range ofikg /sec to 0.25kg/sec. The Matlab function
idinput is used to generate the required random binary sig-

Simulation Error (°C )
Simulation Time (sec)

o 0 o 00 T 9 O 90 06 00 0 00 0

21 26 31
k

0 ‘ ‘ ‘
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Fig. 7. Simulation error and simulation time for theh-order
reduced model. The error-bar plot depicts the mean and atand
deviation of the curve foR0 independent runs.

stepAt = 10 minutes. Note that\¢ is chosen as the same
for both full and reduced-order models for a fair compar-
ison of the their simulation times. We ri independent
simulations for assessing adith-order reduced models for
k=1,...,36. Note that thekth-order reduced model corre-
sponds to thék + 1)-partition described in Section 4.1 with

k super-building nodes andoutside node. For each run of
simulation, we independently generate the random binary
signals as inputs and all reduced-order models are sintulate
with the same generated inputs. Taking one run for example,
Fig. 4 shows the temperatures of the four zones simulated by
the full 36th-order nonlinear building thermal model. Fig. 5
compares the simulation results of the ftgkh-order model

and its linearized model. The system linearization point is
taken as the initial condition of the nonlinear model. We
observe that the performance of the linearized model is de-
graded as the actual operation points move away from the
vicinity of system linearization point. Fig. 6 shows the tem
perature simulation errors corresponding to reducedrorde
models with varying degree of reduction: (ijt-order re-
duced model{ super-node representing all building nodes),
(ii) 4th-order reduced modell (super-nodes representidg
groups of nodes associated withiones), and (iiil 8th-order
reduced model. We observe from Fig. 6 that, as expected,
simulation errors decrease as the order of the reduced model
increases. For thesth-order model, the simulation error for

all four zones are all between the range-cf°C to 2°C.

Note that even in a building that meets ASHRAE thermal
comfort standards, the temperature inside a zone may vary
by up to3°C [2].

For each run of simulation, the simulation error for #tb-
order model is defined as a root mean squared error averaged
over four zones:

nals. To test the goodness of the reduced-order models, we

compare the four zone temperatures simulated by the full

and reduced-order models. When simulated by the full-order

model, the temperature of rooinis denoted byl;. When
simulated by the reduced-order model, the lifted tempera-

ture of roomi is denoted byﬁ-. The ith zone temperature
simulation error is given by; (jAt) = T;(jAt) — T;(j At)
forj=0,...,N,, whereN, = 144 here.

All simulations reported here are implemented in Matlab us-
ing the fourth-order Runge-Kutta method with a fixed time

4 N. /75 - .
1 > i=o(Li(jAL) — Ti(jAL))?
Errk.—Z;\/ N1 .

In Fig. 7, we depict the error-bar plot of the simulation er-
rors for20 independent runs, where error bars quantify the
deviations of different simulation runs. In Fig. 7, we also
depict the error-bar plot of the simulation times for rurmin
Matlab simulations with different reduced-order modets. F
different degree of reduction, the total computational eom



plexity can be evaluated by summing up the computation nonlinear part of the model is carried out by aggregating in-
time in Fig. 3 to the simulation time in Fig. 7. As expected, puts accordingly into the super-inputs. A key advantage of
we observe from Fig. 7 that the simulation error decreasesthe proposed method is that the reduced model is still a RC-
while simulation time increases as the order of the reducednetwork model with the same structure as the original model
model increases. We also observe from Fig. 7 that the simu-but with less number of nodes and less parametric informa-

lation error decreases quickly and simulation time incesas
slowly when model order is less thaf. For thel8th-order
model, the simulation error drops down to an acceptable

tion. This makes the reduced model useful not only for sim-
ulation and analysis but also for building design iteragion
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