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Abstract— There is significant recent interest in applying
model-based control techniques to improve the energy efficiency
of buildings. This requires a predictive model of the building’s
thermal dynamics. Due to the complexity of the underlying
physical processes, usually system identification techniques
are used to identify parameters of a physics-based model.
We investigate the effect of various model structures and
identification techniques on the parameter estimates through
a combination of analysis and experiments conducted in a
commercial building. We observe that a second order model
can reproduce the input-output behavior of a full-scale model
(with 13 states). Even a single state model has enough predictive
ability that it may be sufficient for control purposes. We
also show that the application of conventional techniques to
closed-loop data from buildings (that are collected duringusual
operation) leads to poor estimates; their inaccuracy becomes
apparent only when forced-response data is used for validation
where there is sufficient difference among various inputs and
outputs. The results of this investigation are expected to provide
guidelines on do’s and don’ts in modeling and identificationof
buildings for control.

I. I NTRODUCTION

Model-based control of buildings, in particular, of the
HVAC (heating, ventilation, and air conditioning) system,
has generated excitement in the community of control re-
searchers in recent years. This problem is of great societal
importance since buildings account for 34% of total energy
use in the United States and HVAC account for roughly
half of that [1]. If novel control techniques can increase
the efficiency of HVAC systems, it will lead to substantial
savings in total energy use.

The most popular candidate for control of building HVAC
systems is MPC (Model Predictive Control); a slew of recent
papers have been published on this topic [2], [3], [4], [5],
[6], [7], [8], [9], [10]. MPC requires a model of the process
that can predict the evolution of temperature and humidity
(and possibly other environmental variables such asCO2

concentration) given the inputs (mass flow and temperature
of the supply air, temperatures of the surroundings, etc.) In
this paper, we focus our attention to the control of a single
zone in a multi-zone commercial building with VAV (variable
air volume) system.

The underlying processes that govern the dynamics of tem-
perature evolution are complex and uncertain, so simplified
lumped parameter models are usually used, among which RC
network model is a popular one. It captures inter-zone heat
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transfer through solid surfaces, which is linear in structure,
and a non-linear term that captures the effect of enthalpy
exchange with the outside due to the supply and extract
air. We restrict ourselves to this class of models, which is
denoted byMRC(n,q, p), wheren refers to state dimension,
q to the number of inputs, andp to the number of uncertain
parameters. Two questions are relevant. (i) Q1: What is the
minimum model complexity (measured byn,q, p) that is
required to predict the temperature dynamics of a single zone
with an acceptable degree of accuracy so that it can be used
in MPC? (ii) Q2: How to identify the values of the uncertain
parameters from measured data, and what kind of measured
data are required, to achieve this level of accuracy?

ASHRAE (American Society of Heating, Refrigeration
and Air conditioning and Engineers) handbook [11] describes
how to determine the R,C (resistance/capacitance) values for
a solid surface given its material and construction type. This
information is now available in software such as HAP [12].
However, there is uncertainty in these parameter values. First,
information on wall and window construction and material
are not always easy to obtain for existing buildings due to
poor record keeping. Second, due to cracks in windows and
walls, the effective resistance of an window and wall is
likely to be lower than what is inferred from construction
data. Therefore there is a need toidentify/estimateR,C
parameters from measured data, a process referred to as
model calibration and/or system identification.

The identification problem is not trivial. Powerful state-
space identification methods (such as subspace methods [13])
cannot be directly employed as they do not lead to an identi-
fication of R,C parameters. Rather, they identify the system
matrices in an arbitrary state space. Frequency domain and
adaptive techniques [14] suffer similar problems due to the
complex relationship between the R,C parameters and the
coefficients in the polynomials that describe the transfer
functions. The need for obtaining values of R,C parameters
(as opposed to obtaining a system realization) is manifold.
First, R,C values have intuitive, physical meaning. Second,
one can check if the identified parameters values are reason-
able - and therefore if the model is - by comparing against
ASHRAE values. This provides a sanity check and can help
unearth potentially grossly inaccurate system identification.
Third, since R,C modelling paradigm is prevalent in the
HVAC/buildings community, it is useful simply as a common
language.

