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Abstract— There is significant recent interest in applying
model-based control techniques to improve the energy effiency
of buildings. This requires a predictive model of the buildng’s
thermal dynamics. Due to the complexity of the underlying
physical processes, usually system identification technigs
are used to identify parameters of a physics-based model.
We investigate the effect of various model structures and
identification techniques on the parameter estimates throgh
a combination of analysis and experiments conducted in a
commercial building. We observe that a second order model
can reproduce the input-output behavior of a full-scale moel
(with 13 states). Even a single state model has enough pretie
ability that it may be sufficient for control purposes. We
also show that the application of conventional techniquesot
closed-loop data from buildings (that are collected duringusual
operation) leads to poor estimates; their inaccuracy becoss
apparent only when forced-response data is used for validain
where there is sufficient difference among various inputs ah
outputs. The results of this investigation are expected tomvide
guidelines on do’s and don’ts in modeling and identificationof
buildings for control.

|I. INTRODUCTION

transfer through solid surfaces, which is linear in struetu
and a non-linear term that captures the effect of enthalpy
exchange with the outside due to the supply and extract
air. We restrict ourselves to this class of models, which is
denoted by.#rc(n,q, p), wheren refers to state dimension,
g to the number of inputs, anplto the number of uncertain
parameters. Two questions are relevant. (i) Q1: What is the
minimum model complexity (measured hyq, p) that is
required to predict the temperature dynamics of a single zon
with an acceptable degree of accuracy so that it can be used
in MPC? (ii) Q2: How to identify the values of the uncertain
parameters from measured data, and what kind of measured
data are required, to achieve this level of accuracy?
ASHRAE (American Society of Heating, Refrigeration
and Air conditioning and Engineers) handbook [11] desaribe
how to determine the R,C (resistance/capacitance) vatures f
a solid surface given its material and construction types Th
information is now available in software such as HAP [12].
However, there is uncertainty in these parameter values, Fi
information on wall and window construction and material

Model-based control of buildings, in particular, of theare not always easy to obtain for existing buildings due to
HVAC (heating, ventilation, and air conditioning) systempoor record keeping. Second, due to cracks in windows and
has generated excitement in the community of control revalls, the effective resistance of an window and wall is
searchers in recent years. This problem is of great socielikely to be lower than what is inferred from construction
importance since buildings account for 34% of total energglata. Therefore there is a need igentify/estimateR,C
use in the United States and HVAC account for roughlparameters from measured data, a process referred to as
half of that [1]. If novel control techniques can increasanodel calibration and/or system identification.

the efficiency of HVAC systems, it will lead to substantial

savings in total energy use.

The identification problem is not trivial. Powerful state-
space identification methods (such as subspace methods [13]

The most popular candidate for control of building HVACcannot be directly employed as they do not lead to an identi-

systems is MPC (Model Predictive Control); a slew of recerfication of R,C parameters. Rather, they identify the system
papers have been published on this topic [2], [3], [4], [S]matrices in an arbitrary state space. Frequency domain and
[6], [7], [8], [9], [10]. MPC requires a model of the processadaptive techniques [14] suffer similar problems due to the
that can predict the evolution of temperature and humiditgomplex relationship between the R,C parameters and the
(and possibly other environmental variables suchC&% coefficients in the polynomials that describe the transfer
concentration) given the inputs (mass flow and temperatufenctions. The need for obtaining values of R,C parameters
of the supply air, temperatures of the surroundings, etc.) (as opposed to obtaining a system realization) is manifold.
this paper, we focus our attention to the control of a singlEirst, R,C values have intuitive, physical meaning. Se¢ond
zone in a multi-zone commercial building with VAV (variable one can check if the identified parameters values are reason-
air volume) system. able - and therefore if the model is - by comparing against

The underlying processes that govern the dynamics of tetASHRAE values. This provides a sanity check and can help
perature evolution are complex and uncertain, so simplifieghearth potentially grossly inaccurate system identificat
lumped parameter models are usually used, among which R@ird, since R,C modelling paradigm is prevalent in the
network model is a popular one. It captures inter-zone hebfVAC/buildings community, it is useful simply as a common
language.

In this paper, we attempt to answer Q1 by a comparison
of response between a model of a high state dimension and
various low order models of same clas#rc(n,q, p). Both
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time- and frequency-response comparison are performed.

