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Abstract— Constructing a model of thermal dynamics of a is limited as tools to model or simulate the dynamics of the

multi-zone building requires modeling heat conduction though  thermal processes inside a building that can be used by a
walls as well as convection due to air-flows among the zones. control system [6]

Reduced order models of conduction in terms of RC-networks Constructing building th | d Lo hall .
are well established, while currently the only way to model onstructing building thermal dynamics IS a challenging

convection is through CFD (Computational Fluid Dynamics). task since it requires modeling heat exchange through con-
This limits convection models to a single zone or a small nungy  vection, conduction and radiation among all the rooms. The
of zones in a building. In this paper we present a novel method thermal dynamics in a multi-zone building can be thought
of .|d(.ent|fy|ng a reduced order thermal model of a multi-zone of as an interconnected system of many subsystems. Each
building from measured space temperature data. The method . .
consists of first identifying the underlying network structure, subsystem CorreSpon_ds_ toa Zc.me' and the 'nterconnecuons
in particular, the paths of convective interaction among zaes, correspond to dynamic interactions between pairs of zones,
which corresponds to edges of a building graph. Convective which may occur due to conduction or convection. A first-
interaction among a pair of zones is modeled as a RC network, principles based model constructed from energy and mass
in a manner analogous to conduction models. The second step balance equations will lead to a highly complex model.

of the proposed method involves estimating the parametersfo C fl deli fi - CED simulati
the RC network model for the convection edges. The identified urrently, modeling convection requires simulations,

convection edges, along with the associated R and C valuesea Which limits its application to one zone or a small number
used to augment a thermal dynamics model of a building that of zones [7]. In contrast, modeling heat exchange between
is originally constructed to model only condgctlon. Preditions  zones due to conduction is quite feasible; substantial lit-
by the augmented model and the conduction-only model are gpa4,re exists on modeling conduction using RC (resistor
compared with space temperatures measured in a multi-zone . .

capacitor) networks. However, little work has been done

building in the University of Florida campus. The identified X -
model is seen to predict the temperatures more accurately #n 0N constructing reduced order models of convection. The

a conduction-only model. key challenge is therefore to construct a reduced order
model of convective interactions among the zones of a
|. INTRODUCTION building. Due to the complexity of the underlying physics,

Buildings are one of the primary consumers of energ@ data-driven approach that identifies these interactiams f
worldwide. Inefficiencies in building technologies, peuti observed behavior is more likely to succeed than a physics-
larly in operating the HVAC (heating, ventilation and airbased one. Even with a data driven approach, there are two
conditioning) systems cause a significant fraction of th&ain challenges. The first is to determine which pairs of
energy consumed by buildings to be wasted. As a result, thef@nes have significant convective interaction in a multieo
is a growing interest in developing techniques that can conpuilding. The second is to develop a reduced order model for
pute optimal building control signals to minimize building convective heat transfer between a pair of rooms. If these tw
wide energy consumption, such as MPC (model predicti\/@hallenges are overcome, a model of the whole building can
control) [1], [2]. These control techniques require a moddpe constructed as a network of elements, each element being
that adequately captures the relevant dynamics of a bgildin® reduced orc_ier model of either convection or conduction
especially of the thermal dynamics that relate the contr@€tween a pair of zones.
signals to the space temperatures, i.e., average tempewaty A network model of thermal dynamics of a multi-zone
of the zones of the building. In addition, the models shoulguilding will have nodes corresponding to the temperatures
have a small state space dimension. Otherwise, computifyzones and edges corresponding to reduced order models
the control signals becomes computationally expensive afd dynamic interaction between the variables connected by
in some cases, infeasible. Quite a few building energi?® €dge. In this paper, we address the problem of idengfyin
simulation programs are available, such as EnergyPlus [ghe network model of thermal dynamics from measured zone
TRNSYS [4], and DOE-2 [5]. Although these programs ardémperatures and input signals. The edges in the network
useful for load calculations, equipment sizing, and préatic that correspond to the conduction are straightforward to

energy use of a building over long time intervals, theiritytii  determine from the building's geometry. The edges that
correspond to convection are far more challenging to iden-
This work has been supported by the National Sciencdify. We borrow ideas from machine learning, in particular,
Foundation by Grants CNS-0931885 and ECCS-0955023. Thggncentration graph models, to determine these edgeshwhic
authors are with the Department of Mechanical and Aerospace b d . diti I d d .
Engineering, University of Florida, Gainesville, FlorjdaUSA. are based on computing conditional dependencies among

