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We propose several control algorithms and compare their performance and complexity through
simulations; the control algorithms regulate the indoor climate of commercial buildings. The goal of
these control algorithms is to use occupancy information to reduce energy use—over conventional
control algorithms—while maintaining thermal comfort and indoor air quality. Three novel control algo-
rithms are proposed, one that uses feedback from occupancy and temperature sensors, while the other
two compute optimal control actions based on predictions of a dynamic model to reduce energy use. Both
the optimal control based schemes use a model predictive control (MPC) methodology; the difference
between the two is that one is allowed occupancy measurements while the other is allowed occupancy
predictions. Simulation results show that each of the proposed controllers lead to significant amount of
energy savings over a baseline conventional controller without sacrificing occupant health and comfort.
Another key finding is that the feedback controller performs almost as well as the more complex MPC-
based controllers. In light of the complexity of the MPC algorithms compared to the feedback control
algorithm, we conclude that feedback control is the more suitable one for occupancy based zone-climate
control. A related conclusion is that the difficulty of obtaining occupancy predictions does not commen-
surate with the resulting benefits; though these benefits are a strong function of ventilation standards.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Buildings are one of the main consumers of energy worldwide. In
the United States, they account for about 40% of the total energy
consumption [1]. Heating ventilation and air-conditioning (HVAC)
contributes to more than 50% of the energy consumed in buildings
[1]. Poor design and inefficient operation of HVAC system cause a
large fraction of energy used to be wasted [2,3]. Though it is possible
to improve energy efficiency through replacing HVAC equipment
with more efficient ones, it requires substantial investment to retro-
fit an existing building with improved HVAC equipment [4]. In con-
trast, improving control algorithms (that operate the HVAC system)
to achieve higher efficiency is far more cost effective. Indeed, a num-
ber of recent papers have focused on improving energy efficiency in
buildings through advanced control algorithms [5–11]. In this pa-
per, we examine control algorithms that use occupancy information
to control the climate of individual zones with reduced energy use
compared to conventional control algorithms that do not use such
information.

We limit ourselves to commercial buildings with variable-air-
volume (VAV) systems. More than 30% of the commercial building
floor space in the United States is served by VAV systems [12]. In a
VAV system, a building is divided into a number of ‘‘zones’’, where
a zone can be a single room or a collection of rooms. The flow rate
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Nomenclature

CLG cooling set-point
DH humidity violation
DH average humidity violation
DT temperature violation
DT average temperature violation
EC energy consumed by controller C
EBC energy consumed by the baseline controller
H relative humidity
HTG heating set-point
K number of steps chosen for prediction horizon
P total power
PF fan power
PR re-heating power, i.e., power consumed in reheating at

the variable-air-volume (VAV) box
PU conditioning power, i.e., power consumed by chiller
Qs rate of heat gain due to solar radiation
RTG re-heating set-point
RRA return air ratio (ratio of return air to mixed air flow rate)
T temperature
Tset desire set-point
TRTG re-heating set-point
Thigh maximum temperature allowed in the zone
Tlow minimum temperature allowed in the zone
W humidity ratio
Whigh maximum humidity ratio allowed in the zone
Wlow minimum humidity ratio allowed in the zone
Dt discretization time

a IAQ factor of safety
m mass flow rate
h enthalpy of air
mA

z amount of fresh outside air required per unit area

mOA
p amount of fresh outside air required per person

mSA
p amount of supply air required per person

mSA
high maximum amount of supply air during occupied or

unoccupied time
mSA

low minimum amount of supply air during unoccupied time
np number of people
u controllable input vector
v exogenous input vector
A floor area
b fan power constant

Subscripts
d designed

Superscripts
OA outside air
occ during occupied time
unocc during unoccupied time
CA conditioned air: air being supplied by air handling unit

(AHU)
SA supply air (air leaving the VAV box)
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of supply air, i.e., air supplied to a zone, is controlled through
dampers in the VAV box of the respective zone. The conditioned
air, which is the air supplied by an AHU, may be reheated at the
VAV box before being supplied to the zone. We focus on control
strategies that can be applied at each VAV box, where the control
inputs that need to be determined are the mass flow rate and tem-
perature of the supply air.

The conventional control strategies used at the VAV box use
real-time temperature measurements but do not use real-time
occupancy measurements. In this paper, ‘‘occupancy’’ is used to de-
note the number of people in a space. The controller determines
the flow rate of air supplied to the zone, as well as any reheat to
be applied, to maintain the temperature of the zone at specific
ranges that are based on predetermined occupancy schedules. To
maintain indoor air quality (IAQ), a minimum airflow rate is main-
tained, which is determined based on the occupancy schedules and
building standards such as ASHRAE (American Society of Heating,
Refrigerating and Air-Conditioning Engineers) ventilation standard
62.1-2010 [13]. This widely used control logic is inefficient in
terms of energy use since even during unoccupied times it main-
tains the indoor environment as if it was occupied. Energy effi-
ciency of HVAC systems can be improved by changing the indoor
climate in response to occupancy change. Demand control ventila-
tion (DCV) seeks to do so by changing the supply air flow rate
based on measured or estimated occupancy [14].

However, with real-time occupancy measurements, it should be
possible to do more to reduce energy use than merely controlling
ventilation. For example, energy use can be further reduced by
letting the temperature vary during unoccupied times in a wider
range than that during occupied times. Caution is required while
developing a control algorithm to achieve that objective. For
instance, if we let the temperature during unoccupied times
deviate far away from what is considered comfortable, it might
take a while for the temperature to come back to a comfortable
range when the zone becomes occupied again. The same goes for
humidity and IAQ. On the other hand, if future occupancy is known
then one might be able to avoid such a scenario by bringing the
temperature back up in time, which requires predictions from a
dynamic model of the zone temperature and humidity. Thus, the
dynamics of temperature, humidity, and IAQ have to be taken into
account in designing such control algorithms. Moreover, the con-
troller should also have some robustness to error in occupancy
measurements/predictions.

In this paper, we examine how much energy can be saved by
control algorithms that use information of occupancy and system
dynamics, and how the savings depend on the fidelity of the infor-
mation. With more information (prediction vs. measurement), we
may be able to save more, but the control algorithm may become
more complex. Our focus is on control algorithms that can be used
in VAV boxes of individual zones in existing (and new) commercial
buildings; the controller has to decide the flow rate and tempera-
ture of the air supplied to the zone. It can vary the airflow rate be-
tween 0 and some upper bound, while the temperature can be only
increased beyond the temperature of the conditioned air (air leav-
ing the AHU) by using the reheat coil, but not decreased. Though it
is possible to add additional actuation such as controllable window
blinds, they require significant hardware upgrade, and therefore
are not considered here.

The question of sensors to measure occupancy or models to pre-
dict occupancy is relevant to control systems seeking to use such
measurements and/or predictions. Real-time occupancy measure-
ments can be obtained from presence sensors—such as PIR and
ultrasound sensors—that are inexpensive and work well in small
office spaces where the nominal occupancy value is one [15]. For
spaces occupied by more than one person, measuring occupancy
is not trivial. Efforts in developing novel occupancy measurement
technology are carried out by several researchers; see [16,17,15]
and references therein. There is also considerable recent effort in
developing models and algorithms for predicting future occupancy
in real-time [18–21,6]. These predictions are distinct from—and ex-
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pected to be more accurate than—predetermined occupancy
schedules. In this paper, we assume that sensors and/or algorithms
to obtain real-time occupancy measurement and/or prediction are
available.