In this paper, we attempt to answer Q1 by a comparison
of response between a model of a high state dimension and
various low order models of same classMRC(n,q, p). Both



time- and frequency-response comparison are performed.
Comparisons show that a second order model with 2 pa-
rameters is capable of reproducing the input-output behavior
of a 13 state model (with 30 parameters) with a high degree
of accuracy. Even a first order model has acceptable degree
of accuracy.

To answer Q2, we apply two parameter estimation tech-
niques to identify the R,C values of low order models from
data collected from a building in the University of Florida
campus. A few authors have proposed methods for estimating
R,C parameter values of building thermal models, e.g., [15],
[16], [17], [18], [19]. Such papers show the effectiveness of
their proposed methods by comparing the prediction of the
identified model with measured data. Our analysis shows
that for almost all closed-loop data, such comparison is
meaningless; grossly “wrong” models can reproduce such
data quite accurately. That the model is wrong becomes
evident only when it is asked to predict measurements with
very specific features, namely when there is large differences
between the temperature of the room and the temperatures of
the surroundings. This is in fact the situation that the model
needs to be able to predict if it is going to be useful for
control algorithms that seek to reduce energy use, because
the controller may let the temperature float up or down when
the zone is unoccupied [2], [3]. Thus, unless specific forced
response test are conducted to gather certain types of data,
one is better off with ASHRAE values of parameter than to
estimate parameters from closed-loop data.

II. M ODEL

In this section, we will discuss the states, inputs, and
parameters of three different models of a zone in the class
MRC(n,q, p). Consider a typical zone in a multi-zone build-
ing with a VAV system, which is separated from the outside
through an external wall and a window and from five internal
spaces (floor, ceiling, one room on each side, and a hallway)
through internal walls and a door to the hallway. The major
heat transfer mechanisms include the following: (1) heat
conduction through external and internal walls, windows,
roof, and ceiling; (2) heat convection with outside air due to
the air supplied to and extracted from the room by the HVAC
system; (3) solar radiation through the window and external
wall; (4) casual heat gain from occupants and equipments;
and (5) infiltration and exfiltration. A schematic figure of the
room is shown in Figure 1.

The following assumptions are made throughout the paper.
(i) The air inside the room is well mixed, so that we
have one uniform temperature in the room. (ii) We ignore
in/ex-filtration. (iii) We confine our study to night time
data when there is no solar radiation and occupant heat
gain, which often have large uncertainty and not easy to
measure accurately. More importantly, since the occupants
are the main source of latent heat gain in an office, this
restriction eliminates the need to consider nonlinear humidity
dynamics [20].
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Fig. 1. Schematic figure of the room

Fig. 2. Full-scale model structure

The main variable of interest is the temperature of the
space inside the zone, denoted asTi . This is the first state,
and depending on the model dimension, there may be other
states. We now describe the various models.

A. Full-scale model of a zone

The inputs that affect the room temperature are outside
temperature, temperatures of the surrounding spaces, and
heat gain inside the zone. We define the input vector to be
ū= [To,Tf ,Tc,Tn1,Tn2,Thw,Ts,m,Q]T , whereTo is the outside
temperature,Tf is the temperature of the space below the
floor, Tc is the temperature of the space above the ceiling,
Tn1 andTn2 are the temperature of the adjacent rooms to the
side,Thw is the temperature of the hallway,Q is additional
casual heat gain from appliances etc.,m is the flow rate of
supply air andTs is its temperature. The net heat gain due
to the supply air, and equals to the enthalpy of incoming air
minus the enthalpy of exhaust air:

QAC = mCpTs−mCpTi (1)

wherem is the supply air mass flow rate,Cp is the specific
heat of air, andTs is the supply air temperature. We employ
the commonly used choice of 3R-2C (3 resistors and 2
capacitors) [21] in modelling the heat transfer through a
solid surface separating two rooms. Since windows have
very low heat capacitance, it is modelled as a single resistor.
Each surface element is then connected to the room “node”
to form a RC network model. An additional capacitor is
included to model the heat stored by the air and other objects
in zone. The structure of the full-scale model is shown in
Figure 2. Since each wall is a 3R-2C component, there are
two states for each wall. Together withTi , we have a 13-
state vector:T = [Ti ,Tf w1,Tf w2, . . .]