Comparisons show that a second order model with 2 pa- A

rameters is capable of reproducing the input-output behavi Q‘“ﬁ?” j 1 3

of a 13 state model (with 30 parameters) with a high degree | - 3 3

of accuracy. Even a first order model has acceptable degree Adjacent / !

of accuracy. foom 1 O
To answer Q2, we apply two parameter estimation tech- Qb/ p o G

nigues to identify the R,C values of low order models from 7

data collected from a building in the University of Florida OUIIe Room'betow

campus. A few authors have proposed methods for estimating

R,C parameter values of building thermal models, e.g.,,[15] Fig. 1. Schematic figure of the room

[16], [17], [18], [19]. Such papers show the effectiveneks o

their proposed methods by comparing the prediction of the Tuz

identified model with measured data. Our analysis shows
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that for almost all closed-loop data, such comparison is Rwin . " Ri R Rs
meaningless; grossly “wrong” models can reproduce such T2 s Ir o T |
data quite accurately. That the model is wrong becomes \/ Jowr Joue /

evident only when it is asked to predict measurements with Q4c Icr
very specific features, namely when there is large diffezenc =
between the temperature of the room and the temperatures of

the surroundings. This is in fact the situation that the nhode Fig. 2.
needs to be able to predict if it is going to be useful for _ ) ) )
control algorithms that seek to reduce energy use, becausel & main variable of interest is the temperature of the
the controller may let the temperature float up or down whefPace inside the zone, denotedTasThis is the first state,

the zone is unoccupied [2], [3]. Thus, unless specific force@nd depending on the model dimension, there may be other
response test are conducted to gather certain types of daig@tes. We now describe the various models.

one is better off with ASHRAE values of parameter than tQy £ j.scale model of a zone

estimate parameters from closed-loop data.

Full-scale model structure

The inputs that affect the room temperature are outside
temperature, temperatures of the surrounding spaces, and
heat gain inside the zone. We define the input vector to be

In this section, we will discuss the states, inputs, antl= [To.Ts.Te, Tny, Ty, Thw, Ts;m, Q]T, whereT, is the outside
parameters of three different models of a zone in the clagemperatureT; is the temperature of the space below the
Mzc(n,q, p). Consider a typical zone in a multi-zone build-floor, Tc is the temperature of the space above the ceiling,
ing with a VAV system, which is separated from the outsiddn, andTn, are the temperature of the adjacent rooms to the
through an external wall and a window and from five interna$ide, Thw is the temperature of the hallwa is additional
spaces (floor, ceiling, one room on each side, and a hallwa§gsual heat gain from appliances etu.js the flow rate of
through internal walls and a door to the hallway. The majosupply air andTs is its temperature. The net heat gain due
heat transfer mechanisms include the following: (1) hed® the supply air, and equals to the enthalpy of incoming air
conduction through external and internal walls, windowsninus the enthalpy of exhaust air:
roof, and ceiling; (2) heat convection with outside air dae t B :
the air supplied to and extracted from the room by the HVAC Qac = MG Ts — MG Ti (1)
system; (3) solar radiation through the window and externalherem is the supply air mass flow rat€, is the specific
wall; (4) casual heat gain from occupants and equipmentsgat of air, andTs is the supply air temperature. We employ
and (5) infiltration and exfiltration. A schematic figure oéth the commonly used choice of 3R-2C (3 resistors and 2
room is shown in Figure 1. capacitors) [21] in modelling the heat transfer through a

The following assumptions are made throughout the papewlid surface separating two rooms. Since windows have
(i) The air inside the room is well mixed, so that wevery low heat capacitance, it is modelled as a single rasisto
have one uniform temperature in the room. (ii) We ignor&ach surface element is then connected to the room “node”
in/ex-filtration. (iii) We confine our study to night time to form a RC network model. An additional capacitor is
data when there is no solar radiation and occupant heatluded to model the heat stored by the air and other objects
gain, which often have large uncertainty and not easy tim zone. The structure of the full-scale model is shown in
measure accurately. More importantly, since the occuparfggure 2. Since each wall is a 3R-2C component, there are
are the main source of latent heat gain in an office, thisvo states for each wall. Together with, we have a 13-
restriction eliminates the need to consider nonlinear llityni  state vector.T = [Ti,Tle,TfWZ,...]T, where T, , Taw, are
dynamics [20]. the temperatures of two nodes associated with the sugface

Il. MODEL



The dynamics off; can be then expressed as:

