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Abstract— Model Predictive Control (MPC) has emerged as
a potential control architecture for operating buildings in a
more energy efficient manner. We study through simulations
the effect of several sources of uncertainty that arise in the
implementation of MPC on the energy consumption, thermal
comfort, and indoor air quality (IAQ). These include occupancy
profile, measurement errors and mismatch between the plant
and its model that the control algorithm uses. Simulations
are carried out for two extreme cases: a winter day with
no solar load and a summer day with high solar load. The
study shows that increasing fluctuations in occupancy, errors in
measuring occupancy, and model mismatch have the strongest
impact on the energy consumption. However, measurement
errors in outside temperature and solar load does not have
significant impact. Therefore, it is possible to improve the
controller performance by using more accurate occupancy sen-
sors. Furthermore, implementation cost can also be reduced by
eliminating the sensors and prediction algorithms for predicting
outside temperature and thermal loads without compromising
the controller performance. Even with these uncertainties, MPC
delivers 12− 37% reduction of energy use over conventional
control methods without affecting thermal comfort and IAQ.

I. INTRODUCTION

Buildings are one of the primary energy consumers world-

wide. Inefficiencies in the operation of HVAC (Heating

Ventilation and Air-Conditioning) system are major causes

for the large energy consumption of buildings. A possible

way to improve the efficiency of HVAC systems is through

the use of novel control algorithms. Improving efficiency

through change in the control algorithm alone has a strong

economic incentive: retrofitting existing buildings with new

control software is far cheaper than redesigning the buildings

to be more efficient.

Several recent studies have explored the use of model-

based control to reduce energy use, particularly Model Pre-

dictive Control (MPC) based techniques [1], [2], [3], [4],

[5], [6]. These papers show that MPC can reduce energy use

significantly compared to conventional control schemes that

are currently used to operate buildings, such as rule based

control or single-maximum control [7].

Conventional control methods are easy to implement since

they are pure feedback strategies based on measured tem-

perature. MPC, in contrast, requires additional information

such as model of the plant and predictions of exogenous

inputs. While the studies mentioned above indicate that

MPC does have potential to increase energy efficiency, they

This work has been supported by the National Science
Foundation by Grants CNS-0931885 and ECCS-0955023. The
authors are with the Department of Mechanical and Aerospace
Engineering, University of Florida, Gainesville, Florida, USA.
{siddgoya,ingley,pbarooah}@ufl.edu

have examined the performance of MPC under idealized

assumptions, such as perfect knowledge of exogenous inputs

and accurate knowledge of plant dynamics. It is therefore

important to examine the sensitivity of MPC performance to

various sources of uncertainty, since the thermal dynamics

of buildings are complex and highly uncertain.

The effect of plant-model mismatch and occupancy pre-

diction on the controller performance is studied in [1], [5],

[6]. Plant-model mismatch refers to the difference between

the process dynamics, and model of the plant that the

MPC controller uses for optimization and/or state estimation.

These papers only consider temperature control, whereas

humidity and IAQ are also important factors in ensuring the

comfort and health of occupants [8]. The paper [1] examines

the effect of occupancy information available on the energy

consumption. It also discusses the effect of total occupancy

period on the energy consumption, but not the effect of

occupancy fluctuations. In [5], parameters of the model are

perturbed from their nominal values to determine the critical

parameters that have the most effect on energy consumption.

The paper [6] studies the effect of a fixed increase/decrease

in window and wall resistances.

The purpose of this paper is to examine the sensitivity

of MPC performance to uncertainties introduced by plant-

model mismatch and errors in predictions of exogenous in-

puts through extensive simulations. The MPC-based control

scheme proposed in our earlier work [2], [9] is chosen for the

sensitivity study undertaken in this paper. Perfect knowledge

of plant was assumed in [2], [9], so that there was no plant-

model mismatch. In [2], full state information was assumed

available to the MPC controller. These are common assump-

tions in the recent papers on MPC for green buildings [1],

[4]. A key exogenous variable whose prediction is required

is occupancy (number of occupants). Significant amount of

energy savings can be obtained by relaxing the constraints

on space temperature and/or humidity when the zone is

unoccupied [1], [2]. It is shown in [2], [9] that a significant

amount of energy can be saved by using only measurements.

In this study, we introduce various uncertainties in the

prediction of exogenous inputs and plant-model mismatch.