T , where T∗w1,T∗w2 are
the temperatures of two nodes associated with the surface∗.



The dynamics ofTi can be then expressed as:
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The dynamics of the wall nodes of each wall have similar
structure:
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The full-scale model has a total of 32 R and C parameters,
thus it is of the classMRC(13,8,32).

B. Low order models

We now consider two low order models which still em-
ploys the RC network analogy of conductive heat transfer as
the full-scale model described above, but with fewer states
and parameters.

1) First-order model: We start with a model of lowest
possible state dimension, namely, one. Here all the capacitive
elements of a zone (walls, air, furniture) are aggregated into
a single capacitor, so that the dynamics ofTi become

Cr Ṫi =
To−Ti

Rwin
+

Tsd−Ti

Rw
+QAC+Q (3)

whereTsd is an average of all the surrounding space tem-
peratures. This model has a single stateTi , five inputs ¯u =
[To,Tsd,Ts,m,Q]T , and three parameters:θ = [Cr ,Rwin,Rw]T .
Thus, it is of the classM (1,5,3).

2) Second-order model:The response of the room tem-
peratureTi to changes in mass flow rate and temperature of
the supply air is usually faster than its response to changes
in the surrounding temperatures. A natural idea is to use two
capacitors to reproduce the two-time scales of the process.
One capacitor (room capacitanceCr ) is used for the low
thermal mass of the air and other objects in the room, and
the other (Cw) is used for the heat capacity of all the walls
combined. We choose to model the integrated wall as a 2R-
1C element, which leads to:

Cr Ṫi =
To−Ti

Rwin
+

Tw1−Ti

R1
+QAC+Q

CwṪw =
Ti −Tw

R1
+

Tsd−Tw

R2

(4)

whereTw is the temperature of the wall node. This model has
2 statesT = [Ti ,Tw]T , the same five inputs as the single-state
model, and five parametersθ = [Cr ,Cw,Rwin,R1,R2]

T . Thus,
it is of classM (2,5,5).

3) The LTI case:Note that theQAC term in (2), (3),
and (4) is the only nonlinear term in each of the three
models described above. When the supply air flow rate,m,
is constant, theQAC term becomes linear in the stateTi and
input Ts. The system then becomes a LTI system:

Ṫ = FT +Gu, z= HT = Ti , (5)

where the stateT and inputu varies depending on which of
the three models is under consideration.

III. Q1: M ODEL STRUCTURE COMPARISON

Various models within the classMRC(n,q, p) can be
compared among themselves. In the LTI case, it is possible
to compare their frequency response as well. A comparison
between their frequency responses is useful to determine
whether a low-order model is powerful enough to charac-
terize the temperature dynamics within a range of input
frequencies as well as a high order model.

We do not deal with calibration in this section. Instead,
we choose the parameters of the full-scale model as their
ASHRAE values. In the low-order models, we consider the
surfaces that are aggregated to form the integrated wall to be
parallel components, so that the total capacitance is the sum
of capacitance of each surface, and the total conductance
is the sum of conductance (inverse of resistance) of each
surface.

A. Field Data

For model calibration and validation, we choose a typical
office, Room 241, in Pugh Hall, University of Florida. The
room is connected to two adjacent offices and the hallway
through internal walls; and to the outside through an external
wall and window. Three data sets are studied. All data are
collected from 6pm in the evening to 6am next morning.
The first data set, set A, was collected on a summer day
from Aug. 2nd to Aug. 3rd, 2011, under normal closed
loop control strategy. The second data set B, was collected
on a winter day from Dec. 5th to Dec. 6th, 2011 under
normal closed loop control strategy. These two data sets are
chosen among data collected over several months to meet
the criteria that the room and supply air temperatures should
have as much variation as possible (to ensure persistency of
excitation), while the mass flow rate should be constant for
long periods of time (so that the models become LTI). The
third data set, set C, was collected from Oct. 24th to Oct.
25th, 2011, under a forced response test where the inputs
are determined by given commands. The room temperature,
supply air temperature, and supply air flow rate of the three
data sets are plotted in Figure 3.