1 1 1 1 1

CT = (- — _ _ _ 3) The LTI case:Note that theQac term in (2), (3),
Rwin  Row, Riw, Rewy  Ruyw and (4) is the only nonlinear term in each of the three
1 L)T n To n Tow, | Trw, @ models described above. When the supply air flow rate,
Ruw,  Roww " Ruin Row, Rfw, is constant, th&ac term becomes linear in the stafeand
Tow N Thgwy N Thowy N Thww, L Onet O input Ts. The system then becomes a LTI system:
Rom — Rogw,  Rgwy — Rowawy T=FT+Gu z=HT=T, (5)

The dynamics of the wall nodes of each wall have similafhere the statd and inputu varies depending on which of

structure: the three models is under consideration.
: 11 T, T,
ConTwy=(—5——5—)Tw +— + I1l. Q1: MODEL STRUCTURE COMPARISON
R*Wl R*Wz R*W]_ R*Wz . —
. 1 1 Towy T, Various models within the class#rc(n,q,p) can be
Cow T, = (_—R*W "R )Taw, + R + Row compared among themselves. In the LTI case, it is possible
2 3 2 3

to compare their frequency response as well. A comparison
The full-scale model has a total of 32 R and C parameterggtween their frequency responses is useful to determine

thus it is of the class#rc(13,8,32). whether a low-order model is powerful enough to charac-
terize the temperature dynamics within a range of input
frequencies as well as a high order model.

B. Low order models

We do not deal with calibration in this section. Instead,

We now consider two low order models which still em-we choose the parameters of the full-scale model as their
ploys the RC network analogy of conductive heat transfer a&8SSHRAE values. In the low-order models, we consider the
the full-scale model described above, but with fewer stategirfaces that are aggregated to form the integrated wak to b
and parameters. parallel components, so that the total capacitance is tire su

1) First-order model: We start with a model of lowest Of capacitance of each surface, and the total conductance
possible state dimension, namely, one. Here all the capmcitiS the sum of conductance (inverse of resistance) of each
elements of a zone (walls, air, furniture) are aggregatesl insurface.
a single capacitor, so that the dynamicsipbecome

A. Field Data
. To-T , Tea—Ti ibrati idati i
CTi==2 . P, lsd— i 4+ QactQ A3) For model callbrgtlon and vahda'upn, we choose_ a typical
Ruin Ry office, Room 241, in Pugh Hall, University of Florida. The

room is connected to two adjacent offices and the hallway
I’r{hrough internal walls; and to the outside through an exern
T o _ t wall and window. Three data sets are studied. All data are
[To, Tsg, Ts;m QI and three parameter8:= [Cr, Ruin Ru" collected from 6pm in the evening to 6am next morning.

Thus, it is of the class#(1,5,3). The first data set, set A, was collected on a summer day
2) Second-order modelThe response of the room tem-gom Aug. 2nd to Aug. 3rd, 2011, under normal closed

peratureT; to changes in mass flow rate and temperature 9f,, control strategy. The second data set B, was collected
_the supply air is usually faster than its response to chandgs 5 winter day from Dec. 5th to Dec. 6th, 2011 under
in the surrounding temperatures. A natural idea is 0 use o, ma| closed loop control strategy. These two data sets are
capacitors to reproduce the two-time scales of the proces$insen among data collected over several months to meet
One capacitor (room capacitanc®) is used for the Iow he criteria that the room and supply air temperatures shoul

thermal mass of the air and other objects in the room, angd,e a5 much variation as possible (to ensure persistency of
the other Cy) is used for the heat capacity of all the wallSg, citation), while the mass flow rate should be constant for

combined. We c.hoose to m?del the integrated wall as a Z%ng periods of time (so that the models become LTI). The
1C element, which leads to: third data set, set C, was collected from Oct. 24th to Oct.

where Tgq is an average of all the surrounding space te
peratures. This model has a single stgtefive inputsu =

) _T _T 25th, 2011, under a forced response test where the inputs
To—Ti  Tw—Ti . .
GTi= Ru + "R +Qac+Q are determined by given commands. The room temperature,
T _'”T T diT (4)  supply air temperature, and supply air flow rate of the three
CwTw= IR L R 2 data sets are plotted in Figure 3.
1 2

whereT, is the temperature of the wall node. This model ha?' Time domain comparison

2 statesT = [T;, Tw]", the same five inputs as the single-state The time domain comparisons of the full-scale and re-
model, and five parametets= [C;,Cy, Rwin,Rl,Rz]T. Thus, duced model (along with measured temperatures from the
it is of class.#(2,5,5). three data sets described in Section IlI-A) are shown in
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whereHsq are the transfer functions from each surrounding
temperature to output.