Since occupancy is a key exogenous input, it is likely that

error in the prediction of occupancy will have a significant

effect on the performance of MPC controller. In the context

of the prediction method used in [2], [9], even if occu-

pancy measurements are noise free, such a prediction will

be frequently erroneous if occupancy in the zone changes

frequently. This raises the question of sensitivity to occu-

pancy profile. Namely, if a zone A is occupied for 8 hours



continuously, does it consume the same amount of energy as

when it is occupied sporadically but with a total occupied

duration of 8 hours? In addition, occupancy measurements

will be corrupted with noise, which may lead the controller

to believe that a zone is occupied when it is not and vice

versa. We therefore study how MPC performance varies with

occupancy profile and measurement noise. We study plant-

model mismatch by changing the resistance of the window

and the door in the process dynamics (which is likely in

practice when the door and/or the window is opened), while

the controller uses the nominal model with fixed parameters.

The overall conclusion of the study is that the MPC

scheme of [2], [9] is quite robust to these uncertainties,

though the degree of robustness varies. It is seen to be most

sensitive to occupancy profile (for the same total occupied

duration), occupancy measurement errors, and plant-model

mismatch. These factors can lead to energy use increase of

up to 35% over the baseline MPC case (with no uncertainty)

with no significant increase in occupant discomfort. In the

worst case, the MPC controller yields a 12% energy sav-

ings compared to the conventional (single-maximum) control

strategy. MPC is observed to be highly robust to uncertainties

in measurements of outside temperature and solar load. The

overall robustness of MPC to uncertainty indicates that MPC

is a good candidate for building control, in spite of high

degree of uncertainty in building dynamics.

The rest of paper is organized as follows. The model used

to simulate the zone, and the models used in MPC/Kalman

filter are described in Section II. Section III briefly de-

scribes the control algorithm. Section IV explains how the

uncertainty in occupancy measurements, inputs predictions

and model mismatch are chosen. Simulation results with

the effect of occupancy type, model and measurements

uncertainty are shown in Section V. Section VI concludes

the paper and discusses ways to extend this work in future.

II. CONTROL ARCHITECTURE

A common configuration of HVAC systems used in mod-

ern buildings is the so-called variable-air-volume (VAV)

system with a reheat box. In this configuration, cold and

dry air is supplied by the Air Handling Unit (AHU) to the

VAV box, which may heat up the air before supplying it to

the zone. The VAV box also controls the flow rate of the air

supplied to the zone. For the sake of simplicity, we assume

that one AHU supplies air to only one zone.

The vector u of controllable input signals and v of mea-

sured exogenous inputs to a zone are

u = [min,T in], v = [Qp,Qs,T0,W
in]T , (1)

where min, T in and W in are the flow rate, temperature and

humidity ratio of supply air, respectively, Qp is the heat gain

due to occupants, Qs is the solar load gain, and T0 is the

outside temperature.

Figure 1 shows a generic scheme for implementation of

MPC in a zone. Noisy measurements of outside temperature,

solar radiation, occupancy, zone temperature and humidity

are used for state estimation and prediction of exogenous

inputs for a fixed time horizon into the future. These pre-

dictions, together with a model of the zone’s hygro-thermal

dynamics are used in the computation of the optimal values

of the control inputs.

The total power consumption (PT ), which includes fan

power (PF ), reheating power (PR) and conditioning power

(PU ) can be written in the following form

PT , PF +PU +PR = g(u,T AHU ,W AHU ), (2)

where T AHU and W AHU are the temperature and humidity

ratio of air being supplied by the AHU respectively. Details

of the power model can be found in [2], [9].

MPC requires a model of the dynamics to perform opti-

mization. A model is also needed for state estimation since

MPC needs full state information. For state estimation and

control computation, approximations of a nominal process

model is used, which is denoted by M0, and is referred

to as “belief model”. In studying the effect of plant-model

mismatch, a process model Mδ is used for simulating the

process, which may differ from the nominal model. The

scalar δ is used to indicate how different the process model

is from the belief model. These models are described below.
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Fig. 1. Implementation of model predictive control for zone-level control.
A. Process dynamics

A model of a building’s thermal dynamics can be con-

structed by combining elemental models of conductive in-

teraction (RC networks) between two spaces separated by a

solid surface such as a wall, as well as heat exchange due

to supply and extract air. Humidity dynamics can be derived

from mass balance. The resulting model of the hygro-thermal

dynamics is a set of coupled nonlinear ODEs

Ṫ = AT +Bv+ f (T1,W,u,v), Ẇ = g(T1,W,u,v), (3)

where the vector T ∈ R
n consists of zone temperature (T1)

and the temperatures of the nodes interior to the walls, W ∈R

is the humidity ratio of the air in the zone; see [10] for details.

