
Consumer-Aware Load Control to Provide Contingency Reserves using
Frequency Measurements and Inter-load Communication

Jonathan Brooks and Prabir Barooah
University of Florida

Gainesville, Florida USA

Abstract— We consider the problem of smart and flexible
loads providing contingency reserves to the electric grid based
on using local frequency measurements. The impact on con-
sumers must be minimized at the same time. A recent paper by
Zhao et al. proposed a solution to this optimization problem that
was based on solving the dual problem in a distributed manner:
local measurements and information exchanged with nearby
loads are used to make decisions. In this paper, we provide a
distributed algorithm to solve the primal problem. In contrast
to the “dual algorithm” (DA) of Zhao et al., the proposed
algorithm is applicable when consumer disutility is a convex,
but not necessarily strictly convex, function of consumption
changes; for example, a model of consumer behavior that
is insensitive to small changes in consumption. Simulations
show the proposed method aids the grid in arresting frequency
deviations in response to contingency events. We provide a proof
of convergence of the proposed algorithm, and we compare
its performance to that of DA, when applicable, through
simulations.

I. INTRODUCTION

For stable and reliable operation of the power grid,
generation must match consumption at all time-scales [1].
Traditionally, controllable generators are used to achieve
this. With the increasing penetration of volatile renewable
energies into the power grid, more resources are required
to provide contingency reserves. Conventional fossil-fuel
generators are often operated at part-load in order to pro-
vide spinning reserves (fast-acting contingency reserves).
However, generators may be less efficient when rapidly
ramping and when operating at part-load, which can result
in increased emission rates [2].

However, loads can be used to provide spinning reserves
by changing their consumption without increasing emis-
sions [3, 4]. A distributed solution is possible by utilizing
grid dynamics [5]. In particular, loads can provide primary
control by using local frequency measurements [6–10]. This
allows solutions not generally considered in the literature of
distributed optimization (e.g., [17–19]).

Any changes in consumption to help the grid, however,
may incur some cost or disutility for the consumer—such
as deviation of the indoor temperature from a comfortable
range. Thus there is a need to balance the two—service to
the grid and cost to the consumer. In this paper, we consider
the problem of designing decision-making algorithms that
provide spinning reserves through control of loads while
striking this balance.
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This paper is inspired by the recent work by Zhao et
al. [11]. We adopt the problem formulation from [11]:
minimize total consumer disutility while returning the
consumption-generation mismatch in the grid to zero after
a sudden change in generation. The consumption-generation
mismatch is estimated by each load from noisy local fre-
quency measurements using a state estimator.

The algorithm proposed by Zhao et al., which solves
the dual problem, requires the consumers’ disutilities to be
strictly convex functions of changes in consumption. Quan-
tifying consumers’ disutility in response to consumption
changes is challenging, and work in this area is limited.
In [12], an exponential function is used to model disutility,
while [13] proposes a dynamic disutility model. A study
of an industrial aluminum-smelting plant suggests that there
may be no disutility for several hours when changing con-
sumption within some threshold of a nominal value, but
there is significant disutility if consumption is varied too
much or for too long [14]. Likewise, [15] showed that
consumption in commercial air-conditioning loads can be
varied to provide ancillary services without any disutility
(adverse effect on indoor climate) as long as the changes in
consumption are small in amplitude and bandwidth-limited.
Based on these studies, we hypothesize that an appropriate
model of disutility for many consumers is like the function,
f1, shown in Figure 1. The disutility is zero for small changes
in consumption but non-zero disutility for larger changes.
Such a consumer’s disutility is modeled by a convex—not
strictly convex—function of consumption change.
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Fig. 1. Alternate models of consumer disutility vs. consumption change.