{si ddgoya, cdl i ao, pbarooah}@if | . edu zone temperatures. Reduced order models of conduction



in terms of RC-circuits are well-established [8], [9], [10] Outside Outside

Motivated by RC-circuit models of conduction, we model Zone 1
convection between two zones as a RC circuit as well. The
resistance and capacitance values of convection edges are
obtained minimizing a prediction error. The proposed meétho

is applied to a section of a building in the University of
Florida campus. Comparison of the model’s prediction with
measured data shows that the identified model predicts the

temperatures more accurately than a model that only tak@ﬁ- 1. A schematic illustration of a thermal network modeith edges
. . representing either convective or conductive interachigrsolid and dashed
conduction into account.

) ] ) lines respectively. Each square solid box is a RC-circuit.
The rest of the paper is organized as follows. Section I

formulates the problem precisely. Section Il describes th . o ) o

proposed method. Performance of the method when appli€fations inside or outside the building. Hence, the number
to a section of a building in the University of Florida campugf nodes,n, in the network model is equal to the number
is discussed in Section IV. The paper ends with a discussi® Zones in the building in this paper. An edge is essentially

Zone 2 Zone 3

Zone 4

on future research directions in Section V. a path for dynamic interaction between two variables that
are relevant to the thermal dynamics. For example, if a

Il. THERMAL NETWORK MODEL AND PROBLEM pair of nodesu and v correspond to two adjacent rooms
FORMULATION separated by a wall so that there is conductive heat transfer

A commercial building is usually divided into a numberbetween them, or if there is air flow betwearandv, then
of “zones”; where a zone is either a number of room#is is represented by an edge between the nadesd
or a single large room. Conditioned air is supplied to thd- The edges that arise due to conductive heat exchange
“terminal boxes” of respective zones. The flow rate an@re calledconduction edgeswhile those that arise out of
temperature of this air are varied at the terminal boxe&onvective heat exchange between two zones (or between
through dampers and reheat coils, before being supplied #Z0ne and the outside, though rare) are catledvection
the zone, to maintain the zone temperature at a desired.val§€9es A schematic illustration of a thermal network model
For modeling purposes, we assume that the air in the zonedk @ four-zone building is shown in Figure 1, where solid
well mixed. The zone temperatufie and humidity rationf and dashed line represent the conduction and convection
of ith zone are state variables of a thermal dynamics modé&dges respectively. Each edge has a RC-circuit associated

The networknature of the thermal dynamics model comevith it, which models the dynamic interactions between the
from the fact the states (temperature and humidity) of a zor¥@riables that are associated with the corresponding pair o
are affected by the states of nearby zones due to conductié\‘?,des- Since we model both conduction and coqvectlon using
convection, and radiation. In this paper, heat exchangsigmo@ 3R2C model, each edge has a LTI dynamic system of
zones due to radiation is neglected; which is also a commd&iate-space dimension 2 associated with it. Each node also
practice [11]. We use the commonly used 3R2C reducdits a state associated with it: the temperature of the zone
order model of conduction between two spaces separated it corresponds to the node. We call the zone temperatures
a solid surface [10], [8]. However, modeling convection ighe node variablesin summary, a thermal network model
quite challenging. Typically, convection is analyzed tgh ©f @ multi-zone building is a graph along with weights
CFD simulations, since the governing equations are a set ®f the edges, where each “weight” is an LTI system that
coupled partial differential equations [7], [12], [13]. We corresponds to the differential equations of a RC r_letwork.
ever, this approach is limited to a single zone or a veryve refer the reader to [14] that de_scnbes th_e model in detail
small number of zones due to computational complexity@nd to [15], [16] for model reduction techniques developed
To the best of our knowledge, no work has been done dR' such network models.
constructingreduced-order dynamic models of convection . e
in multi-zone buildings As we are interested in lumped A. The identification problem
parameter, or reduced-order models, in this paper, we modelldentification of a thermal network model consists of (i)
convective interaction between two zones by a RC circuit adentifying a minimal set of edges between node pairs, and
well. (ii) estimating the parameters for each edge (i.e., the RGand

