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Abstract— Constructing a model of thermal dynamics of a
multi-zone building requires modeling heat conduction through
walls as well as convection due to air-flows among the zones.
Reduced order models of conduction in terms of RC-networks
are well established, while currently the only way to model
convection is through CFD (Computational Fluid Dynamics).
This limits convection models to a single zone or a small number
of zones in a building. In this paper we present a novel method
of identifying a reduced order thermal model of a multi-zone
building from measured space temperature data. The method
consists of first identifying the underlying network structure,
in particular, the paths of convective interaction among zones,
which corresponds to edges of a building graph. Convective
interaction among a pair of zones is modeled as a RC network,
in a manner analogous to conduction models. The second step
of the proposed method involves estimating the parameters of
the RC network model for the convection edges. The identified
convection edges, along with the associated R and C values, are
used to augment a thermal dynamics model of a building that
is originally constructed to model only conduction. Predictions
by the augmented model and the conduction-only model are
compared with space temperatures measured in a multi-zone
building in the University of Florida campus. The identified
model is seen to predict the temperatures more accurately than
a conduction-only model.

I. INTRODUCTION

Buildings are one of the primary consumers of energy
worldwide. Inefficiencies in building technologies, particu-
larly in operating the HVAC (heating, ventilation and air
conditioning) systems cause a significant fraction of the
energy consumed by buildings to be wasted. As a result, there
is a growing interest in developing techniques that can com-
pute optimal building control signals to minimize building-
wide energy consumption, such as MPC (model predictive
control) [1], [2]. These control techniques require a model
that adequately captures the relevant dynamics of a building,
especially of the thermal dynamics that relate the control
signals to the space temperatures, i.e., average temperatures
of the zones of the building. In addition, the models should
have a small state space dimension. Otherwise, computing
the control signals becomes computationally expensive and
in some cases, infeasible. Quite a few building energy
simulation programs are available, such as EnergyPlus [3],
TRNSYS [4], and DOE-2 [5]. Although these programs are
useful for load calculations, equipment sizing, and predicting
energy use of a building over long time intervals, their utility
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is limited as tools to model or simulate the dynamics of the
thermal processes inside a building that can be used by a
control system [6].

Constructing building thermal dynamics is a challenging
task since it requires modeling heat exchange through con-
vection, conduction and radiation among all the rooms. The
thermal dynamics in a multi-zone building can be thought
of as an interconnected system of many subsystems. Each
subsystem corresponds to a zone, and the interconnections
correspond to dynamic interactions between pairs of zones,
which may occur due to conduction or convection. A first-
principles based model constructed from energy and mass
balance equations will lead to a highly complex model.
Currently, modeling convection requires CFD simulations,
which limits its application to one zone or a small number
of zones [7]. In contrast, modeling heat exchange between
zones due to conduction is quite feasible; substantial lit-
erature exists on modeling conduction using RC (resistor
capacitor) networks. However, little work has been done
on constructing reduced order models of convection. The
key challenge is therefore to construct a reduced order
model of convective interactions among the zones of a
building. Due to the complexity of the underlying physics,
a data-driven approach that identifies these interactions from
observed behavior is more likely to succeed than a physics-
based one. Even with a data driven approach, there are two
main challenges. The first is to determine which pairs of
zones have significant convective interaction in a multi-zone
building. The second is to develop a reduced order model for
convective heat transfer between a pair of rooms. If these two
challenges are overcome, a model of the whole building can
be constructed as a network of elements, each element being
a reduced order model of either convection or conduction
between a pair of zones.