B. Time domain comparison

The time domain comparisons of the full-scale and re-
duced model (along with measured temperatures from the
three data sets described in Section III-A) are shown in
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Fig. 3. Three data sets collected at Pugh Hall.
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Fig. 4. Time domain comparison of different model structures.

Figure 4. We see that all the three models have similar
prediction.

Note that, though the three data sets was collected at night
with no occupants, we conjecture that an additional heat gain
due to the appliance in the room was present. An inactive
desktop PC & monitor can produce 20-30 W of heat, and an
idle desktop printer can produce 10-35 W [11]. So we used
a constant load ofQ(t)≡ 50W in all time domain simulation
in this paper.

C. Frequency domain comparison

For comparison, we need common inputs in different
models. LetHℓ(s) be the transfer function from theℓ-th input
to the outputTi . In full scale model, we define a transfer
function from a single surrounding temperatureTsd to output
in the full scale model as the sum of transfer functions of
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Fig. 5. Comparison of gains of the three models.

all five surrounding temperatures, i.e.,

Hsd(s) :=
5

∑
i=1

Hsdi (s) (6)

whereHsdi are the transfer functions from each surrounding
temperature to output.

Figure 5 shows the frequency response comparison (only
the magnitude, not phase) of the three models: full-scale
(13-th order), first order, and second order. The parameters
are chosen as described earlier. The frequency of interest is
chosen to be1

5 hours(10−5Hz) to 1
5 mins(10−3Hz). The

value of the mass flow rate is set to be the maximum
possible value,m = 0.12(Kg/s), as we have observed that
the maximum error occurs at the maximum values ofm.
We also observed that the outside temperatureTo has small
impact on the output compared to the other inputs (in the
sense of small gain), which is consistent with the fact that
commercial buildings are usually well insulated. Therefore,
we only show the result of the two inputsTs andTsd here.

The effect of an input on the output depends not only
on the transfer function but also on the magnitude of input.
The variation in different inputs can be significantly different
from each other. The error in the prediction ofTi may be
different due to these inputs even though they might have
the same gain. Therefore we define theerror with respect to
i-th input as:

ei(ω) =
∣

∣

∣
|H f si ( jω)|− |Hdi ( jω)|

∣

∣

∣
δui , (7)

whereH f si (·) and Hdi (·) correspond to full-scale and low-
order models, andδui is the maximum variation in the
i-th input. By examining the data from Pugh Hall, we
observe that the largest variations in supply air temperature,
surrounding room temperatures, and outside temperature are
450F , 100F , and 450F . The largest estimation error again
appears in the inputsTs and Tsd. The errorei as a function
of frequency is shown in Figure 6.

The following conclusions are drawn from the comparison.
First, for the range of frequencies deemed of interest, the
second order model is almost as accurate as the 13-th order
model, with a maximum prediction error of less than 10F.
Second, the 1st order model is also quite accurate in terms of
predicting the response due to supply air temperatureTs, but
less so in case of the surrounding temperature. The maximum
prediction error is about 30F in this case.
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IV. Q2: MODEL CALIBRATION AND VALIDATION

Model calibration refers to estimating the R,C parameters.
As we saw in the previous section that the second order
model provides similar prediction power as full-scale model,
we limit our attention to second order model for the purpose
of identification. The following assumptions are made to fur-
ther reduce the number of uncertain parameters in the second
order model: (i) The resistance of the wall is symmetric, i.e.,
R1 = R2 = 1

2Rw. (ii) The wall capacitanceCw and window
resistanceRwin are assumed known (ASHRAE values). (iii)
The surrounding temperatureTsd is taken to be the average
of all the surrounding room temperatures (above the ceiling,
below the floor, two adjacent rooms and the hallway).

A. Identification methods

We pick two methods for parameter estimation, with
different cost functions described below.

1) Least-squares:For a given model structure with fixed
parameters, we define aprediction error cost JLS as:

JLS =

∫ τ

0
(Tim(t)−Tip(t))

2dt (8)

where Tim(t) is the measured room temperature at timet,
Tip(t) is the room temperature at timet predicted by the
model with a given set of parameter values, andτ is a user-
specified time interval.