In this work, we propose a method to solve the pri-



mal problem in a distributed manner, which we call the
Distributed Gradient Projection (DGP) algorithm. The main
contribution over that of [11] is that the DGP algorithm is
applicable to disutility functions that are not strictly convex.
We prove that the DGP algorithm converges to an optimal
solution almost surely when there are no upper and lower
bounds on how much a load can change its consumption.
However, we test our algorithm through simulations in the
more realistic case where changes are bounded. Simulations
indicate our proposed algorithm performs well even with
bounds consumption changes—frequency excursions are re-
duced following step changes in generation. Simulation com-
parisons, in those scenarios where comparison is possible,
show that the proposed DGP algorithm performs better than
or comparably to the dual algorithm of [11].

Our work is also closely related to [16], which proposed
a distributed algorithm to solve a similar problem for gen-
erators. However, the algorithm proposed in [16] requires
the total load to be fully known among the entire generation
network (even if no single generator knows the total load).
In contrast, the DGP algorithm requires no loads to know
the total mismatch; rather the mismatch is estimated by each
load independently via local frequency measurements.

This paper is organized as follows. Section II formally
defines the problem that we solve. In Section III, we propose
our solution method. We provide a proof of convergence in
Section IV, and we describe the simulation parameters in
Section V-A. In the remainder of Section V, we compare
the simulation results to those in [11]. Finally, Section VI
concludes this work and discusses avenues for future work.

II. PROBLEM FORMULATION

As in [11], we consider an electric grid with a single fre-
quency throughout the grid, whose nominal value is denoted
by ω∗, such as in a microgrid. There are n controllable loads.
The deviation of load i’s consumption from its nominal value
is denoted by xi and incurs a disutility f i(xi). The deviation
must lie in Ωi , [x

¯
i, x̄i], specified a-priori.

Let ∆g be the generation deviation from the nominal
value. The problem is for the loads to decide how much
to change their own consumption so that the consumption-
generation mismatch is diminished while the resulting disu-
tility of the loads is minimized:

min
xi, i=1,...,n

n∑
i=1

f i(xi), s. t.

n∑
i=1

xi = ∆g, xi ∈ Ωi, (1)

Load i can obtain a noisy measurement of the grid
frequency and can use it to make a decision on xi(see
Section III-A) . In addition, the computation of the decision
variables, xi, must be distributed in the following sense.
There is a connected communication graph G = (V, E),
where the node set V = {1, 2, . . . , n} is simply the loads and
the edge set E ⊂ V×V , specified a-priori, determines which
pairs of loads can exchange information. The set of neighbors
N i of load i, with which it can exchange information, is
defined by N i = { j | (i, j) ∈ E}.

Although Problem (1) does not include time, time plays a
role since the noise on frequency measurement is naturally
modeled as a stochastic process, and consequently the esti-
mates of u obtained by every node vary with time. Time is
measured by a discrete iteration counter: k = 0, 1, . . . . The
generation at time k is denoted by gk so that the generation
change from nominal is ∆gk , gk − g∗, where g∗ is the
nominal generation. We assume that at k = 0 total load and
total generation are equal, and we limit ourselves to step
changes. That is, ∆g0 = 0 and ∆gk = ḡ for k ≥ K for
some K, where ḡ is the step change.

III. DISTRIBUTED GRADIENT PROJECTION (DGP)
ALGORITHM

To describe the algorithm, we define the consumption-
generation mismatch at iteration k:

uk , ∆gk −
n∑

i=1

xik = ∆gk − 1Txk, (2)

where xk , [x1
k, . . . , x

n
k ]T and 1 ∈ Rn is a vector of all

ones. Neither
∑n

i=1 x
i
k nor ∆gk is known to any of the

loads. However, load i can obtain a noisy measurement of
the frequency deviation ∆ωk , ωk − ω∗, which is denoted
by ∆ω̃i

k. It uses this measurement to estimate the mismatch,
which is denoted by ûik,

The update law of the DGP algorithm comprises of 3 main
operations: (i) a generation-matching step, (ii) a gradient
descent step, and (iii) a projection step. The first step uses the
estimated mismatch, ûik, to compute a consumption change
that will reduce the mismatch. Pure gradient descent, though
possible due to the separable cost function, will violate
the equality constraint (consumption-generation matching).
Therefore the gradient descent step is designed to be orthog-
onal to the generation-matching step, i.e., it does not change
the total consumption. The updates computed by the first two
steps are added and projected onto Ωi to respect the upper
and lower bounds on consumption change.