A network model of thermal dynamics of a multi-zone
building will have nodes corresponding to the temperatures
in zones and edges corresponding to reduced order models
of dynamic interaction between the variables connected by
the edge. In this paper, we address the problem of identifying
the network model of thermal dynamics from measured zone
temperatures and input signals. The edges in the network
that correspond to the conduction are straightforward to
determine from the building’s geometry. The edges that
correspond to convection are far more challenging to iden-
tify. We borrow ideas from machine learning, in particular,
concentration graph models, to determine these edges, which
are based on computing conditional dependencies among
zone temperatures. Reduced order models of conduction



in terms of RC-circuits are well-established [8], [9], [10].
Motivated by RC-circuit models of conduction, we model
convection between two zones as a RC circuit as well. The
resistance and capacitance values of convection edges are
obtained minimizing a prediction error. The proposed method
is applied to a section of a building in the University of
Florida campus. Comparison of the model’s prediction with
measured data shows that the identified model predicts the
temperatures more accurately than a model that only takes
conduction into account.

The rest of the paper is organized as follows. Section II
formulates the problem precisely. Section III describes the
proposed method. Performance of the method when applied
to a section of a building in the University of Florida campus
is discussed in Section IV. The paper ends with a discussion
on future research directions in Section V.

II. T HERMAL NETWORK MODEL AND PROBLEM

FORMULATION

A commercial building is usually divided into a number
of “zones”; where a zone is either a number of rooms
or a single large room. Conditioned air is supplied to the
“terminal boxes” of respective zones. The flow rate and
temperature of this air are varied at the terminal boxes
through dampers and reheat coils, before being supplied to
the zone, to maintain the zone temperature at a desired value.
For modeling purposes, we assume that the air in the zone is
well mixed. The zone temperatureTi and humidity ratioWi

of ith zone are state variables of a thermal dynamics model.
Thenetworknature of the thermal dynamics model comes

from the fact the states (temperature and humidity) of a zone
are affected by the states of nearby zones due to conduction,
convection, and radiation. In this paper, heat exchange among
zones due to radiation is neglected; which is also a common
practice [11]. We use the commonly used 3R2C reduced
order model of conduction between two spaces separated by
a solid surface [10], [8]. However, modeling convection is
quite challenging. Typically, convection is analyzed through
CFD simulations, since the governing equations are a set of
coupled partial differential equations [7], [12], [13]. How-
ever, this approach is limited to a single zone or a very
small number of zones due to computational complexity.
To the best of our knowledge, no work has been done on
constructingreduced-order dynamic models of convection
in multi-zone buildings. As we are interested in lumped
parameter, or reduced-order models, in this paper, we model
convective interaction between two zones by a RC circuit as
well.

Thermal interaction among multiple zones in a building
can now be described in terms of a undirected graphG =
(V,E) with node setV = {1, . . . ,n} and edge setE ⊂ V×V.
Each node in the setV corresponds to a variable, e.g. temper-
ature in a room. If the variables corresponding to nodesu and
v directly affect each other, then we say that there is an edge
betweenu andv: (u,v)∈E. In general, a node can correspond
to variables such as temperature, humidity ratio, etc. In this
study, all the nodes will correspond to temperatures at certain
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Fig. 1. A schematic illustration of a thermal network model,with edges
representing either convective or conductive interactionby solid and dashed
lines respectively. Each square solid box is a RC-circuit.

locations inside or outside the building. Hence, the number
of nodes,n, in the network model is equal to the number
of zones in the building in this paper. An edge is essentially
a path for dynamic interaction between two variables that
are relevant to the thermal dynamics. For example, if a
pair of nodesu and v correspond to two adjacent rooms
separated by a wall so that there is conductive heat transfer
between them, or if there is air flow betweenu andv, then
this is represented by an edge between the nodesu and
v. The edges that arise due to conductive heat exchange
are calledconduction edges, while those that arise out of
convective heat exchange between two zones (or between
a zone and the outside, though rare) are calledconvection
edges. A schematic illustration of a thermal network model
of a four-zone building is shown in Figure 1, where solid
and dashed line represent the conduction and convection
edges respectively. Each edge has a RC-circuit associated
with it, which models the dynamic interactions between the
variables that are associated with the corresponding pair of
nodes. Since we model both conduction and convection using
a 3R2C model, each edge has a LTI dynamic system of
state-space dimension 2 associated with it. Each node also
has a state associated with it: the temperature of the zone
that corresponds to the node. We call the zone temperatures
the node variables. In summary, a thermal network model
of a multi-zone building is a graph along with weights
on the edges, where each “weight” is an LTI system that
corresponds to the differential equations of a RC network.
We refer the reader to [14] that describes the model in detail,
and to [15], [16] for model reduction techniques developed
for such network models.