The rest of paper is organized as follows. In the remainder of the
section, we discuss the related literature and the contribution of
the paper. The models of a zone’s hygro-thermal dynamics (i.e.,
the dynamics of temperature and humidity) and power consump-
tion are described in Section 2. The proposed control algorithms
and a baseline controller (a conventional controller used com-
monly in commercial buildings) are described in Section 3. Section
4 describes performance metrics related to thermal comfort and
energy savings. Section 5 provides a description of the parameters
chosen for the simulation study. Simulation results and their impli-
cations are discussed in Section 6. Section 7 concludes the paper
with a discussion of the results and ways to extend this work.

1.1. Relation to prior work

A number of papers have investigated control algorithms that
use occupancy information (either measurements or predictions),
and compared their energy consumption to that of conventional
controllers. Some of these are simple rule-based controllers while
others are quite complex. By ‘‘conventional controller’’, we mean
a controller that is commonly used in existing commercial build-
ings. Such a controller does not use occupancy measurements;
though it may use predefined occupancy schedules. These control
algorithms consist of ‘‘if-else’’ logics for higher level decision mak-
ing and PID loops for lower level control, such as set point mainte-
nance. Some of the controllers examined in the literature—as well
as in practice—are rule-based controllers, while other rely on solv-
ing an optimization problem in real-time to make decisions. A
‘‘rule-based controller’’, like a conventional controller, uses ‘‘if-
else’’ logics for decision making. They may use other forms of infor-
mation—such as occupancy measurements—that the conventional
controllers do not use. The optimization based controllers typically
use a receding horizon optimization approach, which is also known
as model predictive control (MPC).

A number of papers have proposed rule-based controllers that
use occupancy measurements, and conclude that significant en-
ergy savings are possible with the rule-based controllers compared
to the conventional controllers that do not use occupancy mea-
surements [22–25]. The controller in [22] uses occupancy mea-
surements to turn off the HVAC system, while the controllers in
papers [23–25] modulate only the ventilation rate based on mea-
sured occupancy. However, these papers do not compare rule-
based control with complex control schemes such as MPC. While
MPC may require more information (i.e., dynamic model and occu-
pancy predictions) compared to rule-based control it may also lead
to more energy savings. The paper [6] compares several rule-based
controllers that use various types of occupancy information: two
use occupancy predictions while one uses measurements of pres-
ence/absence. It is concluded that significant energy savings are
possible with the rule-based feedback control that uses binary
occupancy measurements compared to the baseline controller that
does not. It also concludes that a small amount of additional energy
savings are possible if the predictive rule-based controller is used
instead of the feedback controller. However, it does not compare
the predictive rule-based controller with complex predictive con-
trol algorithms such as MPC, which may result in more savings
than the rule-based control.

The papers [7–10] compare MPC-based controllers with con-
ventional controllers. The paper [26] examines use of MPC in the
design stage to decide on HVAC control strategies. The MPC con-
trollers mentioned in [7–10] use occupancy predictions while the
conventional controllers use only day/night schedules. They report
substantial energy savings with MPC compared to conventional
controllers. However, these papers do not investigate how much
energy savings are possible with a controller that is less complex
than MPC by using occupancy measurements, which are easier to
obtain than occupancy predictions.

The paper by Oldewurtel et al. [27] is closest in spirit to our
work; it also examines the effect of occupancy information fidelity
on controller performance. However, it does not compare perfor-
mance of the MPC strategies with simpler occupancy measurement
based feedback controllers. The MPC strategies in [27] have a long
prediction horizon (in the range of days). However, in this paper,
one of the MPC controller has a short prediction horizon (30 min)
while the other MPC controller has a long prediction horizon
(24 h). The HVAC systems considered in [27] are not VAV systems,
and the actuation available to the controllers include blind posi-
tions. In contrast, we limit ourselves to the HVAC systems with
VAV boxes, where the only actuation available to the controller
are the supply air mass flow rate and supply air temperature. These
systems are far more prevalent in the US than systems where blind
positions can also be commanded. Another difference is that [27]
does not consider humidity in the problem formulation while in
this paper humidity constraints are incorporated into control
design.

In summary, while some of the previous work has compared
either MPC or rule-based controllers with conventional controllers,
they did not compare all three. The conventional controllers used
for comparison were distinct, making such comparison harder. It
is useful to know how performance (as measured by energy sav-
ings and/or comfort) varies with the complexity of the control
algorithm. In particular, the value of occupancy measurements
vs. occupancy predictions is not clear from the prior work. Since
predictions are much more difficult to obtain than measurements,
it is particularly useful to know their relative value. Though [6]
compares performance of the rule-based controllers that use occu-
pancy predictions with that of the feedback controller, the feed-
back controller uses only presence/absence measurements but
not occupancy measurements.

1.2. Contributions

In this paper we examine the performance of a conventional
controller that does not have occupancy measurements or predic-
tions to that of three proposed controllers that use varying degree
of occupancy information and are of varying degree of computa-
tional complexity. The purpose is twofold. The first is to determine
how much energy savings can be achieved by using occupancy
information over conventional control schemes, and to examine
how the savings vary with the fidelity of occupancy information:
real-time measurements vs. perfect predictions of future occu-
pancy. The reason for considering perfect occupancy predic-
tions—though infeasible in practice—is to establish the limits of
achievable performance. The second aim is to determine how the
savings achieved by these controllers vary with the complexity of
the controllers, from a simple feedback scheme (aka, ‘‘rule-based’’)
to complex optimization based schemes that uses a model of the
zone’s temperature and humidity dynamics. In short, we examine
trade-off between energy savings achieved and the information
requirements/computational complexity of the control algorithm
in a unified manner. This is the key difference between our work
and much of prior work. Another difference is that the papers men-
tioned in Section 1.1 that propose MPC-based controllers do not
take humidity into account, while humidity is taken into account
as a part of thermal comfort constraints in the MPC schemes pro-
posed here.

The results of the study provide guidelines to control system
engineers in choosing an appropriate control scheme that strikes
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a balance between cost (complexity) and benefit (energy effi-
ciency). Our study shows that when real time occupancy measure-
ments are available, substantial energy savings can be obtained by
a simple feedback control scheme, and that the additional savings
from using complex MPC-based controllers are small. Thus, invest-
ing in implementation of complex MPC-based schemes may not be
economically justifiable. Another useful result of the study is that
the additional savings that can be obtained by using occupancy
predictions—even when perfect predictions are available—are
small. This shows that the substantial effort required in obtaining
occupancy predictions is of questionable benefit. Interestingly,
the reason turns out to be the recent ASHRAE ventilation stan-
dards. If lower ventilation is allowed, as earlier standards did, then
the value of occupancy predictions increases substantially.

A preliminary version of this work appeared in [5]; which com-
pares feedback, MPC, and baseline controllers. There are several
significant differences between [5] and this paper. The baseline
conventional controller used here is more energy-efficient than
the one used in [5]. The feedback controller used in [5] modulates
only the ventilation rate based on measured occupancy. However,
the feedback strategy in this paper controls not only the ventilation
rate but also the zone temperature, which results in high energy
savings. The design parameters have been fine-tuned in this paper
to get better performance from all the controllers. One of the con-
trollers proposed in [5] allowed 0 flow rate when the zone was
known to be unoccupied. In this paper, all controllers are designed
to supply a minimum airflow rate in accordance with the latest
ASHRAE ventilation standard 62.1-2010 [13]. This significantly
changes some of the conclusions, especially one about the value
of occupancy predictions. Moreover, this paper provides a more
comprehensive simulation study of the performance of the control-
lers compared to [5]. While Ref. [5] considers one type of zone with
three occupants exposed to only one type of outside weather, here
we examine several types of zones with varying levels of occu-
pancy that is exposed to multiple outside weather and climate
conditions.
2. System description and models