The update law of the DGP algorithm at load i at time k
is summarized below:

DGP Algorithm:
1) Obtain ûik from the measurement ∆ω̃i

k using a state
estimator, which is described in Section III-A. The
generation-matching step is then bγkûik, where γk is a
step size and b is a positive constant.

2) Compute gradient d
dxi f

i(xik), transmit gradient value
to neighbors, and receive neighbors’ gradient values.
Compute the gradient descent step ∆xik as the i-th
entry of ∆xk, where

∆xk , −L∇f(xk)T ,

where L is the Laplacian matrix of the communication
graph G [20].

3) Compute xik+1 = PΩi

[
xik + aαk∆xik + bγkû

i
k

]
, where

PΩi [·] denotes the standard projection operator, αk is
a step size, and a is a positive constant.

The choice of L as the graph Lapalcian matrix enforces
communication constraints.



A. Estimation of consumption-generation mismatch using
frequency measurements

We borrow the estimation method proposed in [11] for use
in this paper, though it is possible to use any estimator in the
DGP algorithm. The power grid is modeled as a discrete-time
LTI system with consumption-generation mismatch, uk, as
the input and frequency deviation from nominal, ∆ωk, as the
output. At each time k, load i obtains the noisy measurement
∆ω̃i

k to estimate the state of the plant by using the estimator
in [21], which was developed for estimating the state of a
system with an unknown input. We omit the details here; the
interested reader is referred to [11].

We denote the estimation error at time k by εk , ûk −
uk1, where ûk is the column vector of ûik’s. Define the σ-
algebra FK−1 := σ(εik−1| i ∈ V, 1 ≤ k ≤ K). It was shown
in [21] that

E[εik|Fk−1] = 0. (3)

In [11], it was shown that the estimation error converges in
m.s. for the power system model considered. This, combined
with (3), implies that the estimation error sequence εk is a
martingale-difference sequence.

IV. CONVERGENCE ANALYSIS

A. Main Results

We make the following assumptions for our analysis.

Assumption 1. (Technical assumptions).
1) αk = cγk for some positive constant c.
2) The function γk → 0 satisfies

∑∞
k=0 γk = ∞ and∑∞

k=0 γ
2
k <∞.

3) The estimation error sequence, εk, is a martingale-
difference sequence.

Assumption 2. (Assumptions on disutility).
1) f i(xi) is convex for each i with a (not necessarily

unique) minimum at xi = 0.
2) f i(xi) is coercive for each i; i.e., {xi|f i(xi) ≤ F} is

compact for every F ≥ 0 for each i.
3) f i(xi) is continuously differentiable for each i.
4) ∇f i(xi) is Lipschitz for each i.

Assumption 3. (Assumptions on loads and generators).
1) Ωi = R for each i.
2) G is connected.
3) ∆gk ≡ ḡ for all k ≥ 0.

Assumption 4 (Additional assumption on estimation error).
supi,k |εik| < ε̄ <∞.

Assumptions 1(1) and 1(2) are satisfied by choice of αk,
and γk, and Assumptions 1(2) and 1(3) are standard technical
assumptions in the field of stochastic approximation. For the
estimator used in this work, Assumption 1(3) is satisfied
as discussed in Section III-A. Assumption 2 is readily met
because f(x) is a modeling choice. Assumption 3(1) is the
main limiting one: it states that there are no upper and lower
limits on possible changes in consumption. Assumption 3(3)
means that we only consider a step-change in generation.