A. The identification problem

Identification of a thermal network model consists of (i)
identifying a minimal set of edges between node pairs, and
(ii) estimating the parameters for each edge (i.e., the R andC
values for the RC-circuits associated with the edges) required
to explain the observed behavior of the node variables. We
call the first thestructure identificationproblem and the
second theparameter estimationproblem. Identifying the
conduction edges and the R and C values associated with it
is straightforward [10]. However, identifying the convection
edges and determining their R and C values is far more
challenging, and forms the crux of the problem we address
in this paper.



III. PROPOSEDIDENTIFICATION METHOD

As described in the previous section, identification of a
thermal network model from measured input-output data can
be thought of in terms of two sub-problems: (i) structure
identification and (ii) parameter estimation. We now describe
our approach to solve these two sub-problems.

A. Network structure identification

The proposed method for structure identification relies
on identifying conditional independence between random
variables. Recall that two random variables (r.v.)X andY are
called conditionally independent given a r.v.Z, if they are in-
dependent given theσ -algebra generated byZ. For instance,
the temperatures in two buildings that are physically separate
but are located in the same neighborhood are conditionally
independent given the outside air temperature, assuming that
apart from the outside temperature there is no common input
that affects both the buildings. Similar arguments can be
made for temperatures of zones in a multi-zone building. If
Ti and Tj are node variables (i.e., zone temperatures) that
are conditionally independent given the rest of the node
variables, that would mean that there is no direct thermal
interaction between these two zones. So determination of
conditional independence between pairs of node variables
(given all the rest) provides us a way to determine which
pairs of node variables should not have edges between them
in the thermal network, and vice versa.

To determine pairwise conditional independence, we use
the idea of the so-calledconcentration graph(Gc) model
from machine learning [17]. Givenn random variables
X1, . . . ,Xn that are jointly Gaussian, the inverse-covariance
matrixP := Σ−1, whereΣ =Cov(X,X) andX = [X1, . . . ,Xn]

T ,
provides information on conditional dependencies. In partic-
ular, two variablesXi and Xj are conditionally independent
given the rest ifPi, j = 0. For minimum model complexity, it
is also desired that the estimated concentration graph have
as few edges as possible, i.e., the estimatedP should be
as sparse as possible. The need of sparsity becomes more
important as the number of variables becomes large.

From the maximum likelihood estimator (S) of the covari-
anceΣ, the estimated concentration matrix can be obtained
as P̂ = S−1, which is not sparse in general. The method
in [17], which we will utilize, leads to an estimated graph
model Ĝc. We first identify the concentration graph model
of the node variablesTi , i = 1, . . . ,n from time-series data
using the method of [17]. In fact, if measurements are
collected atm-minute intervals so that we haveK = 24×60

m
discrete time indices for 24 hours, then we identifyK distinct
concentration graph models,̂Gc(k), where k = 1, . . . ,K is
the time index. We treat each day’s data as an independent
realization of the underlying stochastic processes. Therefore,
given N days of temperature data, the estimate ofP(k) for
eachk is based onN samples. IfPi j (k) 6= 0 whereTi and
Tj are node variables ofi and j in the thermal network,
then we conclude that these two node variables directly
affect each other at timek, and therefore(i, j) is a potential
edge. Among these potential edges, the edges that correspond

to the conduction, which are already known from building
geometry, are first chosen. The convection edges are chosen
next, as follows. LetḠ(k) = (V, Ē(k)), whereĒ(k) is E(k)
with all the conduction edges removed. For a fixed nodei,
we determine the score of all other nodesj ( j = 1, . . . ,n) as:

s(i)
j :=

# of times(i, j) appear in∪k Ē(k)
K

.