A schematic of a typical multi-zone commercial building with a
VAV-based HVAC system is shown in Fig. 1. Part of the air removed
from the zones (return air) is mixed with the outside air before
being conditioned at the AHU to temperature TCA and humidity
ratio WCA. The conditioned air, which is usually cold and dry, is
Supply Air
(SA)

Conditioned Air

VAVVAV

Zone Zone

Outside Air

AHU

srep
ma

D

Return Air

Fig. 1. Generic scheme for the implementa
distributed to the VAV boxes at the zones through the ductwork.
The air supplied to a zone by its VAV box can be heated using
the reheat coils at the box. The amount of return air and outside
air that needs to be mixed is decided by the return air ratio RRA.
The humidity ratio of the supply air (WSA) is same as the humidity
ratio of air being supplied by the AHU, i.e., (WSA = WCA), since
reheating does not change the humidity ratio. The parameters
TCA, WCA and RRA are assumed constant in this paper. The task of
a zone-climate control algorithm is to determine the control inputs
in such a way that thermal comfort and IAQ are maintained in that
zone. The control inputs are temperature (TSA) and flow rate (mSA)
of the air supplied to that zone by its VAV box. A conceptual repre-
sentation of a control algorithm that operates the VAV box is also
shown in Fig. 1.

For simulation studies of a control scheme, we need a model of
the hygro-thermal (humidity and temperature) dynamics of the
zone as well as a model of power consumption as a function of con-
trol signals and exogenous inputs. The model of the thermal
dynamics is constructed by combining RC (resistance–capacitance)
networks models of heat transfer between two spaces separated by
a solid surface (such as a wall) with that of heat exchange due to
supply and return air. Humidity dynamics are derived from mass
balance. We refer the reader to [28] for the details of the model,
which presents a model for the general case of multiple zones.
The same model, but for the special case of a single zone, is used
in this paper. Here we only mention some of the salient features
of the model that are relevant to the subsequent discussion.

The resulting model of the hygro-thermal dynamics of the zone
is a set of coupled ODEs, and thus can be expressed as

_TðtÞ ¼ fcðTðtÞ;uðtÞ; vðtÞÞ;
_WðtÞ ¼ gcðTðtÞ;WðtÞ;uðtÞ; vðtÞÞ;

ð1Þ

where uðtÞ ¼ ½mSAðtÞ; TSAðtÞ�T 2 R2 is the control input (command),
while the exogenous inputs vector v(t) consists of outside tempera-
ture, outside humidity ratio, solar heat gain, and occupancy, i.e.,
vðtÞ ¼ ½TOAðtÞ;WOAðtÞ;QsðtÞ;npðtÞ�T 2 R4. We use a 3R2C model for
each wall of the zone and a 1R model for a window. For a zone con-
sisting of four walls and one window, the resulting hygro-thermal
model of the zone has ten states: nine for temperature (T 2 R9)
and one for humidity (W 2 R). One of the temperature states is
the temperature of the zone. The additional temperature states
can be thought of as temperatures inside the walls, they come from
the internal states of the RC network models of walls. The simula-
Control
Algorithm

Zone
Outputs

Outside Temperature (T OA), Outside Humidity (W OA)
Solar Heat Gain (Qs), Occupancy (np)

SA Temperature (T SA)

SA Flow Rate (mSA)

tion of a zone-level control algorithm.



Fig. 2. Schematic representation of the baseline control strategy (‘‘dual maximum’’)
used at the VAV terminal boxes of commercial buildings.

S. Goyal et al. / Applied Energy 106 (2013) 209–221 213
tion studies reported in Section 6 are based on such a model. The
parameters of the model, in particular, the resistances and the
capacitances of the walls and windows depend on their geometry
and the material they are constructed from. The continuous-time
coupled ODE model (1) is discretized using Euler’s forward method
to obtain a discrete-time model, which can be expressed as

Tðkþ 1Þ ¼ fdðTðkÞ;WðkÞ;uðkÞ; vðkÞÞ;
Wðkþ 1Þ ¼ gdðTðkÞ;WðkÞ; uðkÞ;vðkÞÞ;

ð2Þ

where x(k) = x(t)jt=kDt for any signal x(t), with Dt being the sampling
interval and k being the discrete time index.

The total power consumption P(k) at the time index k, which
consists of fan power PF(k), reheating power PR(k), and conditioning
power PU(k), is given by

PðkÞ , PFðkÞ þ PUðkÞ þ PRðkÞ: ð3Þ

We write the total power consumption as P(u(k)) when we want to
emphasize its dependency on control inputs. Since the dynamics of
the AHU are much faster than the thermal dynamics of a zone, we
ignore the AHU dynamics. As a result, the power consumed in con-
ditioning the air is a function of the instantaneous temperature and
humidity. The fan power, the reheating power, and the conditioning
power are given by

PU ¼ mSAðhOA � hCAÞ; PF ¼ bmSA; PR ¼ mSAðhSA � hCAÞ; ð4Þ

where b is a system dependent constant. We refer the interested
reader to [28] for details about the enthalpy terms hCA, hOA, and
hSA. The energy E(k) consumed during the time [(k � 1)Dt,kDt] is
estimated as:

EðkÞ ¼ DtPðuðkÞÞ: ð5Þ
3. Control algorithms

We now describe the BL (baseline) controller, and three pro-
posed control algorithms, MOBS (Measured Occupancy Based Set-
back), MOBO (Measured Occupancy Based Optimal) and POBO
(Predicted Occupancy Based Optimal), which vary in complexity
and the required information as shown in Table 1. Recall that the
actuation signals that the controllers have to decide are the flow
rate and temperature of the supply air.

3.1. BL (Baseline) controller

Among the conventional control logics used at the VAV boxes to
maintain IAQ and temperature in a zone, we choose the dual max-
imum [29, chapter 47] as the baseline controller. Even though the
single maximum control [29, chapter 47] is more common in exist-
ing commercial building, dual maximum is the more efficient of
the two. In this scheme, the control logic is divided into four modes
based on the zone temperature: (i) re-heating, (ii) heating, (iii)
dead-band and (iv) cooling, which are shown schematically in
Fig. 2. If the zone temperature stays below the ‘‘Re-heating Set-
Point (RTG)’’ for more than 10 min, the re-heating mode is turned
on. Similarly, if the zone temperature remains above the ‘‘Cooling
Table 1
Overview of the control algorithms in terms of the amount of information required and com
(2) MOBS, (3) MOBO, and (4) POBO.

Control algorithms Type of occupancy information required

1 BL None
2 MOBS Measurements
3 MOBO Measurements
4 POBO Predictions
Set-Point (CLG)’’ for more than 10 min, the cooling mode is turned
on. If the zone temperature stays between RTG and ‘‘Heating Set-
Point (HTG)’’ for more than 10 min, the heating mode is turned
on. If the zone temperature stays between HTG and CLG for more
than 10 min, the dead-band mode is turned on. In the re-heating
mode, the supply air temperature is set to maximum possible va-

lue TSA
high

� �
, and the supply air flow rate is varied using a PID con-

troller to maintain the zone temperature to a desired set-point
Tset. In the heating mode, the supply air flow rate is set to the min-
imum allowed value, and the supply air temperature is controlled
by a PID controller so that the zone temperature is maintained
close to the set-point (Tset). The minimum allowed value for the
flow rate is determined as follows
Minimum allowed flow rate ¼ mSA
p np

d þ amSA
low;

where mSA
p ¼ mOA

p =ð1� RRAÞ; mSA
low ¼ mA

z Az=ð1� RRAÞ:
ð6Þ
When a = 1, these calculations yield the minimum airflow require-
ments specified by ASHRAE ventilation standard 62.1-2010 [13].
Since the baseline controller does not use occupancy measurements,
the minimum allowed flow rate is calculated using the designed
occupancy np

d, which is assumed constant. In the dead-band mode,
no re-heating is performed, i.e., TSA = TCA, and supply air flow rate
is set to the minimum allowed value (6). In the cooling mode, no
heating or re-heating is performed, i.e., TSA = TCA, but the supply flow
rate is varied to maintain the desired set-point Tset in the zone.