2) Maximum likelihood (ML) method:This method is
applicable to LTI models in discrete time. The likelihood
function of the parameter vectorθ is given by the joint
density function of all observations. With some Gaussian
and independent assumptions, it can be calculated by using
a Kalman filter. The reader is referred to [17] for details. We
define the cost functionJML as:

JML = −logL (9)

whereL is the likelihood function.
In minimizing the cost functions, we pick the direct search

method. The reason is that the cost functions are non-convex,
optimization algorithms like gradient descent often got stuck
in local minimum. This situation is likely to be exacerbated
with a model with higher number of parameters. By using
direct search method, we avoid this problem.

B. Attempt 1: apparent success but really a failure

We use data set A for model calibration and data set B
for model verification. The resulting best-fit parameter values
are shown in Table I.

parameter least-squares ML
Cr (J/K) 5×104 5×104

Rw(K/W) 6.44×10−4 5.6×10−4

TABLE I

BEST FIT PARAMETERS WHEN DATA SETA IS USED FOR MODEL

CALIBRATION .
The room temperature predicted by the model with the

best-fit parameter values and the measured room temperature
are shown in Figure 7. As shown in the figure, the estimated
model predicts well for both data set A and B, although they
have quite different inputs profile (one during summer time,
the other during winter time). However, prediction of the
zone temperature of data set C with this calibrated model is
extremely poor.
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Fig. 7. Calibration/validation when data set A is used for calibration.

The reason for the failure was found to be the data.
In the calibration data (data set A), the surrounding room
temperatures are almost the same as the room we study.
So the best fit resistance values are those that are so small
that the room temperature essentially follows the temperature
of the surroundings, leading to small prediction error. In
validation data set B, though the room temperature profile
is quite different from that in set A, the surrounding room
temperatures are still close to the room temperature, so
the model predicts well. However, in validation data set C,
the surrounding room temperatures are significantly different
from the room temperature, so it shows that the calibrated
parameter values are incorrect.

C. Attempt 2: a more reliable calibration

Now we use data set C for calibration, which leads to best-
fit parameter values shown in Table II. While in the previous
case both methods yield a much lower value of the resistance
compared to their ASHRAE values, this time the estimated
resistance value is much closer to its ASHRAE value. The
time-domain simulations for calibration and validation data
sets are shown in Figure 8. From the figures, we can see that
though the maximum prediction error is large ( 30F), this set



parameter least-squares ML
Cr (J/K) 7.8×105 4.7×105

Rw(K/W) 0.01 0.005

TABLE II

BEST FIT PARAMETERS WHEN DATA SETC IS USED FOR MODEL

CALIBRATION .

of parameters predict the trend of the temperature well in all
three data sets.
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Fig. 8. Calibration/validation when data set C is used for calibration.

From the results, we see that calibration accuracy cru-
cially depends on the data set chosen. This by itself is not
surprising. What is surprising is that having large variation
in the measured inputs (to have persistency of excitation)
and outputs is not enough. The data should be chosen so
that the output (room temperature) does not have a strong
correlation with any of the surrounding temperatures. The
features required in the data to ensure identification of
parameters seem to be possible only through forced response
experiments.

V. SUMMARY AND FUTURE WORK

We examined two questions for models of HVAC zones
that can be used for predictive control: required model com-
plexity and parameter identification. We examined models
of varying complexity within the popular class of non-linear
RC network models. By comparing low order models with
high order ones, we conclude that a second order model
reproduces the input-output behavior of the full-scale, 13th
order model quite accurately. Even a first order model is
accurate enough that it may very well suffice for the pur-
pose of predictive control. Thus, complex models with high
state dimension and large number of resistance/capacitance
models are not needed.

The work reported here on parameter identification of
low-order models from experimental data has revealed that
calibrating the parameters of the R,C network model to
closed-loop data from a building is likely to lead to grossly
inaccurate parameter estimates, so that the resulting model
is unlikely to be useful in predictive control. Even data with

sufficiently exciting input is not enough. The results reveal
the features that the data should have to enable correct iden-
tification. It seems that these features can only be ensured
through forced response tests. We have not incorporated
effect of an open door so far. Future work will address this
question, as well as adding other heat sources such as solar
radiation and occupancy.
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