Thermal interaction among multiple zones in a buildingralues for the RC-circuits associated with the edges) redui
can now be described in terms of a undirected gr&ph  to explain the observed behavior of the node variables. We
(V,E) with node selV = {1,...,n} and edge séE C V xV. call the first thestructure identificationproblem and the
Each node in the s&f corresponds to a variable, e.g. tempersecond theparameter estimatiorproblem. Identifying the
ature in a room. If the variables corresponding to nadasd conduction edges and the R and C values associated with it
v directly affect each other, then we say that there is an edigestraightforward [10]. However, identifying the conviect
betweeru andv: (u,v) € E. In general, a node can corresponcedges and determining their R and C values is far more
to variables such as temperature, humidity ratio, etc. i& thchallenging, and forms the crux of the problem we address
study, all the nodes will correspond to temperatures aatert in this paper.



[1l. PROPOSEDIDENTIFICATION METHOD to the conduction, which are already known from building
As described in the previous section, identification of &#eometry, are first chosen. The convection edges are chosen
thermal network model from measured input-output data cd#eXt, as follows. LetG(k) = (V,E(k)), whereE(k) is E(k)
be thought of in terms of two sub-problems: (i) structurdvith all the conduction edges removed. For a fixed ngde
identification and (i) parameter estimation. We now deseri We determine the score of all other node§ =1,...,n) as:
our approach to solve these two sub-problems. $) # of times (i, j) appear inU, E(K)