The desired set-point Tset used by the PID controllers in the
re-heating, heating and cooling modes is usually the temperature
preferred by the occupants. If the temperature preferred by the
occupants is not known, then there are several other ways to de-
cide the value of Tset. One way is to choose Tset as RTG, HTG and
CLG during the re-heating, heating, and cooling modes, respec-
tively. Another way is to chose Tset as an average of HTG and CLG
during all the modes. We choose Tset as the average of HTG and
CLG in this paper, i.e., Tset ¼ HTGþCLG

2 . Note that the baseline control-
ler uses nighttime setback: the set-points RTG and HTG are de-
creased while the set-point CLG is increased during a pre-
specified period deemed ‘‘nighttime’’. The set-points are changed
based on the assumption that the zone is not occupied during
the night, which results in reduced energy usage.
plexity. The overall complexity of the control algorithms increases in the order. (1) BL,

Model required Computation required Overall complexity

No Low Low
No Low Medium
Yes High High
Yes High Very High
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3.2. MOBS (Measured Occupancy Based Setback) controller

The proposed MOBS control strategy requires occupancy mea-
surements in addition to the zone temperature measurements. It
is quite similar to the BL controller described in Section 3.1, except
for two key differences. First, the minimum allowed flow men-
tioned in (6) is calculated based on the measured occupancy in-
stead of the design occupancy, which is expressed as

Minimum allowed flow rate at time t ¼ mSA
p npðtÞ þ amSA

low; ð7Þ

where np(t) is the occupancy measured at time t, and mSA
p , mSA

low are
computed using (6). Second, the temperature set-points are deter-
mined based on whether the zone is occupied or not:

RTGðtÞ ¼ Tunocc
RTG

HTGðtÞ ¼ Tunocc
low

CTGðtÞ ¼ Tunocc
high

9>=
>; if npðtÞ ¼ 0;

RTGðtÞ ¼ Tocc
RTG

HTGðtÞ ¼ Tocc
low

CTGðtÞ ¼ Tocc
high

9>=
>;if npðtÞ– 0: ð8Þ

The choice of design variables Tunocc
RTG , Tocc

RTG, Tunocc
low , Tocc

low, Tunocc
high , Tocc

high in-
volves a trade-off between energy savings and thermal comfort.

Clearly, the range Tocc
low; T

occ
high

h i
should be chosen to ensure that occu-

pants are comfortable if the zone temperature is within this range.
A wider range will in general reduce energy consumption, since the
controller may be able to reduce reheating during low thermal load
conditions and reduce the airflow during high thermal load condi-
tions. Too wide a range will, however, lead to discomfort on the
occupants part. As a general rule, the parameters for the unoccupied
periods should be chosen so that

Tocc
low; T

occ
high

h i
# Tunocc

low ; Tunocc
high

h i
; ð9Þ

i.e., the temperature is allowed to vary within a wider range of val-
ues during unoccupied periods than in occupied ones. This is ex-
pected to lead to energy savings as well. However, even in
unoccupied times it is not advisable to let the temperature deviate
too far from what is allowed during occupied times. Otherwise,
when the zone becomes occupied again, it will take a long time to
bring the temperature back to the range allowed during the
occupied time, which will cause discomfort to the occupants. In
addition, letting the temperature become too low may cause con-
densation on surfaces leading to mold growth. Similarly, choosing
the reheating set-points Tunocc

RTG ; Tocc
RTG

� �
far from the heating set-points

Tunocc
low ; Tocc

low

� �
is likely to lead to not only more the energy savings

but also more discomfort.
The algorithm described above is termed MOBS (Measured

Occupancy Based Setback) control because, in general, it sets back
the temperature set-points (RTG, HTG, and CLG) and the airflow
rate when the zone is not occupied.
Fig. 3. Schematic representation of MPC-based controllers (MOBO and POBO)
implementation for a zone-level control.
3.3. MPC-based controllers

In this section, we propose two MPC-based control algorithms:
MOBO and POBO. The block diagram of the implementation of the
MOBO and POBO controllers is shown in Fig. 3. Both the controllers
compute the control input u(k) over K time indices by solving an
optimization problem which minimizes total energy consumption
over that period while maintaining thermal comfort and IAQ. The
control inputs are applied at the current time index k. The optimi-
zation problem is solved again at time index k + 1 to compute the
control inputs for the next K time instants. The whole process is re-
peated ad infinitum.

To solve the underlying optimization problem, the controllers
need (i) predictions of the exogenous input v(k) over the time hori-
zon of optimization and (ii) a model of the zone hygro-thermal
dynamics as well as its initial state. Predictions of TOA, WOA, and
Qs (part of v(k)) are assumed available from weather forecasts.
Obtaining occupancy predictions is explained later when both
the controllers are explained in detail. The models for power con-
sumption and hygro-thermal dynamics used by the controller are
the ones presented in Section 2. An EKF (Extended Kalman Fil-
ter)-based state observer is employed to estimate the initial state
of the model during optimization.

3.3.1. MOBO (Measured Occupancy Based Optimal) controller
The proposed MOBO controller is an MPC-based control strat-

egy. In this control algorithm, we assume that the instantaneous
occupancy measurements are available at the time index k. Since
MPC requires predictions of all exogenous inputs to perform the
optimization involved in computing the control inputs, some form
of occupancy predictions over the prediction horizon K must be
provided to the controller. Moreover, occupancy predictions decide
the range in which the zone temperature is allowed to stay based
on whether the zone is occupied or not. Since only occupancy mea-
surements are available, the predicted occupancy for the next K
time indices is assumed to be the same as the measured occupancy
at the kth time period: np(i) = np(k), i P k.

The control logic is divided into two modes: (i) occupied and (ii)
unoccupied, which are explained below in detail.

Occupied mode: The controller operates in the occupied mode if
the measured occupancy at the kth time index, i.e., at the begin-
ning of the time interval [kDt, (k + 1)Dt], is at least 1. The optimal
control inputs for the next K time indices are obtained by solving
the following optimization problem:

UI :¼ argmin
U

GðUÞ; ð10Þ

where U ¼ ½uTðkÞ; . . . ;uTðkþ KÞ�T 2 R2ðKþ1Þ and GðUÞ ¼
PkþK

i¼k EðiÞ,
subject to the following constraints:

Tocc
low 6 TðiÞ 6 Tocc

high;

Wocc
low 6WðiÞ 6Wocc

high;

TCA
6 TSAðiÞ 6 TSA

high

mSA
p npðiÞ þ amSA

low 6 mSAðiÞ 6 mSA
high

9>>>>>=
>>>>>;
8i ¼ k; . . . ; kþ K:

The first two constraints mean that the zone temperature and

humidity ratio are allowed to vary in the range of Tocc
low; Tocc

high

h i
and

Wocc
low; Wocc

high

h i
, respectively. The third constraint is simply to take

into account actuator capabilities, since the VAV box can only in-
crease the temperature of the supply air above the conditioned air
temperature. In addition, there is an upper bound on the amount
by which the reheat coil can increase the temperature of the supply
air. The fourth constraint means that there is a lower and upper
bound on the flow rate entering the zone (mSA). The lower bound
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on the flow rate is same as (7), while the upper bound mSA
high reflects

the maximum flow rate possible when the dampers in the VAV box
are completely open.