The plant model (3) with nominal parameter values is

represented by M0, while a model in which these parameters

are different from their nominal values is denoted by Mδ . The

scalar δ represents the degree of variation of the parameters

from their nominal values.



B. “Belief Models” for state estimation and optimization

The belief model M0r is an approximation of the nominal

process model M0 that is obtained by applying the model

reduction technique of [10] to M0. The interested reader is

referred to [10] for details. The reason for using a lower order

approximation is that not only does it reduce computation

complexity but that the full order model M0 is found to be

unobservable for certain resistance/capacitance values, while

the reduced model M0r is observable by construction.

All of the models Mδ ,M0,M0r are continuous time models.

However, to solve the optimization problem numerically,

some form of discretization is needed. We use a discrete-time

version of the model M0r for this purpose, which is denoted

by M
(d)
0r . The model M

(d)
0r is obtained by discretizing M0r

using Euler Forward method [11]. The resulting discrete time

model is of the form xk+1 = fk(xk,uk,vk), where k = 0,1, . . .
corresponds to the discrete time index, ∆t is the time period

between index k and k+ 1, and the state xk is the value of

temperature vector and zone humidity at time k, while uk,vk

are the controllable and exogenous inputs, respectively, as

described in (1), at time k.

The block diagram for the MPC implementation is shown

in Figure 2. As shown in the Figure 2, the process model

uses the true values for exogenous inputs, while the noisy

occupancy measurements and uncertain predictions of out-

side temperature and solar load are used by MPC/Kalman

filter. In the Figure 2, n
p
ε represents the noisy occupancy

measurements from sensor. The subscript ε represents the

variation of occupancy measurements from their true values,

e.g. n
p
0 represents the true occupancy value.
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Fig. 2. Block diagram of MPC implementation for a zone-level control.

III. CONTROL ALGORITHM

A. MPC Algorithm

The MPC based controller in [2], [9] seeks to reduce

energy consumption by maintaining temperature, humidity

and IAQ. The optimal control inputs are computed for a

discrete time horizon of length K, but only the first of these

K samples is executed. It is assumed that control inputs are

constant for m time indices, so that only z = K/m control

inputs have to be computed for a horizon of length K. After

m time steps, the whole process is repeated.

The control logic is divided into two modes: (i) Unoccu-

pied, and (ii) Occupied. If the measured occupancy at time

index k, i.e., at the beginning of the k-th time interval of

length ∆t, is observed to be 0, then the prediction of the

occupancy for the future is set at 0, and the controller turns

on the unoccupied mode. The occupied mode is turned on if

the measured occupancy of the zone is at least 1 at the k-th

time index. In this mode, the occupancy prediction for the

future is set to be the value measured at the k-th time index.

1) Unoccupied Mode: The optimal control inputs for the

next K time indices are obtained by solving the following

optimization problem:

arg min
min,T in∈Rz

k+z

∑
i=k

PT (im) (4)

subject to the following constraints:

T unocc
low ≤ T (im)≤ T unocc

high

min
low ≤ min(im)≤ min

high

T AHU ≤ T in(im)≤ T in
high

W unocc
low ≤W (im)≤W unocc

high















∀i = k, . . . ,k+ z,

where T unocc
low , T unocc

high , W unocc
low , W unocc

high and min
low are design

variables, whereas min
high, and T in

high are actuator constraints.

2) Occupied Mode: In this mode, the optimal control

inputs for the next K time indices are obtained by solving

the following optimization problem.

arg min
min,T in∈Rz

k+z

∑
i=k

PT (im) (5)

subject to the following constraints:

T occ
low ≤ T (im)≤ T occ

high

T AHU ≤ T in(im)≤ T in
high

min
low +min

p np(im)≤ min(i)≤ min
high

W occ
low ≤W (im)≤W occ

high















∀i = k, . . . ,k+ z,

where T occ
low , T occ

high, min
p , W occ

low and W occ
high are design variables.

Note that IAQ is always maintained by the design of min-

imum flow rate, which is provided as a constraint to the

control algorithm; see [2], [9] for details.