A. Network structure identification b K '

The proposed method for structure identification relief node/ has the highest scoré= argmaxsg'), then(i, j) is
on identifying conditional independence between randomhosen as the convection edge iforhis process is repeated
variables. Recall that two random variables (2¢.andY are for eachi. Note that only one convection edge is chosen for
called conditionally independent given a &y.if they are in- each node at each stage, though at the end of the process a
dependent given the-algebra generated 8. For instance, node may have multiple convection edges incident on it. This
the temperatures in two buildings that are physically sgjear is done in order to restrict the number of convection edges,
but are located in the same neighborhood are conditionalnd thereby obtain a model that is of minimal complexity.
independent given the outside air temperature, assumatg t% Parameter estimation
apart from the outside temperature there is no common inptt
that affects both the buildings. Similar arguments can be Once the edges of the network model are identified, the
made for temperatures of zones in a multi-zone building. Parameters corresponding to each edge (3 R values and 2 C
Ti and T; are node variables (i.e., zone temperatures) thyglues) have to be estimated. We choose the zone capacitance
are conditionally independent given the rest of the nod® be of the same order of magnitude of internal wall
variables, that would mean that there is no direct therm&RpPacitance, and proportional to the volume of correspandi
interaction between these two zones. So determination @ne. Since we model each convection edge as a 3R2C
conditional independence between pairs of node variabl€§cuit as well, three R values and two C values need to
(given all the rest) provides us a way to determine whicRe estimated for each such edge. For the sake of simplicity,
pairs of node variables should not have edges between th& first restrict all the 3 resistors to have the same registan
in the thermal network, and vice versa. and both the capacitors to have the same capacitance. From
To determine pairwise conditional independence, we udtoW on, we use subscripts d and v to refer to conduction and
the idea of the so-calledoncentration graph(G¢) model —convection, respectively. Thus, we only need to estimalg on
from machine learning [17]. Givem random variables two parametersR, andC,, for each the convection edge.
X1,...,%n that are jointly Gaussian, the inverse-covariance The time constantr of a 3R2C circuit with all three
matrix P:= 51, whereZ = Co\X,X) andX = [Xy,..., X", resistances equal t& and both the capacitances equalCto
provides information on conditional dependencies. Inipart 1S proportional toRC, so thatt = aRC. So, if such a circuit
ular, two variabless; and X; are conditionally independent S used to model heat transfer (conduction or convection),
given the rest if3 j = 0. For minimum model complexity, it We have
is also desired that the_ esur_nated concentration graph have T4 = AR(Cy, T, = aR,Cy (1)
as few edges as possible, i.e., the estimaeshould be
as sparse as possible. The need of sparsity becomes mofere 1) refers to time constanty is the constant of
important as the number of variables becomes large. proportionality, and the subscripts d and v refer to con-
From the maximum likelihood estimato)(of the covari- duction and convection, respectively. The time constant of
ancez, the estimated concentration matrix can be obtaine@l model of convective heat transfer between two zones
as P = S1, which is not sparse in general. The methoghould increase with the physical distance between them.
in [17], which we will utilize, leads to an estimated graphThe larger the distance, the longer it will take to transfer
model G¢. We first identify the concentration graph modelheat, since convection requires physical mass exchange. We
of the node variabled;, i = 1,...,n from time-series data incorporate this effect by making the resistance of the RC-
using the method of [17]. In fact, if measurements areircuit model for convection proportional t, the physical
collected atmr-minute intervals so that we hadé = 24me30 distance between the two zones along the most likely path
discrete time indices for 24 hours, then we idenkfylistinct ~ of air exchange (which is usually a hallwayR, = R/d,
concentration graph model&¢(k), wherek = 1,....K is where the proportionality constai, can be thought of as
the time index. We treat each day’s data as an independé@sistance per unit distance. We assume that the capagitanc
realization of the underlying stochastic processes. Toege C, is not affected by the distance between the zones. Now,
given N days of temperature data, the estimateP¢k) for (1) can be rewritten as
eachk is based orN samples. IfR;(k) # 0 whereT; and T, = adR.C, @
T; are node variables of and j in the thermal network, Y Y
then we conclude that these two node variables directljo fully specify a RC network model of a convective edge in
affect each other at timke, and thereforgi, j) is a potential the network model, the parametersR,, andC, are needed;
edge. Among these potential edges, the edges that corgspdnis known from building geometry. The value of can
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be computed from (1) since the parametBgsand Cy are

known for a surface of specific material and geometry, and
T4 can be determined as the absolute value of the inverse of
the least stable eigenvalue of the LTI system corresponding
200
Fig. 2. A detailed schematic of the 7-zone section on tH&fl@or of Pugh
Hall, 40000 sq. ft. building located in the University of Rlta campus.

to a 3R2C network model for that surface. The remaining
parametersR,, C, are chosen by searching for values that
3)

Outside/’\

Halllway

minimize the prediction cost:
Kr A )
J:= (Ti(k) = Ti(k))

whereT; (k) and Ti(k) are the measured and predicted tem-

peratures respectively @' room at time indexX, Kr is the
total number of time steps over which measurements and

model predictions are obtained, afd- V is a subset of the
zones in the building. Temperature predictions are obthine

249
Results of network structure identification methagleed to find

from simulating the model described in [14].
Since nothing is known about the structure of this opti-
mization problem, in this study we obtain the parameters
Ry, C, by an exhaustive search. Knowledge of approximate
values of the time constant of convective heat exchange
is used to constrain the search space. The change in a
fio.3 Re ific _
he convection edges for a block shown in Figure 2. The cdimu@and