As in the Measured Occupancy Based Setback controller, the
choice of the design variables Tocc

low, Tocc
high, Wocc

low, Wocc
high involve a

trade-off between energy savings and potential occupant discom-
fort. The greater the range that the temperature and humidity
are allowed to vary in, both the potential energy savings and occu-
pant discomfort are larger.

After solving the optimization problem (10) at time k, only the
part of U⁄ corresponding to the current time index k is
implemented.

Unoccupied mode: If the measured occupancy at the time index
k, i.e., at the beginning of the kth time period, is observed to be 0,
then the controller operates in the unoccupied mode. At time k, the
optimal control inputs for the next K time indices are obtained by
solving the following optimization problem:

UI :¼ argmin
U

GðUÞ; ð11Þ

subject to the following constraints:

Tunocc
low 6 TðiÞ 6 Tunocc

high

Wunocc
low 6WðiÞ 6Wunocc

high

amSA
low 6 mSAðiÞ 6 mSA

high

TCA
6 TSAðiÞ 6 TSA

high

9>>>>>=
>>>>>;
8i ¼ k; . . . ; kþ K:

The reason for these constraints is the same as that explained pre-
viously. The constraints on the zone temperature and humidity ra-
tio in the unoccupied mode, however, are chosen to be such that

Tunocc
low ; Tunocc

high

h i
� Tocc

low; Tocc
high

h i
, and ½Wunocc

low ; Wunocc
high � � Wocc

low; Wocc
high

h i
.

This allows the controller greater flexibility in reducing energy con-
sumption by letting the temperature and humidity ratio to vary in a
wide range when the zone is unoccupied. The choice of the param-
eters for the unoccupied times also involves a trade-off. The farther
they are from their counterparts during the occupied mode, greater
is the energy savings potential, but also greater is the risk of occu-
pant discomfort when occupancy changes.

3.3.2. POBO (Predicted Occupancy Based Optimal) controller
The proposed POBO controller is also an MPC-based control

strategy similar to the MOBO controller, but with two important
differences. First, the POBO controller has a long prediction horizon
as opposed to the MOBO controller. Second, the POBO controller has
access to occupancy predictions from the time index k to k + K. The
purpose of assuming availability of such predictions is to establish
the limit of achievable performance. The optimal control inputs for
the next K time indices are obtained by solving the following opti-
mization problem:

UI :¼ argmin
U

GðUÞ; ð12Þ

subject to the following constraints:

Tocc
low 6 TðiÞ 6 Tocc

high; if npðiÞ – 0

Wocc
low 6WðiÞ 6Wocc

high; if npðiÞ– 0

TCA
6 TSAðiÞ 6 TSA

high

mSA
p npðiÞ þ amSA

low 6 mSAðiÞ 6 mSA
high

9>>>>>=
>>>>>;
8i ¼ k; . . . ; kþ K:

The first two constraints mean that the zone temperature and

humidity ratio are allowed to vary in the range of Tocc
low; Tocc

high

h i
and

Wocc
low; Wocc

high

h i
, respectively, during the occupied time, while there

are no constraints on the zone temperature and humidity ratio
when the zone is not occupied. The last two constraints are same
as the last two constraints of the optimization problem (10). Once
the optimization problem (12) is solved at time k, only the part of
U⁄ corresponding to the current time index k is implemented.
Remark 1. By choosing a > 1, we ensure that for all the controllers
the minimum flow rate during unoccupied times is greater than
that prescribed by ASHRAE ventilation standard 62.1-2010 [13].
One reason for doing so is to make the resulting IAQ robust to the
errors in occupancy measurements or predictions. It also makes
IAQ robust to the uncertainty in the measured flow rate and
damper position. By ensuring good IAQ even during times when
the zone is predicted to be unoccupied (whether correctly or not),
we eliminate the problem of predicting the effect of control inputs
on IAQ for the proposed controllers.
Remark 2. The optimization problems (10) and (11), or (12) that
the MPC controllers need to solve are infeasible when the con-
straints on the zone temperature/humidity are violated. This hap-
pens when the occupancy changes from 0 to 1 and the zone
temperature/humidity during that time is either too high or too
low. In such a scenario, it is not possible to bring the zone temper-
ature back to comfortable range even with the maximum heating
or cooling capabilities of the controller. However, the zone temper-
ature/humidity discomfort can be minimized if the controller
delivers maximum heating or maximum cooling based on the zone
temperature. Therefore, we choose the control inputs at the time
index k, in case of an infeasible solution, as:

mSAðkÞ ¼ mSA
high;

TSAðkÞ ¼ TSA
high if TðkÞ < Tocc

low;

TSAðkÞ ¼ TCA if TðkÞ > Tocc
high:

ð13Þ
Remark 3. If the optimization problems (10) and (11), or (12) are
infeasible due to any reason other than the reasons mentioned in
Remark 2, which can be due to numerical issues, etc., then the con-
trol inputs at the time index k are chosen as:

mSAðkÞ ¼ mSA
high;

TSAðkÞ ¼ Tset:
4. Performance metrics

The energy consumed by a controller C over a period DT is

EC ¼
Pi¼DT

Dt
i¼1 ECðiÞ, where EC(i) is the energy consumed by the control-

ler C during the time [(i � 1)Dt, iDt], calculated using (5). An en-
ergy related performance metric is the % savings over the baseline
controller, which is defined as

%Savings ¼ EBC � EC

EBC
; ð14Þ
where EC and EBC are the energy consumed by the controller C and
the baseline controller, respectively, over the same time period. The
parameter DT is chosen as 24 h in this paper.

Two metrics are chosen for analyzing the thermal comfort re-
lated performance of the controllers: (i) temperature violation DT

and (ii) humidity violation DH, which are defined as

DT ¼
�TðtÞ þ Tocc

low; if TðtÞ < Tocc
low and npðtÞ – 0

TðtÞ � Tocc
high; if TðtÞ > Tocc

high and npðtÞ – 0
0; otherwise

8><
>:

9>=
>;;
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DH ¼
�WðtÞ þWocc

low; if WðtÞ < Wocc
low and npðtÞ– 0

WðtÞ �Wocc
high; if WðtÞ > Wocc

high and npðtÞ– 0
0; otherwise

8><
>:

9>=
>;:

These metrics measure the deviation of the zone temperature/
humidity from the allowed range during occupied times. During
the unoccupied times, both the temperature and humidity viola-
tions are considered 0 since there is no one in the zone. The average
temperature violation (DT ) and the average humidity violation (DH)
during time period DT are defined as

DT ¼
1

DT

Z DT

0
DTðtÞdt � 1

L

XL

k¼1

DTðkÞ; DH ¼
1

DT

Z DT

0
DHðtÞdt

� 1
L

XL

k¼1

DHðkÞ: ð15Þ

where L = DT/Dt. According to ASHRAE [30, chapter 8], as long as
people are wearing clothing of thermal resistance between
0.0775 m2 K/W and 0.155 m2 K/W, doing primarily sedentary activ-
ity, and the air speed in the zone is less than 0.2 m/s, then ensuring
that the temperature and humidity of the zone stays within certain
range ensures thermal comfort of occupants; see Fig. 5. Therefore,
with appropriate choice of the parameters Tocc

ð�Þ and Wocc
ð�Þ , the tem-

perature violation and the humidity violations defined above can
be used as metrics for thermal comfort. Though Predicted Mean
Vote (PMV) [30, chapter 8] is a widely used metric to evaluate ther-
mal comfort, it is a function of complex factors such as metabolism
rate and clothes worn by the occupant, which is quite difficult to
compute in real-time. Therefore, we use temperature violation
and the humidity violation to evaluate the thermal comfort, which
are simpler to compute as well as more robust to assumptions made
about the occupants.