The main convergence result is the following.

Theorem 1. If Assumptions 1, 2, and 3 hold, xk converges
to a solution of Problem (1) in the mean. If in addition, As-
sumption 4 holds, xk converges to a solution to Problem (1)
almost surely.

The technique used to prove this result is known as the
o.d.e. method of stochastic approximation, which establishes
a rigorous connection between noisy discrete iterations and
a continuous-time o.d.e. [22].

Proposition 1 (Theorem 2 (Chapter 2) in [22]). Consider
the sequence {yk} generated by the iteration

yk+1 = yk + γk[h(yk) + εk],

where h(y) : Rn → Rn is Lipschitz and {εk} is
a martingale-difference sequence. If γk satisfies Assump-
tion 1(2) and supk ‖yk‖ < ∞ almost surely (a.s.), then
yk converges a.s. to a (possibly sample-path dependent)
compact, connected, internally chain-transitive invariant set
of the o.d.e.

ẏ(t) = h(y(t)).

In many applications of the o.d.e. method, the main hurdle
in analyzing convergence is to establish boundedness of the
iterates xk, as is the case here. Presence of the projection step
guarantees boundedness trivially, but the corresponding o.d.e.
can create spurious, undesired equilibria. In this preliminary
work, we have therefore limited ourselves to the case where
there is no projection, i.e., no bounds on the changes in
consumption, but boundedness is no longer guaranteed. We
make Assumption 4 to prove boundedness of xk.

However, if the disutilities are quadratic, boundedness of
the iterates is achieved via a technique in [22]. In that case
we can remove the Assumption 4:

Theorem 2. Let Assumptions 1, 2, and 3 hold, and let
f i(xi) = qi(xi)2/2, where qi > 0. Then xk → x∗ a.s.,
where x∗ is the unique optimal solution to the optimization
Problem 1.

Due to lack of space, we omit the proof of this result,
which is provided in [23].

B. Proof of Theorem 1

We must now introduce some notation. For a given `, de-
fine the (n− 1)-dimensional hyperplane H(`) , {x|1Tx =
`} and X(`) = {x ∈ H(`)|f(x) ≤ f(y), y ∈ H(`)}.
It follows that H(ḡ) is the set of all feasible solutions, and
X(ḡ) ⊂ H(ḡ) is the set of all solutions to Problem (1). Since
f is convex and the equality constraint is linear, necessary
conditions for x∗ to be optimal are also sufficient; they are

∇f(x∗) + λ∗1 = 0, ḡ − 1Tx∗ = 0, (4)

for some scalar λ∗ [24]. The interpretation of (4) is that
∇f(x∗) ‖ 1 and u = 0.

The following lemma states that the iterates xk are asymp-
totically feasible a.s. Note that Assumption 4 (boundedness
of estimation error) is not required for this result.



Lemma 1. Let Assumptions 1, 2, and 3 hold, then xk →
H(ḡ) a.s. Furthermore, all trajectories of the o.d.e.

ẋ(t) = −L∇f(x(t))T + (−1Tx(t) + ḡ)1 (5)

converge to H(ḡ). Consequently, u(t)→ 0, where

u(t) , ḡ − 1Tx(t). (6)

The following two lemma states conditions for the DGP
step direction to be a descent direction.

Lemma 2. Let Assumptions 1, 2, 3, and 4 hold. If ‖xk‖
and k are sufficiently large, then d(xk) , −L∇f(xk) +
uk1 + εk is almost surely a descent direction; that is,
d(xk)T∇f(xk)T < 0 a.s.

Lemma 3 below is a consequence of Lemma 2.

Lemma 3. Let Assumptions 1, 2, 3, and 4 hold. If ‖xk‖ and
k are sufficiently large, then f(xk+1) ≤ f(xk) a.s.

An immediate consequence of Lemma 3 is the following
corollary which establishes boundedness of the iterates—a
condition needed for applying Proposition 1.