Figure 5 shows the frequency response comparison (only
the magnitude, not phase) of the three models: full-scale

6pm 9pm 12am 3am 6am

(13-th order), first order, and second order. The parameters

“ PNV ‘ Data set A are chosen as described earlier. The frequency of integest i
o A Y , chosen to bel hours(10°Hz) to ¢ mins(10-3Hz). The
Q7 L ’ 4 . .
5 "o Pulscale T T eSO value of the mass flow rate is set to be the maximum

L +='='2nd order : : B .
o8 T et order : possible valuem= 0.12(Kg/s), as we have observed that
66 - -

6pm 9pm 12am 3am 6am

the maximum error occurs at the maximum valuesnof
We also observed that the outside temperafiyrbas small
impact on the output compared to the other inputs (in the
; A~A sense of small gain), which is consistent with the fact that
’ a e TN Y commercial buildings are usually well insulated. Therefor
| , RO _

opm o o — o we only show the result of the two inpulg and Tgq here.

The effect of an input on the output depends not only
on the transfer function but also on the magnitude of input.
The variation in different inputs can be significantly diffat
from each other. The error in the prediction Gf may be
different due to these inputs even though they might have
the same gain. Therefore we define #reor with respect to
Fig. 4. Time domain comparison of different model strucsure i-th input as:

6pm 9pm 12am 3am ‘ 6am

& (w) = |[Hrs (jw)| —[Hg (jow)||Oui, (7)
Figure 4. We see that all the three models have similar
prediction. whereHts (-) and Hg,(-) correspond to full-scale and low-
Note that, though the three data sets was collected at nighder models, andu; is the maximum variation in the

with no occupants, we conjecture that an additional heat gai-th input. By examining the data from Pugh Hall, we
due to the appliance in the room was present. An inactivedserve that the largest variations in supply air tempegatu
desktop PC & monitor can produce 20-30 W of heat, and sgHrrounding room temperatures, and outside temperatare ar
idle desktop printer can produce 10-35 W [11]. So we use®’F, 10°F, and 48F. The largest estimation error again
a constant load o(t) = 50W in all time domain simulation appears in the inputfs and Tsq. The errorg as a function

in this paper. of frequency is shown in Figure 6.
The following conclusions are drawn from the comparison.
C. Frequency domain comparison First, for the range of frequencies deemed of interest, the

second order model is almost as accurate as the 13-th order
For comparison, we need common inputs in differentnodel, with a maximum prediction error of less thatF1

models. LetH,(s) be the transfer function from theth input ~ Secondthe 1st order model is also quite accurate in terms of
to the outputT;. In full scale model, we define a transferpredicting the response due to supply air temperakyrbut
function from a single surrounding temperatiigg to output less so in case of the surrounding temperature. The maximum
in the full scale model as the sum of transfer functions obrediction error is about® in this case.
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= = 10 e 10 10 The_ room temperature predicted by the model with the
w(H2) w(Hz) best-fit parameter values and the measured room temperature

are shown in Figure 7. As shown in the figure, the estimated

Fig. 6. The error defined in (7) for the two inpufs and Tgy. model predicts well for both data set A and B, although they

have quite different inputs profile (one during summer time,
the other during winter time). However, prediction of the

Model calibration refers to estimating the R,C parametergone temperature of data set C with this calibrated model is
As we saw in the previous section that the second ordektremely poor.

model provides similar prediction power as full-scale mpde
we limit our attention to second order model for the purpose 4
of identification. The following assumptions are made to fur c
ther reduce the number of uncertain parameters in the second g
order model: (i) The resistance of the wall is symmetric, i.e *

IV. Q2: MODEL CALIBRATION AND VALIDATION

—— Measured
= = =Predicted LS
== Predicted ML,

AL L)