Though IAQ is as important a concern as thermal comfort, if not
more, we do not define a metric to measure ‘‘IAQ performance’’ of
the controllers. Though CO2 and volatile organic compounds con-
tribute to poor IAQ, there is no well defined numerical measure
to calculate IAQ [31]. Instead, we impose constraints on the mini-
mum flow rate such that IAQ is maintained by all the controllers,
even during unoccupied times (see also Remark 1).
5. Choice of parameters

5.1. Parameters of the zone’s dynamic model

Simulations are carried out for three different models of a zone,
which are referred to as zone type 1–3. They correspond to a zone
with a given geometry but different R,C parameter values. The
dimensions of the zone is 5.2 m � 4.8 m � 2.7 m, with an window
of area 2.8 m2. The area of the external wall (the wall separates the
zone to the outside) is 11.24 m2. All the other walls of the zone are
called internal walls. A hallway and two adjacent rooms are sepa-
rated from the zone with internal walls. These dimensions are that
of a typical zone in Pugh Hall, a modern office building in the Uni-
versity of Florida campus that has a VAV-based HVAC system. Each
zone type has the same window and same external wall construc-
tion, but the internal walls’ R, C values vary from one zone type to
another. A type-1 zone has internal walls of high thermal resis-
tance and low thermal capacitance. The internal walls of a type-2
zone have low thermal resistance and high thermal capacitance.
The internal walls of a type-3 zone have low thermal resistance
and low thermal capacitance. We do not consider a zone with
internal walls of high thermal capacitance and high thermal resis-
tance, since this is unusual. The resistance and capacitance values
are shown in Table 2.
To decide the R, C parameters, we first examine construction
information for the external walls in the Pugh Hall. It turns out that
the external walls of all the rooms in the building are of same con-
struction. The thermal capacitance per unit area and thermal resis-
tance per unit area of external walls are obtained from ASHRAE
handbook [30, chapter 39], which are shown in Table 2. The resis-
tance values of internal walls obtained from handbook, however,
are less reliable due to uncertainties such as air leakage through
cracks. External walls are constructed to be highly insulating, so
they do not suffer from this level of uncertainty. To obtain more
reliable parameter values of internal walls, we perform model cal-
ibration. We pick a zone in the Pugh Hall (room 247) that is special
in its layout; it is completely enclosed by other rooms and thus
consists only of internal walls. This means that the room experi-
ences no solar heat gain, which makes the model calibration easier
since solar heat gain is one of the exogenous inputs and is not easy
to measure accurately. Once the model of this room is calibrated
and validated (to be described soon), the resulting R, C parameters
of its walls are chosen as those for the internal walls of the nominal
zone model. This fixes the model acceptable of the nominal zone,
which we call zone type-3. Not surprisingly, the R, C parameters
of the internal walls of this zone are observed to be on the low side
when compared to those of the external wall. We then construct
two other zone types by assigning to their internal walls various
combinations of R, C values between these low values and the high
values obtained previously for the external wall. The purpose for
testing multiple zone types is to test the variation of controller per-
formance with variation in zone’s thermal interaction with the
surroundings.

For model calibration of room 247 in the Pugh Hall, measure-
ments of the zone temperature, supply air temperatures and flow
rates, and temperatures of the surrounding spaces are obtained
from the Building Automation System at 10-min intervals. The
model is calibrated by tuning the total thermal resistance per unit
area of the walls to minimize the error between the measured tem-
perature and the predicted temperature of the zone. Data for a 48 h
long period (January 29–30, 2011) is used to calibrate the model.
Since this time corresponds to a weekend, we assume that there
are no occupants—and therefore no occupant induced heat
loads—during this time. The comparison between the measured
and predicted temperatures with the calibrated model are shown
in Fig. 4a–b. The validation data set (midnight February 5th
through midnight of February 6th, 2011) also is from a weekend.
The figure shows that the temperature predictions by the model
are within 1� of the measured values. There are several degree Cel-
sius variation of temperature in the room; the acceptable air tem-
perature varies from 13� to 32� depending on the operation of the
reheat coil in the VAV box. In addition, the temperature sensors
have an uncertainty of around 0.5�. In view of these variations, a
1� variation between measurement and prediction is deemed
acceptable for the purpose of calibration.

5.2. Controller parameters

The maximum flow rate for all the controllers is chosen as
0.125 kg/s. From ASHRAE ventilation standard 62.1-2010 [13]
requirements and return air ratio shown in Table 3, it turns out that
mSA

p ¼ 0:005 kg=s and mSA
low ¼ 0:015 Kg=s and. These values are com-

puted using (6), with Az = 25 m2. For the BL controller, the minimum
allowed flow rate is chosen as 0.05 kg/s, which corresponds to a de-
signed occupancy of approximately five persons for the given zone.
This is also the minimum flow rate that is currently being used in a
single occupancy room in the Pugh Hall. The IAQ factor of safety is
chosen as a = 1.7, so that the minimum flow rate for the MOBS,
MOBO, and POBO controllers during the unoccupied mode turns
out to be amSA

low ¼ 0:0255 Kg=s. For the BL controller, the tempera-



Table 2
Total thermal resistance and capacitance of the window and the walls (internal and external) of three types of zones.

Zone
type

Internal wall External wall Window

Total thermal resistance
m2 K

W

� � Total thermal capacitance
kJ

m2 K

� � Total thermal resistance
m2 K

W

� � Total thermal capacitance
kJ

m2 K

� � Total thermal resistance
m2 K

W

� �

1 2.7 31
2 0.5 368 2.7 368 0.5
3 0.5 31
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Fig. 4. Comparison of predicted and measured temperature in room 247, Pugh Hall, both for the data set used for calibrating the model and another data set that is not used
for calibration.

Table 3
The design parameters used in the various controllers.

Design parameters

Tset (�C) TSA
low ð

�CÞ TSA
high ð

�CÞ Tunocc
RTG ð�CÞ Tocc

RTG ð
�CÞ Tocc

low ð
�CÞ Tocc

high ð
�CÞ Tunocc

low ð�CÞ Tunocc
high ð�CÞ TCA (�C)

Temperature parameters
22.8 12.8 30.0 20.9 21.8 21.9 23.6 21.1 24.4 12.8

Wunocc
low

g
kg

� �
Wocc

low
g

kg

� �
Wunocc

high
g

kg

� �
Wocc

high
g

kg

� �
WCA g

kg

� �
K (MOBO, POBO) Dt (min) DT (h) RRA (%) np

d

Humidity and other parameters
7.4 7.4 10 10 7.4 30, 86400 1 24 40 5
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tures: RTG, HTG, and CLG are set to 21.8 �C, 21.9 �C, and 23.6 �C,
respectively, from 6:30 am to 10:30 pm During the time
10:30 pm–6:30 am, the temperatures: RTG, HTG, and CLG for the
BL controller are chosen as 20.9 �C, 21.1 �C, and 24.4 �C, respec-
tively. This nighttime setback is currently used in the Pugh Hall.

Other design parameters are shown in Table 3. It is shown in Ta-
ble 3 that the set-points (RTG, HTG, and CTG) are changed symmet-
rically around the set-point Tset based on whether the zone is
occupied or not. Since Tset ¼ RTGþCLG

2 as mentioned in the Section
3.1, the desired set-point Tset stays constant.

The prediction horizons used by the MOBO and POBO controllers
to solve the optimization problem are 30 min and 24 h, respec-
tively. To reduce computational complexity, the control commands
are solved for and updated every 10 min. The time step Dt used for
discretization of the model is 1 min.