If nodeℓ has the highest score:ℓ = argmaxj s
(i)
j , then(i, j) is

chosen as the convection edge fori. This process is repeated
for eachi. Note that only one convection edge is chosen for
each node at each stage, though at the end of the process a
node may have multiple convection edges incident on it. This
is done in order to restrict the number of convection edges,
and thereby obtain a model that is of minimal complexity.

B. Parameter estimation

Once the edges of the network model are identified, the
parameters corresponding to each edge (3 R values and 2 C
values) have to be estimated. We choose the zone capacitance
to be of the same order of magnitude of internal wall
capacitance, and proportional to the volume of corresponding
zone. Since we model each convection edge as a 3R2C
circuit as well, three R values and two C values need to
be estimated for each such edge. For the sake of simplicity,
we first restrict all the 3 resistors to have the same resistance
and both the capacitors to have the same capacitance. From
now on, we use subscripts d and v to refer to conduction and
convection, respectively. Thus, we only need to estimate only
two parameters,Rv andCv, for each the convection edge.

The time constantτ of a 3R2C circuit with all three
resistances equal toR and both the capacitances equal toC
is proportional toRC, so thatτ = αRC. So, if such a circuit
is used to model heat transfer (conduction or convection),
we have

τd = αRdCd, τv = αRvCv (1)

where τ(·) refers to time constant,α is the constant of
proportionality, and the subscripts d and v refer to con-
duction and convection, respectively. The time constant of
a model of convective heat transfer between two zones
should increase with the physical distance between them.
The larger the distance, the longer it will take to transfer
heat, since convection requires physical mass exchange. We
incorporate this effect by making the resistance of the RC-
circuit model for convection proportional tod, the physical
distance between the two zones along the most likely path
of air exchange (which is usually a hallway):Rv = R̄vd,
where the proportionality constant̄Rv can be thought of as
resistance per unit distance. We assume that the capacitance
Cv is not affected by the distance between the zones. Now,
(1) can be rewritten as

τv = αdR̄vCv (2)

To fully specify a RC network model of a convective edge in
the network model, the parametersα, R̄v, andCv are needed;
d is known from building geometry. The value ofα can



be computed from (1) since the parametersRd andCd are
known for a surface of specific material and geometry, and
τd can be determined as the absolute value of the inverse of
the least stable eigenvalue of the LTI system corresponding
to a 3R2C network model for that surface. The remaining
parametersR̄v, Cv are chosen by searching for values that
minimize the prediction costJ:

J :=
KT

∑
k=1

∑
i∈Z

(T̂i(k)−Ti(k))
2 (3)

whereTi(k) and T̂i(k) are the measured and predicted tem-
peratures respectively ofith room at time indexk, KT is the
total number of time steps over which measurements and
model predictions are obtained, andZ ⊂ V is a subset of the
zones in the building. Temperature predictions are obtained
from simulating the model described in [14].

Since nothing is known about the structure of this opti-
mization problem, in this study we obtain the parameters
R̄v, Cv by an exhaustive search. Knowledge of approximate
values of the time constant of convective heat exchange
is used to constrain the search space. The change in a
zone’s temperature due to convection is much faster than
that due to conduction. In a CFD-based study of convection
in multi-zone buildings reported in [7], the time constant
due to convection across two locations 2.5 m apart is seen
to be between 10 seconds and 50 seconds depending on the
locations. We call1d τv as thetime constant per unit distance,
and from the results reported in [7], we impose the condition
that tmin ≤ 1

d τv ≤ tmax, where tmin and tmax are the lower
and upper bounds on the time constant per unit distance, for
convection. It follows from (2) that1α tmin ≤ R̄vCv ≤

1
α tmax.