Corollary 1. Let Assumptions 1, 2, 3, and 4 hold. Then
supk ‖xk‖ <∞ a.s.

The proofs of these results are provided in [23]. We are
now ready to sketch the proof of Theorem 1, and the full
proof is available in [23].

Sketch of proof of Theorem 1. Proving convergence in the
mean is very similar to the proof of a.s. convergence but
simpler, so we only provide the proof of a.s. convergence.

By Corollary 1, supk ‖xk‖ < ∞ a.s. Therefore, by
Proposition 1, the iterates of the DGP algorithm converge
almost surely to a compact, connected, internally chain-
transitive invariant set of the o.d.e. (5). We call this set I .

Our proof consists of two main parts: (i) we show I ⊆ E,
where E is the set of equilibrium points of (5); (ii) we show
E = X(ḡ); that is, the set of equilibrium points of (5) is
precisely the set of solutions to Problem (1).

If E is globally attractive (i.e., if all trajectories x(t)→ E
for any x(t0) for some t0), then all internally chain-transitive
invariant sets of (5) must be contained within E. Therefore,
it suffices to show x(t) → E. Because x(t) → H(ḡ) by
Lemma 1, it can be shown by continuity that ḟ(x(t)) →
R≤0. A contradiction argument may then be used to show
that ḟ(x(t))→ 0. By orthogonality of the terms on the RHS
of (5), it follows that x(t)→ E, and therefore I ⊆ E.
E is the set of points where the RHS of (5) is zero.

Because −L∇f(x)T ⊥ 1, the RHS of (5) is zero if and
only if −L∇f(x) = 0 and u = 0. Because G is connected,
−L∇f(x) = 0 if and only if ∇f(x) ‖ 1, and u = 0 if
and only if x ∈ H(ḡ). These are precisely the necessary and
sufficient conditions (4). Therefore, E = X(ḡ). Combining
this result with the previous result, we have xk → I ⊆ E =
X(ḡ) by Proposition 1, which proves the theorem.
�

V. SIMULATION RESULTS

A. Simulation Setup

Figure 2 shows the system architecture used for design
and simulation. The process disturbance, ζ, and measurement
noise, ξi, at each load are modeled as wide-sense stationary
white noise. For ease of comparison between the proposed
DGP algorithm and DA, we use the same generator dynam-
ics, noise statistics, and communication graph as in [11],
which contains further detailed information regarding the
simulation environment.
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Fig. 2. System architecture for simulations. Inter-load communication is
not shown.

For each load i, we consider both constrained and uncon-
strained changes in consumption. For the constrained case,
Ωi = [−x̄i, x̄i], where x̄i is chosen as in [11].

We test the performance of the DGP algorithm with two
distinct disutility functions. The first is a convex but not
strictly convex function:

f i(xi) =

{
0, |xi| ≤ ai

qi(xi − ai)2, |xi| ≥ ai,
(7)

where ai = 0.1x̄i; for the unconstrained case, we use ai from
the constrained case. The consumer does not experience any
disutility as long as the load variation is within ±ai. The
second disutility function is strictly convex:

f i(xi) =
qi

2
(xi)2. (8)

For both disutility functions, we pick qi to be an arbitrary
positive number such that 1/qi is chosen from a uniform
distribution on the interval [0.1, 0.3]. This is chosen for
comparison with [11], which makes a similar choice for
disutility functions.

The initial conditions are g0 = 200 MW and u0 = 0. Two
generation contingencies are modeled as step changes:

gk =

 200 MW, 0 s ≤ kT < 20 s
190 MW, 20 s ≤ kT < 50 s
170 MW, 50 s ≤ kT,

where T = 0.1 seconds is the discretization interval.



Simulations are conducted with the communication net-
work in [11], where load i communicates with loads from
max{1, i − n0} to min{n, i + n0}, where n0 ≤ n. We use
n = 1000 and n0 = 1.