701 calibration
Data set A

Ri=R= %RW (i) The wall capacitanc€&,, and window 68 P e P o
resistanceRyi, are assumed known (ASHRAE values). (iii) P °
The surrounding temperatuilgy is taken to be the average 8 aidation
of all the surrounding room temperatures (above the ceiling @ 76} DatasetB
below the floor, two adjacent rooms and the hallway). £ 7l
= o’ \
A. ldentification methods 2 ‘ ‘ AT AR
. . . . 6] 9 12 3 6
We pick two methods for parameter estimation, with o o o o "
different cost functions described below. 8
1) Least-squaresfFor a given model structure with fixed C 75l
parameters, we definemediction error cost Js as: §70— SN
T = Validation “""'m\\ .
2 Data Set C N e S
JLS:/O (Tin(t) = Tip (1))l (8) I

where T, (t) is the measured room temperature at titne
Ti,(t) is the room temperature at tintepredicted by the
model with a given set of parameter values, and a user- The reason for the failure was found to be the data.
specified time interval. In the calibration data (data set A), the surrounding room
2) Maximum likelihood (ML) methodThis method is temperatures are almost the same as the room we study.
applicable to LTI models in discrete time. The likelihoodSo the best fit resistance values are those that are so small
function of the parameter vectd® is given by the joint that the room temperature essentially follows the tempegat
density function of all observations. With some Gaussiaof the surroundings, leading to small prediction error. In
and independent assumptions, it can be calculated by usinglidation data set B, though the room temperature profile
a Kalman filter. The reader is referred to [17] for details. Was quite different from that in set A, the surrounding room
define the cost functiody as: temperatures are still close to the room temperature, so
the model predicts well. However, in validation data set C,
Ju = —logL ©)  the surrounding room temperatures are significantly difier
wherel is the likelihood function. from the room temperature, so it shows that the calibrated
In minimizing the cost functions, we pick the direct searctparameter values are incorrect.
method. The reason is that the cost functions are non-convex , _—
optimization algorithms like gradient descent often gatkt C. Attempt 2: a more reliable calibration
in local minimum. This situation is likely to be exacerbated Now we use data set C for calibration, which leads to best-
with a model with higher number of parameters. By usindit parameter values shown in Table II. While in the previous
direct search method, we avoid this problem. case both methods yield a much lower value of the resistance
. compared to their ASHRAE values, this time the estimated
B. Attempt 1: apparent success but really a failure resistance value is much closer to its ASHRAE value. The
We use data set A for model calibration and data set Bme-domain simulations for calibration and validatiortada
for model verification. The resulting best-fit parameteueal sets are shown in Figure 8. From the figures, we can see that
are shown in Table I. though the maximum prediction error is large®F3, this set

Fig. 7. Calibration/validation when data set A is used fdibcation.



ga(r?/r?((;ter Ie?ztfi?res 47'\1L105 sufficiently exciting input is not enough. The results rdvea
Rn(K/W) 0.01 0.005 the features that the data should have to enable correct iden
TABLE Il tification. It seems that these features can only be ensured

through forced response tests. We have not incorporated
effect of an open door so far. Future work will address this
guestion, as well as adding other heat sources such as solar

BEST FIT PARAMETERS WHEN DATA SETC IS USED FOR MODEL
CALIBRATION.

of parameters predict the trend of the temperature welllin glagiation and occupancy.

three data sets.

(1]

—— Measured
- = = Predicted LS

...... (2]
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Data set C

9pm 6am

(3]

e UNCYRLA

[4]
Validation
Data set A

9pm

(5]
(6]

Validation
DatasetB
6pm 9pm

(7]

8
Fig. 8. Calibration/validation when data set C is used fdibcation. )
From the results, we see that calibration accuracy cru-
cially depends on the data set chosen. This by itself is not]
surprising. What is surprising is that having large vaoiati
in the measured inputs (to have persistency of excitation)
and outputs is not enough. The data should be chosen so
that the output (room temperature) does not have a stro
correlation with any of the surrounding temperatures. The
features required in the data to ensure identification of
parameters seem to be possible only through forced responsg
experiments.
[12]
V. SUMMARY AND FUTURE WORK [13]
We examined two questions for models of HVAC zones, 4
that can be used for predictive control: required model com-
plexity and parameter identification. We examined modeld®]
of varying complexity within the popular class of non-limea
RC network models. By comparing low order models witt16]
high order ones, we conclude that a second order model
reproduces the input-output behavior of the full-scaleh13 (17
order model quite accurately. Even a first order model is
accurate enough that it may very well suffice for the pur-
f predictive control. Thus, complex models with hi t[118]
pose of p , p g
state dimension and large nhumber of resistance/capaeitanc
models are not needed. (19]
The work reported here on parameter identification of
low-order models from experimental data has revealed thgb)
calibrating the parameters of the R,C network model to
closed-loop data from a building is likely to lead to grossl)@l]
inaccurate parameter estimates, so that the resulting Imode
is unlikely to be useful in predictive control. Even datalwit
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