zone’s temperature due to convection is much faster than
that due to conduction. In a CFD-based study of convection
in multi-zone buildings reported in [7], the time constan
due to convection across two location® 2n apart is seen convection edges are shown as solid and dashed lines, tigspec
to be between 10 seconds and 50 seconds depending on the
locations. We cal%rv as thetime constant per unit distance
and from thle results reported in [7], we impose the condltmR_ Model simulation details
that tmin < 3Tv < tmax, Wheretmin and tmax are the lower _ ) )
and upper bounds on the time constant per unit distance, forT0 simulate the network model in MATLAB, after it
convection. It follows from (2) tha%tmm < F\Tva < %tmax- is identified, inputs and initial cond|t|ons_are require@ck
For the choice of valuetyin = 4, tmax = 20 (which follow ~Zone has sensors that measure supply air temperaturey suppl
from the results in [7]), we obtain.@< R.C, < 2. The value ar flow rate, and temperatur_e .of thg zone, but there are
of a used in this calculation is.86, which is computed as N0 Sensors to measure humidity ratios. Thus, among the
described earlier. Hence, in searching for the valung,;ﬁ)\, inputs to the model, the supply air temperature and flow rat_e,
that minimize the prediction cosk, the search was limited @nd temperatures of the boundary nodes are known, while
to the rangeR,C, € [0.4 2. the supply air humidity ratios are not. Hence we simulate
the model assuming that humidity ratio of conditioned air
IV. RESULTS supplied into each zone is the same and is constant over
The method described above is applied to identify théme. This is a reasonable assumption since air handling
thermal network mode of a section of a building (Pugh Hallunits deliver air at an approximately constant humidityosat
located at the University of Florida campus, Gainesville, F and reheating at the terminal boxes does not affect humidity
The section of the building chosen is a part of the seconthe constant value of humidity ratio was chosen after on-
floor of Pugh Hall; its layout is shown in Figure 2. The nodesite measurements as0074. The initial zone temperatures
variables are the temperatures of the 7 zones that are denaie the model are chosen to be the same as the measured
as 200 210, 230 245 248 249 and “Hallway” in Figure 2. initial temperatures. The initial values of the internaltes of
The reason for choosing this section of the building as a testach conduction edge are chosen as the average of the initial
case is the availability of the time-series data for the ldbun temperatures of the zones connecting them [14]. The section
ary nodes, i.e., of the zones 20010 230 248 and corridor of the building used in the current study has only three rooms
as well as outside. Measurements of zone temperaturdisat share walls with the outside, and furthermore thestswal
supply air temperatures and flow rates are obtained froare north facing, with no direct sunlight incident on them.
the Siemens Insigft BAS (Building Automation System), Therefore, we assume that the solar load in all the zones are
at 5 minutes intervals for 26 days starting from January 2D, at all times. Furthermore, all the rooms in the section are
2011. The outdoor temperature data is obtained from [18] affices with a designed average occupancy of 2. Simulations
of the identified model (which will be described next)

60 minute intervals for the same period.



indicated that the difference in the temperature predictio
with two occupants per room and no occupants is less tha&h Validation

0.3°F. Hence, loads from occupants are set to 0 in all the once the network model (structure and parameters) are
simulations. Since there is no sensor to measure the hallwg¥termined as described above, the model is simulated in
temperature, we assume that the initial hallway tempegatugiaTL AB ©for a given set of inputs and the predicted outputs
the hallway. It is assumed that the thermal resistance of thgese simulations are obtained from measured data during
floor and th(_e roof of 2 floor of the building is much larger midnight of February 10, 2011 to midnight of February 12,
thantthat ofc:nternal walls. The latter means that tempeeatu 2011, which is part of the validation data set. Figures 5 and 6
of 1% and 37 floors of the building have little impact on the show the measured temperatures, the temperatures predicte
temperatures of the zones in th& Zloor. by the identified network model, and those by a conduction-
B. Identification and verification only model, of room 243 and 244. All time traces shown are
ri’or the 48 hour time period mentioned above. It is clear that
e temperature predictions by the identified network model
at includes convection effects are substantially closéne

The available data for the building section shown i
Figure 2 is separated into a calibration data set (data f!ﬁ

January 21, 2011 through February 9, 2011) and a validatid d val h h by th ducti | del
data set (rest of the data). Network structure is identifie easured values than those by the conduction-only modet.
using the whole calibration data set and parameters a e maximum error between measured values and prediction

estimated using only the first 12 hours of the calibratiof? the identified network model is abouf', while the

data set. The resulting identified graph is shown in Figure ér)aximum error is abQUt.OG it only _condy_ction Is taken
where the nodes lying outside the box shown in dashdhto account. The predictions by the identified model for the

line correspond to boundary nodes. In Figure 3, a solid "ngther rooms (not shown due to space limitations) are also

represents the conduction edge and a dashed line represgﬂéer to the measured values than the predictions by the

a convection edge. To estimate the valueRpfand C, for conduction-only model.