Additionally, we use a = 5, b = 1.5, c = 1, and γk =
γ0/(k

0.8) for k > 0, with γ0 = 4q/n, where q , mini q
i.

B. Results with non-strictly convex disutility function

Here we report simulation results with the consumer
disutility function (7). DA is not applicable because the
inverse of ∇f(x) must exist in Ω to implement DA, which
is not the case when |xi| ≤ ai.

Figure 3 shows results for both the projected and non-
projected case (i.e., without and with Assumption 3(1),
respectively); the system frequency without smart loads (i.e.,
with generator-only control) is shown in red as well.

System frequency is similar both with and without pro-
jection. There is a lower disutility for the scenario with
projection; this may be caused by the algorithm reaching
a “wall” and then having slower convergence thereafter
compared to the scenario without projection. However, using
DGP, the loads are able to assist the generator in avoiding
large frequency deviations from the nominal when each
contingency occurs—even with projection.
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Fig. 3. Performance of the DGP algorithm with consumer disutility that is
not strictly convex. Step changes in generation occur at 20 and 50 seconds.

C. Comparison with dual algorithm

Figure 4 shows results of DGP and DA with quadratic
disutilities (8) with projection. DGP results in a significantly

smaller frequency drop compared to both generator-only
control and DA.
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Fig. 4. Performance of the DGP and dual algorithms with quadratic
consumer disutility with projection. Step changes in generation occur at
20 and 50 seconds.

However, the consumer disutility is significantly lower
for DA than for DGP. This is because DA is respond-
ing more slowly than DGP, so the equality constraint is
not being satisfied—resulting in a lower cost. The slower
response of DA is due to the inversion of the derivative
of each load’s disutility function, which is rather steep—
leading to small changes in consumption. Conversely, DGP
aggressively meets the equality constraint because of the
generation-matching step. This results in a lower frequency
deviation but more disutility.

DA has a significantly lower steady-state disutility be-
cause the generator control restores much of the frequency.
The loads interpret the restored frequency as a smaller
consumption-generation mismatch, which results in less
change in consumption and therefore lower disutility.

Although not reported here, simulations with varying
number of loads (n = 10, 100) and varying amount of
communication (n0 = 10, 100, 1000) showed similar trends
as in the n = 1000, n0 = 1 case. It was observed in [11]
that DA showed similar behavior.

VI. CONCLUSION

The proposed DGP algorithm solves a constrained opti-
mization problem in a distributed manner to aid a power



grid in maintaining system frequency near its nominal value
while minimizing consumers’ disutilitiy. The DGP algorithm
solves the primal problem, whereas prior work solved the
dual problem [11]. The advantage of the proposed method is
that it is not restricted to strictly convex disutility functions;
rather it is applicable to generally convex disutility functions
that capture a consumer behavior that may be quite common.
Simulations show that the algorithm is effective in reducing
frequency excursions after contingency events while keeping
the consumer disutility low. Simulations also show that the
DGP algorithm performed either better than or similar to the
dual algorithm from [11] in maintaining frequency.

In this preliminary work, we proved that the DGP algo-
rithm converges to the optimal solution under two idealized
assumptions. The first one is that there is no upper or lower
bound on possible consumption change; the projection step
of the algorithm that enforces bounds leads to potentially
spurious equilibria, making the analysis more challenging.
Future work will focus on removing this assumption. Simula-
tion results with and without such projections are promising:
there is hardly any difference in the behavior of the algorithm
between the two cases. The second is the assumption that
the estimation errors are bounded. This is due to difficulty
in proving the iterates are bounded without projection, so
removing the first assumption automatically removes this
assumption. In this paper, we have been able to remove
this assumption for a specific disutility function even in the
projection-free case (Theorem 2).

Other interesting paths for future work include extension
of the DGP algorithm to time-varying communication net-
works and time-varying changes in generation.
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