The constraints on the zone temperature and humidity ratio
used in this paper during the occupied and unoccupied times are
shown in Fig. 5. As long as certain assumptions on occupants
clothing, etc., are satisfied (see Section 4), thermal comfort is en-
sured if temperature and humidity ratio are maintained within
the shaded regions shown in the figure. The constraints on the zone
temperature and humidity ratio are chosen so that when the con-
straints are met, the zone-climate meets the ASHRAE mandated
conditions [30].

6. Simulation results and implications

We now compare the performance of BL, MOBS, MOBO, and
POBO control algorithms through simulations. Simulations are per-
formed using MATLAB; while IPOPT [32] is used to solve the opti-
mization problems for the MOBO and POBO control algorithms.

The boundaries of each zone that are separated by the internal
walls are assumed to have a constant temperature of 22.2�. Three
types of outside weather conditions are considered: cold, hot and
pleasant. Fig. 6 shows the temperature and humidity data for the
cold (January 14, 2011), hot (July 31, 2011), and pleasant (March
16, 2011) days in Gainesville, FL, USA. ‘‘Pleasant weather’’ is non-
standard terminology; we use it to denote weather that is neither
hot nor cold. During simulations, the initial conditions for all the
temperatures states (i.e., zone temperature and temperature corre-
sponding to the interior of the walls) and zone humidity ratio are
taken as 22.2 �C and 0.009, respectively.



Fig. 5. Comfort envelope specified in [30, chapter 8], shown in the striped black
area, and the envelope chosen in this paper during the occupied and unoccupied
time, shown in dashed red and blue boxes, respectively.
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The following occupancy profile is used during the initial set of
simulations for all the controllers: the zone is occupied by a person
from 8:00 am to 12:00 pm, and 1:00 pm to 5:00 pm. For a control-
ler that uses real-time measurements of occupancy, instantaneous
value of occupancy is provided to the controller, which simulates
an occupancy sensor with no error. The entire occupancy profile
for the 24 h period is provided to the POBO control algorithm ahead
of time, which simulates a perfect occupancy prediction capability.

The total daily energy consumption, average temperature viola-
tion, average humidity violation, and % savings over the baseline
controller are shown in Table 4. We see from the table that
depending on the zone type and outside weather, the MOBS and
MOBO controllers result in 42–59% and 45–59% energy savings,
respectively, over the baseline controller. Recall that both the
MOBS and MOBO controllers use occupancy measurements; not
predictions. The table also shows that the POBO controller—that re-
quires occupancy predictions—can result in additional energy sav-
ings over the MOBS and MOBO controllers by an amount varying
from 1% to 13%, again depending on zone type and weather. All
the controllers have very small average temperature violation,
and uniformly zero average humidity violation, irrespective of
the type of zone or weather. Recall that IAQ is maintained at all
times by the constraint on the minimum airflow rate. The results
thus indicate that the energy savings from the proposed controllers
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(a) Outside Temperature

Fig. 6. Outside temperature (TOA) and relative humidity (HOA) for the cold (January 14, 2
are achieved with minimal impact on either thermal comfort or
IAQ.

The energy savings come from the reduction of supply air flow
rate and the increase in the allowable temperature range when the
zone is not occupied. Reduction in the flow rate decreases fan-,
conditioning-, and reheating-energy consumption. Increasing the
allowable temperature range results in less reheating energy con-
sumption at the VAV box, because the zone temperature is allowed
to be lower during unoccupied times than what the baseline con-
troller allows. For every zone, the total energy consumption is
maximum during hot weather because more energy is consumed
by the AHU to condition the hot and humid outside air than to con-
dition the cold dry air. Among the three weathers, pleasant weath-
er leads to the minimal energy consumption because apart from
small conditioning energy requirements in such a weather, only
a small amount of reheating energy is required. For a fixed zone,
the fan energy is approximately same during all the weather
conditions.

Given a controller and outside weather, we observe that
Ezone type-2 < Ezone type-3 < Ezone type-1. That is, the type-2 zone con-
sumes the least amount of energy among the three types of zones.
The reason for this is that zone type-2 walls have low thermal
resistance and high thermal capacitance, and the surrounding
spaces of the zone that are separated by the internal walls are
maintained at 22.2�, which is close to the average of the allowable
temperature range. The low thermal resistance helps maintain the
zone temperature close to 22.2� by fast transfer of energy through
the internal walls from the surroundings, without the controller
having to expend much energy. In addition, the high thermal
capacitance causes the internal walls to store energy, which helps
in maintaining the zone temperature. Type-1 zone consumes the
maximum amount of energy because of the high thermal resis-
tance and low thermal capacitance of the internal walls. The high
thermal resistance does not allow easy transfer of energy from
the surroundings through the internal walls, which, since they
are maintained at 22.2�, could have helped the control maintain
the zone temperature around 22.2� with less effort. In addition,
the low thermal capacitance does not help in storing energy as in
the case of type-2 and type-3 zone.

The average temperature violation DT with either the BL con-
troller or the MOBS controller is more than the average tempera-
ture violation with the MOBO controller for a fixed zone. It occurs
because the BL and MOBS controllers wait for 10 min to turn on
the heating/cooling mode. Among all the controllers, the average
temperature violation is maximum for the MOBS controller. Since
the MOBS controller increases the temperature range during the
daytime if unoccupied, it takes some time for the zone temperature
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011), hot (July 31, 2011), and pleasant (March 16, 2011) day in Gainesville, FL, USA.



Table 4
Energy consumption, average temperature violation, average humidity violation, and % savings over a 24-h period for single zone with various controllers. The three weather
conditions are chosen for Gainesville, Fl, USA.

Zone type Control scheme Cold Hot Pleasant

E (MJ) Savings (%) DT ð�CÞ DH
g

kg

� �
E (MJ) Savings (%) DT ð�CÞ DH

g
kg

� �
E (MJ) Savings (%) DT ð�CÞ DH

g
kg

� �

1 BL 93.4 – 0.007 0 179.4 – 0.003 0 78.3 – 0.004 0
MOBS 53.5 42.7 0.026 0 97.5 45.6 0.014 0 41.5 47.0 0.018 0
MOBO 50.6 45.8 0.006 0 93.7 47.7 0.004 0 39.0 50.1 0.006 0
POBO 41.5 55.6 0 0 83.9 53.2 0 0 33.6 57.1 0 0

2 BL 86.8 – 0.005 0 173.7 – 0.001 0 72.2 – 0.003 0
MOBS 42.1 51.4 0.016 0 79.6 54.2 0.001 0 29.9 58.6 0.008 0
MOBO 40.2 53.7 0.004 0 80.0 54.0 0 0 30.2 58.2 0.001 0
POBO 35.9 58.7 0 0 78.9 54.6 0 0 28.4 60.7 0 0

3 BL 91.9 – 0.007 0 178.4 – 0.002 0 76.8 – 0.004 0
MOBS 49.7 45.9 0.023 0 92.2 48.3 0.013 0 38.4 49.9 0.021 0
MOBO 47.3 48.5 0.006 0 90.0 49.5 0.002 0 36.2 52.8 0.005 0
POBO 40.5 56.0 0 0 83.3 53.3 0 0 32.9 57.2 0 0
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to come back to the allowable range when the zone becomes occu-
pied again. However, the BL controller does not increase the allow-
able temperature range during the daytime even if it is not
occupied. Therefore, the average temperature violation with the
MOBS controller is more than that with the BL controller.