To perform the optimization in both occupied and unoccu-

pied modes, the controller needs predictions of the exogenous

input vector v = [Qp,Qs,T0,W
in]T over the time horizon of

optimization and the initial state of the belief model M
(d)
0r

(i.e., the state at the current time index). Prediction of the

Qp depends only on the occupancy, i.e., Qp = αn
p
ε , where

α is specified by ASHRAE handbook [8]. Prediction of

T0, Qs is assumed available from weather forecasts, while

W in = W AHU is assumed constant. The state is estimated

using a continuous-discrete extended Kalman filter that uses

the belief model M0r. We use output measurements sampled

at the end of the interval to estimate the state.

B. Performance metrics

The energy used over a period T is E :=
∫ T

0 PT (t)dt. We

refer to the predicted energy use when the model predictive

controller is used in the ideal conditions (no plant-model

mismatch, full state information available without need for

state estimation, and perfect measurement of occupancy is



available) as the baseline MPC energy use, and denote it by

EMPC
0 . An energy related performance metric is the

∆EMPC := (EMPC −EMPC
0 )/EMPC

0 . (6)

where EMPC is the predicted energy use with MPC, when

any uncertainty is present there.

We divide the discomfort level into two parts 1) Temper-

ature Discomfort (DT ), and 2) Humidity Discomfort (DH ).

The instantaneous discomfort is deviation of the tempera-

ture/humidity from the allowed range during the occupied

time. During the unoccupied mode, DT is considered 0 since

there is no one in the zone. The expressions for DT and DH

are written below

DT =







T1(t)−T occ
low , if T1(t)< T occ

low and n
p
0(t) 6= 0

T1(t)−T occ
high, if T1(t)> T occ

high and n
p
0(t) 6= 0

0, if n
p
0(t) = 0







,

DH =







W (t)−W occ
low , if W (t)<W occ

low and n
p
0(t) 6= 0

W (t)−W occ
high, if W (t)> T occ

high and n
p
0(t) 6= 0

0, if n
p
0(t) = 0







.

Total temperature discomfort (D⋆
T ) and total humidity dis-

comfort (D⋆
H ) over a T time period can be written as

D⋆
T =

∫ T

0
DT dt, D⋆

H =
∫ T

0
DHdt. (7)

IV. TYPES OF UNCERTAINTIES STUDIED

In this section, we describe the various uncertainties whose

effect on MPC performance metrics we wish to study.

A. Occupancy profile

We assume that the total time occupied by the occupants is

constant. However, number of times occupants leave or enter

the zone is varied. Consider a typical schedule of a person in

an office, which is shown in Figure IV-A a). In Figure IV-A

a), a person enters the office at 8 AM and leaves the office

at 12 PM for lunch, the person comes back to the office at

1 PM and leaves it at 5 PM. In this case, the person enters

or leaves the office 4 times in a day, which we call “No.

of changes” (Nc). Similarly, in Figure IV-A b), the no. of

changes is 8: Nc = 8.
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Fig. 3. Multiple occupancy profiles for fixed occupied time and different
no. of changes (Nc).

B. Occupancy measurement error

The controller uses occupancy measurements (n
p
ε ), which

are invariably corrupted by sensor noise. To study the effect

of this noise, we let the state estimator and optimization rou-

tine in the controller use the noisy occupancy measurements

n
p
ε while the true occupancy value n

p
0 is used in computing

predictions of the process model Mδ .

When the zone is not occupied, Pr(np
ε = 0)=Pr(np

ε = 1)=
0.5, where Pr(.) denotes probability. During the occupied

time, Pr(np
ε = 0) = Pr(np

ε = 1) = Pr(np
ε = 2) = 1/3. This

model produces occupancy measurements (np
ε ) as 0 or 1

when no one is there, while it produces occupancy mea-

surements as 0, 1 or 2 when someone is there.

C. Plant-model mismatch and input uncertainty

1) Plant-Model Mismatch: The plant-model mismatch we

study arises due to the uncertainty in the thermal resistance

and capacitance values of wall, window, etc. The uncertainty

in these parameters are mainly due to two reasons: a)

infiltration/exfiltration due to the gap or leakage through

window or opening door of the zone, and b) aging of the wall

material. Leakage through the window or opened door causes

the thermal resistance values to change by a large factor

but not the thermal capacitances. However, aging causes

comparatively small change in the thermal resistances and

capacitances. We only study the change in thermal resistance

values due to opened door and/or window, which is compar-

atively much larger than the thermal resistance change due

to aging. It is also assumed that thermal capacitances do not

change when door or window is opened.