For the choice of valuestmin = 4, tmax = 20 (which follow
from the results in [7]), we obtain 0.4≤ R̄vCv ≤ 2. The value
of α used in this calculation is 9.86, which is computed as
described earlier. Hence, in searching for the values ofR̄v,Cv

that minimize the prediction costJ, the search was limited
to the rangeR̄vCv ∈ [0.4 2].

IV. RESULTS

The method described above is applied to identify the
thermal network mode of a section of a building (Pugh Hall)
located at the University of Florida campus, Gainesville, FL.
The section of the building chosen is a part of the second
floor of Pugh Hall; its layout is shown in Figure 2. The node
variables are the temperatures of the 7 zones that are denoted
as 200, 210, 230, 245, 248, 249 and “Hallway” in Figure 2.
The reason for choosing this section of the building as a test-
case is the availability of the time-series data for the bound-
ary nodes, i.e., of the zones 200, 210, 230, 248 and corridor
as well as outside. Measurements of zone temperatures,
supply air temperatures and flow rates are obtained from
the Siemens Insightc© BAS (Building Automation System),
at 5 minutes intervals for 26 days starting from January 21,
2011. The outdoor temperature data is obtained from [18] at
60 minute intervals for the same period.
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Fig. 2. A detailed schematic of the 7-zone section on the 2nd floor of Pugh
Hall, 40000 sq. ft. building located in the University of Florida campus.
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Fig. 3. Results of network structure identification method applied to find
the convection edges for a block shown in Figure 2. The conduction and
convection edges are shown as solid and dashed lines, respectively.

A. Model simulation details

To simulate the network model in MATLABc©, after it
is identified, inputs and initial conditions are required. Each
zone has sensors that measure supply air temperature, supply
air flow rate, and temperature of the zone, but there are
no sensors to measure humidity ratios. Thus, among the
inputs to the model, the supply air temperature and flow rate,
and temperatures of the boundary nodes are known, while
the supply air humidity ratios are not. Hence we simulate
the model assuming that humidity ratio of conditioned air
supplied into each zone is the same and is constant over
time. This is a reasonable assumption since air handling
units deliver air at an approximately constant humidity ratio,
and reheating at the terminal boxes does not affect humidity.
The constant value of humidity ratio was chosen after on-
site measurements as 0.0074. The initial zone temperatures
in the model are chosen to be the same as the measured
initial temperatures. The initial values of the internal states of
each conduction edge are chosen as the average of the initial
temperatures of the zones connecting them [14]. The section
of the building used in the current study has only three rooms
that share walls with the outside, and furthermore these walls
are north facing, with no direct sunlight incident on them.
Therefore, we assume that the solar load in all the zones are
0 at all times. Furthermore, all the rooms in the section are
offices with a designed average occupancy of 2. Simulations
of the identified model (which will be described next)



indicated that the difference in the temperature prediction
with two occupants per room and no occupants is less than
0.3◦F . Hence, loads from occupants are set to 0 in all the
simulations. Since there is no sensor to measure the hallway
temperature, we assume that the initial hallway temperature
as the average of the initial temperatures of the zones next to
the hallway. It is assumed that the thermal resistance of the
floor and the roof of 2nd floor of the building is much larger
than that of internal walls. The latter means that temperatures
of 1st and 3rd floors of the building have little impact on the
temperatures of the zones in the 2nd floor.

B. Identification and verification

The available data for the building section shown in
Figure 2 is separated into a calibration data set (data for
January 21, 2011 through February 9, 2011) and a validation
data set (rest of the data). Network structure is identified
using the whole calibration data set and parameters are
estimated using only the first 12 hours of the calibration
data set. The resulting identified graph is shown in Figure 3,
where the nodes lying outside the box shown in dashed
line correspond to boundary nodes. In Figure 3, a solid line
represents the conduction edge and a dashed line represents
a convection edge. To estimate the values ofR̄v andCv for
the convection edges, the value of the prediction costJ is
computed for various values of these parameters, by varying
R̄v between 10(−6) and 0.01 and varyingτ0 := R̄vCv between
its allowable values (see Section III-B). The length of the
time interval used in computingJ is kT = 144, which cor-
responds to first 12 hours of the calibration data set. Model
predictions for a given set of parameter values are obtained
from MATLAB c©simulations of the model, as described in
Section IV-A. Figure 4 shows the variation of cost functional
J defined in (3) as a function of the resistanceR̄v. The cost
functional achieves a minimum at̄Rv = 3.36× 10−4, and
the corresponding capacitance isCv = 1.19×103, which are
therefore chosen as the estimated parameters. If we introduce
the convection edges manually with with R and C values
estimated above, the same convection edges are recovered
back when the same method is applied.
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Fig. 4. Value of objective function J defined in (3) as a function of the
convection edge resistanceR, for a few values of the time constant.