The simulation results discussed above are for the case when
occupancy varies between 0 and 1, and for the Gainesville, FL,
USA location. We have also conducted simulations for three more
cases: (i) occupancy varies between 0 and 3; location: Gainesville,
FL, USA, (ii) occupancy varies between 0 and 1, location: Phoenix,
AZ, USA, and (iii) occupancy varies between 0 and 3, location:
Phoenix, AZ, USA. Weather data for Phoenix on January 14, July
31, and March 16 of 2011 are used in the simulations with Phoenix
weather, as in the simulations with Gainesville weather. A very
similar % savings over the baseline controller, and average temper-
ature/humidity violations, are obtained for all the cases. The results
are not shown due to the space limit.
6.1. Implications

MPC vs. feedback, with occupancy measurements: While the MOBS
controller uses simple rule-based feedback control that uses tem-
perature and occupancy measurements, the MOBO controller is a
much more complex MPC-based control scheme that requires pre-
dictions of relevant state variables and exogenous signals. Yet, the
results above show that the performance of the MOBS and MOBO
controllers are quite similar, both in terms of energy savings and
thermal comfort. This is due to the fact that without occupancy
predictions, the MPC-based controller cannot really take advantage
of its powerful optimization algorithm. If predictions are available,
the optimization routine may be able to reduce the airflow and let
the temperature ‘‘float’’, thus saving energy, and then bring it back
up right before the zone is about to be occupied. In the absence of
such predictions, the MPC-controller can only do what a well-de-
signed feedback controller will also do, that is, set back the zone
temperature when the zone is unoccupied, but not too much so
that it can be changed quickly when occupancy changes, and main-
tain some minimum airflow to ensure good IAQ.

One concern during the initial stages of the research was that
the slow thermal dynamics of a typical zone, along with the limi-
tations of the actuators, will make the response of the closed-loop
control system too slow to ensure occupant comfort during the
transition period when occupancy changes. However, the results
reported here show that this concern can be mitigated by appropri-
ate choice of the temperature and humidity bands.
Utility of occupancy predictions: One surprising observation is
that the additional % savings of the POBO controller over the MOBS
and MOBO controllers are small, 1–13%, even though it uses perfect
occupancy predictions while the other two only use measure-
ments. One could expect that since occupancy predictions are
available, the controller can turn the airflow rate quite low during
unoccupied times, resulting in large energy savings. The reason
that this does not happen is due to the ventilation requirements.
ASHRAE ventilation standard 62.1-2010 [13] requires a certain
amount of outside air that depends on the floor area even when
the zone is unoccupied. For a medium sized office with a small de-
sign occupancy (1–5 people), the resulting minimum flow rate
turns out to be a significant fraction of the nominal airflow rate
during occupied periods. Savings would be higher if the ventilation
rates during the unoccupied times were to be smaller than what
are prescribed by current standards. For instance, the older ASH-
RAE ventilation standard 62.1-2001 [33] did not require outside
air supply during unoccupied times. We performed simulations
with a minimum airflow rate of 0 during unoccupied times. In that
case the savings with the POBO controller increases up to about
80% over the baseline controller. That is, the additional savings
possible with occupancy predictions—compared to occupancy
measurements—is now about 40%. These results indicate that the
effort required to obtain future occupancy predictions in real-time,
say, by using occupancy models [6,20], are of questionable benefit
with the current standards. If ventilation standards change again, it
might be worthwhile to invest in developing techniques for occu-
pancy prediction.
7. Discussion and future work

We examine how a controller performance is affected by its
complexity, where the goal of the controller is to minimize energy
consumption while maintaining comfort and IAQ in a zone in a
commercial building with a variable-air-volume HVAC system.
For that purpose, we propose three control strategies of varying
complexity and requiring varying fidelity of information: MOBS,
MOBO and POBO. The performance of the proposed controllers
are compared through simulations with that of a conventional
baseline controller. The baseline controller uses temperature feed-
back but not real-time occupancy measurements. In contrast, the
proposed MOBS and MOBO controllers require occupancy measure-
ments, and the POBO controller requires occupancy predictions.
While MOBS controller is a feedback control algorithm, the MOBO
and POBO controllers are MPC-based algorithms. Simulation results
show that all three controllers lead to substantial improvement in
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energy savings (about 50% on average depending on zone type,
weather, climate, design occupancy, etc.,) with negligible impact
on IAQ or thermal comfort.

The study shows that even a simple feedback-based algorithm
can perform as well as an MPC-based algorithm if only occupancy
measurements are available to the controller. In the absence of
occupancy predictions, MPC simply sets back the zone temperature
to save energy; while the feedback controller is designed to mimic
that behavior as well. Another conclusion of the study is that the
additional savings with an MPC-based controller that uses perfect
occupancy predictions—over one that only uses real-time occu-
pancy measurements—are small. The small additional savings are
due to the restriction on the minimum airflow during the unoccu-
pied times, which come from current ASHRAE ventilation standard
62.1-2010 [13]. The minimum ventilation rate requirements dur-
ing the unoccupied time are to take out the water vapor released
by the equipments, furniture, etc., which contribute a significant
amount to the minimum ventilation requirements during the
occupied times for a medium sized office. If lower ventilation rates
are allowed during unoccupied times, as earlier standards did, it is
possible to save significantly more energy by using occupancy pre-
dictions; assuming of course that such predictions can be obtained.
In that case, the significant energy savings will come from the
reduction in the energy consumed to condition the air at AHU
especially during the unoccupied time, since the minimum allowed
flow rates are low during that time. However, with the current
standards, MPC-based control does not provide significant energy
savings over much simpler feedback-based schemes, even when
perfect occupancy predictions ahead of time are available. One
should note that considerable effort is required in developing/cal-
ibrating/validating dynamic models required by the MPC-based
controllers, and the numerical optimization involved makes the
controller computationally complex. Thus, the use of MPC-based
zone-climate control of existing VAV systems may not be econom-
ically justified. A feedback controller is the most appropriate con-
trol algorithm to be used at the zone level since it is simple,
computationally fast, requires minimal investment in hardware
and software, and delivers energy savings quite similar to that of
much more complex control algorithms.

The study shows that occupancy measurement is a key compo-
nent of energy-efficient zone-climate control, approximately 50%
energy savings over a conventional controller can be obtained by
using occupancy measurements. When the zone is designed for a
single person, such as an office, a motion detector can be used to
measure occupancy. However, if the zone is designed for multiple
occupants, obtaining accurate instantaneous occupancy is not triv-
ial. Work on developing sensors and algorithms for occupancy
measurements is being carried out by several researchers and com-
mercial entities [6,20,17], but more work is needed. Development
of reliable yet inexpensive occupancy measurement technology
will greatly facilitate the deployment of occupancy-based energy-
efficient building control. All occupancy measurements are error
free in the simulations reported here. Some robustness to occu-
pancy measurement errors are present in the proposed controllers
due to the higher-than-needed minimum airflow. Still, a detailed
study of their performance with varying levels of measurements
error is required, and is planned as part of future work.

There are several additional avenues for further exploration. All
the proposed control algorithms require choice of several parame-
ters, which involve a trade-off between energy savings and poten-
tial discomfort. This trade-off needs to be more carefully
examined to determine a set of guidelines on how to choose these
parameters. Implementing the proposed controllers in a real build-
ing is required to verify the simulation results. Work on experimen-
tal verification is ongoing. In this paper, we have assumed that a
zone consists of single room. The control algorithms can be ex-
tended in a straightforward manner to be applicable to a zone that
consists of multiple rooms. Their performance in such a scenario,
though, needs to be studied.

In this paper, the AHU control inputs (such as conditioned air
temperature, flow rate and return air dampers position) are as-
sumed constant. It is possible that through a coordinated control
among the AHU and multiple zones, more energy efficiency can
be achieved than what can be achieved by keeping the AHU con-
troller and zone-level controllers independent. This is another
interesting direction to pursue.
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