The perturbed resistance values of door (Rd
δ ) and window

(Rw
δ ) used by the process model, Mδ , can expressed as

Rd
δ = Rd

0(1+Wδ ), Rw
δ = Rw

0 (1+Dδ ), (8)

where −1 < Wδ < 1 and −1 < Dδ ≤ 1 are the % change

in the thermal resistance values of the door and window,

respectively. Rd
0 and Rw

0 are the thermal resistances of the

door and window, respectively, when there is no uncertainty

in the model.

2) Input uncertainty: We also study two other types of

uncertainty: errors in the prediction of outside temperature T0

and solar load Qs. Uncertainty in T0 is studied by providing a

constant value to the controller that is different from the true

value that the process is subjected to. Similarly, uncertainty

in the load is introduced by providing a load forecast of 0 in

the controller, while using a non-zero load in the process

model. This corresponds to a situation when there is no

weather forecast available.

V. RESULTS

Simulations are carried out for a model of a zone from

the second floor in a building (Pugh Hall) at the Univer-

sity of Florida campus, Gainesville, FL. Numerical results

presented here are obtained from simulations conducted in

MATLAB c©. Simulations are carried out for two extreme

boundary conditions, in a a) winter and, b) summer day;

see [12] for the details of inputs, building, model and design

parameters.

A. Effect of occupancy profile

Figure 4(a) and 4(b) show the % change in the total energy

consumption in a day over the nominal case as a function of

number of fluctuations in the occupancy during the summer

and winter day, respectively. It is clear from the both the



figures that the energy consumption change increases first

till Nc = 10, and then decreases and becomes constant later.

The first increase in the energy consumption is due to the

controller fluctuating between the occupied and unoccupied

mode. The maximum energy consumption is at Nc = 10.

This is because the time period between the fluctuations is

large enough for the zone temperature to attain the lowest

allowed value during the unoccupied mode. When a person

enters a zone, maximum power is used to bring the zone

temperature back in the comfortable range as quickly as

possible. However, if the fluctuations are more frequent, the

zone temperature is not able to drift very far away from

the comfortable range. This leads to the increase in energy

consumption becomes constant. The % change in the energy

consumption during the summer is smaller than that during

the winter. This is because AHU contributes a major portion

of energy to the total energy consumption and the controller

is mostly in the cooling mode. The total temperature and

humidity discomfort are quite low (i.e. very close to the

comfortable region) during the winter and summer day,

which are not shown here due to the space limit.
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Fig. 4. Percentage change (∆EMPC) in energy consumption as a function
of the number of the changes in the occupancy (Nc) during the a) Winter,
and b) Summer day, where the total occupancy time period is 8hrs.

B. Effect of occupancy measurements error

Simulation results for the winter day are shown in Fig-

ures 5-6. In the figures, mean (µ) is represented by the solid

line, while the dashed line represents a band of three times

standard deviation (±3σ ) from the mean value, which we

call variation, i.e. “variation” = ±3σ . Fifty (50) random

numerical experiments are used to compute the mean and

variation in studying the effect of occupancy measurement

error. Figure 5 shows the mean (µ) and variation (±3σ )

of temperature and humidity discomfort during the winter,

which are very close to zero. This guarantees good thermal

comfort in the zone. Figure 6 shows the mean (µ) and

variation (±3σ ) of the total power consumption and occu-

pancy. The mean and variation of total energy consumed

in a day are 34.56MJ and 0.1MJ, respectively. However,

the energy consumed (EMPC
0 ) during the nominal winter

day is 29.13MJ when there is no error in the occupancy

measurement. Therefore, there is an increase of 18% in the

total energy consumption in a day.

Simulation results for the summer day are shown in

Figures 7-8. It is explicit from Figure 7 that IAQ and comfort

level is not compromised. Mean (µ) and variation (±3σ )
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Fig. 5. Mean (µ) and variation (±3σ ) of the temperature discomfort
(DT ) and humidity discomfort (DH ) during the winter, when the outside
temperature is 15.56◦C and no solar radiation is present.
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Fig. 6. Mean (µ) and variation (±3σ ) of the total power (kW) and
occupancy during the winter, when the outside temperature is 15.56◦C and
no solar radiation is present.

of the power consumption and occupancy are shown in

Figure 8. The power consumption is more during the summer

because a lot of energy is consumed at the AHU to cool down

the hot outside air from 29.44◦C to 12.8◦C.