C. Validation

Once the network model (structure and parameters) are
determined as described above, the model is simulated in
MATLAB c©for a given set of inputs and the predicted outputs
are compared with measured values. The inputs used for
these simulations are obtained from measured data during
midnight of February 10, 2011 to midnight of February 12,
2011, which is part of the validation data set. Figures 5 and 6
show the measured temperatures, the temperatures predicted
by the identified network model, and those by a conduction-
only model, of room 243 and 244. All time traces shown are
for the 48 hour time period mentioned above. It is clear that
the temperature predictions by the identified network model
that includes convection effects are substantially closerto the
measured values than those by the conduction-only model.
The maximum error between measured values and prediction
of the identified network model is about 30F, while the
maximum error is about 60F if only conduction is taken
into account. The predictions by the identified model for the
other rooms (not shown due to space limitations) are also
closer to the measured values than the predictions by the
conduction-only model.
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Fig. 5. Actual and predicted temperatures of room 243 with the identified
model and with conduction-only model.
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Fig. 6. Actual and predicted temperatures of room 244 with the identified
model and with conduction-only model.
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Fig. 7. Correlation coefficients between pairs for rooms (240, i), where
i = 241, 242, 243, 247 over a 24 hour period (01/20/2011-02/15/2011).
The estimates are computed from data collected over 26 days.This plot
shows that marginal dependencies between zone temperatures do not help
in unearthing thermal interactions among zones.

V. D ISCUSSION AND FUTURE WORK

We proposed a method to identify the interconnection
structure of the thermal dynamic model of a multi-zone
building. The proposed method relies on estimating condi-
tional independence between pairs of zone temperatures to
estimate the convection edges. An additional contributionis a
RC network based reduced order model of convection. The R
and C values of the convection edges are estimated through
an exhaustive search to minimize a prediction error cost.
The identified model predicts the zone temperatures more
accurately compared to a conduction-only model.

It should be noted that it is important to examine con-
ditional dependencies rather than marginal dependencies.
Pairwise correlation coefficients among the node tempera-
tures reveal little about cause and effect. Figure 7 shows
the estimated correlation coefficients among pairs of zones
in the building in Figure 2, which indicates that all the
node variables are highly correlated during the nighttime and
have little correlation during daytime. This is an artifactof
the way the building’s HVAC system is operated. The zone
temperatures are allowed to “float” at night when the building
is unoccupied. As a result, all the room temperatures tend
to either increase or decrease together depending the outside
temperature, which makes them all highly correlated. During
the daytime, on the other hand, all the room temperatures
are maintained close to 72oF, with small random fluctuations
that arise due to occupants and other loads. As a result the
correlations among the zone temperatures during daytime are
close to 0. Hence, little information on the interconnection
structure of the thermal network can be obtained from
examining correlation coefficients.

Numerous avenues for improvement exist, we list a few.
In general, it is quite possible that two rooms have both
conductive and convective interaction between them, but the
proposed method does not produce parallel edges. A strength
of the method is that it does not require any forced-response
experiments to reveal the interconnections. However, since
the zones of a building are usually maintained at a constant

temperature, there is little “persistency of excitation” in the
measured signals. There might be a limit on how much of the
interconnection structure can be unearthed with such closed-
loop data. This needs to be explored in the future.
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