The mean (µ) and variation (±3σ ) of the total energy

consumption in day during the summer is 124.47MJ and

0.24MJ. However, the total energy consumption (EMPC
0 )

during the nominal summer day is 106.84MJ when there

is no measurement error in occupancy. Hence, there is an

increase of 16.5% in the total energy consumption in a day.

The change in energy consumption during the summer is

close to the energy consumption increase during the winter.
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Fig. 7. Mean (µ) and variation (±3σ ) of the temperature discomfort
(DT ) and humidity discomfort (DH ) during the summer, when the outside
temperature is 29.44◦C and solar load is present.
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occupancy during the summer, when the outside temperature is 29.44◦C
and solar load is present.

C. Model Mismatch

In this section, resistance values of the door and window

are varied as mentioned in the Section IV-C.1. The param-

eters Dδ and Wδ are varied from −0.67 to 1, and surfaces



for the % change in the total energy consumption (∆EMPC
0 )

are plotted as shown in Figures 9(a) and 9(b) during the

winter and summer day, respectively. Figure 9(a) shows that

there is a decrease in the total energy consumption during

the winter, when Wδ is increased and Dδ is decreased. This

is because the surroundings temperature is maintained at

22.22◦C, and decreasing Dδ means easy transfer of energy

through the walls. However, when Wδ is decreased there

is more interaction with the cold outside weather. Hence,

more heat is being supplied to maintain the comfortable

temperature in the zone. Figure 9(b) shows that there is not

much change in the energy consumption during the summer.

This is because reheating mode is mostly not turned on and

only outside fresh air is being circulated. The temperature

and humidity discomfort values in a day are very low during

the winter and summer, which ensures good thermal comfort

in the zone. We don’t see any significant change in the

total energy consumption or discomfort level due to the

uncertainty in solar load and outside temperature. This is

because of the high resistance of the window; see [12] for

the results in detail.
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Fig. 9. Percentage change in the total energy consumption (∆EMPC
0 ) in a

day as a function of parameter variation during the a)Winter, and b) Summer.

Note that we did not study the effect of any of these

uncertainties on IAQ, since the bounds on the mass flow

rate chosen in the MPC controller assures that good IAQ

will be maintained at all times, occupied or not.

VI. DISCUSSION AND FUTURE WORK

We examine the effect of multiple occupancy profiles,

error in the occupancy measurements, outside temperature

and solar load predictions, as well as model uncertainty

on the total energy consumption and thermal comfort with

MPC. We conclude that the energy consumption of the MPC

controller is most sensitive to occupancy profiles, occupancy

measurements error and plant-model mismatch, although the

controller is quite robust to errors in outside temperature and

solar load predictions. The controller is able to maintain IAQ

and thermal comfort in the zone in all the cases.

Plant-model mismatch due to the opened door or leakage

through the window changes the energy consumption by

35% over the baseline MPC case (with no uncertainty).

Increasing the occupancy fluctuations increases the total

energy consumption by at-most 25% over the baseline case.

While uncertainty in the occupancy measurements causes the

total energy consumption to increase by 18% and 16.5%

during the winter and summer day, respectively, over the

baseline case. Uncertainty in the solar load and outside

temperature predictions does not cause significant increase in

the energy use over the baseline case (with no uncertainty).

In the worst case, the MPC controller yields a 12% energy

savings compared to the conventional (single-maximum)

control strategy, while in the best case, the MPC controller

results in 37% energy savings.

We conclude that the MPC controller’s performance is

sufficiently robust to uncertainties to make it a good candi-

date for building control. Even with uncertainties, the MPC

controller is able to provide energy savings of 12−37% over

the conventional (single-maximum) controller while main-

taing thermal comfort and IAQ. High accuracy occupancy

sensors can make energy savings of MPC over convention

control more consistent. Furthermore, it is possible to reduce

the cost of MPC implementation by eliminating sensors and

prediction algorithms for measuring and predicting outside

temperature and solar load.

The avenues of future work are: i) include the multi-

zone interactions while solving the optimization problem and

studying sensitivity, ii) consider return air recirculation while

minimizing energy consumption, iii) study the effect of other

design parameters used in the control algorithm, and finally,

iv) implement the control algorithm in a real building and

analyze the controller performance.
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