the convection edges, the value of the prediction dost Room 243
computed for various values of these parameters, by varying 78 ‘
R, between 10 and 001 and varyingrp := R,C, between

its allowable values (see Section 11I-B). The length of the
time interval used in computing is kr = 144, which cor-
responds to first 12 hours of the calibration data set. Mode
predictions for a given set of parameter values are obtainet
from MATLAB ©simulations of the model, as described in
Section IV-A. Figure 4 shows the variation of cost functibna
J defined in (3) as a function of the resistarRe The cost
functional achieves a minimum &, = 3.36x 10~4, and
the corresponding capacitancedg= 1.19x 10%, which are
therefore chosen as the estimated parameters. If we irdeodu _ o
the convection edges manually with with R and C value§9- ar';‘dCt\;‘lﬁLa::nga‘i‘zi'g;?gnﬁemng’géaeﬁ“res of room 243 wihidtentified
estimated above, the same convection edges are recovereg y '
back when the same method is applied.
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Fig. 4. Value of objective function J defined in (3) as a fumctiof the ~ Fig. 6. Actual and predicted temperatures of room 244 withittentified
convection edge resistang® for a few values of the time constant. model and with conduction-only model.
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temperature, there is little “persistency of excitation”the
measured signals. There might be a limit on how much of the
interconnection structure can be unearthed with such dlose
loop data. This needs to be explored in the future.
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Fig. 7. Correlation coefficients between pairs for rooms0(24, where
i = 241, 242, 243, 247 over a 24 hour period (01/20/2011-020HL).
The estimates are computed from data collected over 26 ddys. plot
shows that marginal dependencies between zone temperataraot help
in unearthing thermal interactions among zones.

(1]

[2]
V. DISCUSSION AND FUTURE WORK

We proposed a method to identify the interconnection®®!
structure of the thermal dynamic model of a multi-zone
building. The proposed method relies on estimating condif4]
tional independence between pairs of zone temperatures EQJ
estimate the convection edges. An additional contribuian
RC network based reduced order model of convection. The R
and C values of the convection edges are estimated throuéﬂ
an exhaustive search to minimize a prediction error cost.
The identified model predicts the zone temperatures mor€]
accurately compared to a conduction-only model.

It should be noted that it is important to examine con-
ditional dependencies rather than marginal dependencies.
Pairwise correlation coefficients among the node tempera[-9
tures reveal little about cause and effect. Figure 7 shows
the estimated correlation coefficients among pairs of zoné¥]
in the building in Figure 2, which indicates that all the
node variables are highly correlated during the nighttime a [11]
have little correlation during daytime. This is an artifadt
the way the building’s HVAC system is operated. The ZONg )
temperatures are allowed to “float” at night when the bugdin
is unoccupied. As a result, all the room temperatures tend
to either increase or decrease together depending theleutsi3
temperature, which makes them all highly correlated. Dmrin[14)
the daytime, on the other hand, all the room temperatures
are maintained close to 72, with small random fluctuations
that arise due to occupants and other loads. As a result thg
correlations among the zone temperatures during daytime ar
close to 0. Hence, little information on the interconnectio 6]
structure of the thermal network can be obtained from
examining correlation coefficients.

Numerous avenues for improvement exist, we list a fevit”]
In general, it is quite possible that two rooms have bothg;
conductive and convective interaction between them, kit th
proposed method does not produce parallel edges. A strength
of the method is that it does not require any forced-response
experiments to reveal the interconnections. However,esinc
the zones of a building are usually maintained at a constant

REFERENCES

F. Oldewurtel, A. Parisio, C. Jones, M. Morari, D. Gyéalss, M. Gw-
erder, V. Stauch, B. Lehmann, and K. Wirth, “Energy efficibailding
climate control using stochastic model predictive congotl weather
predictions,” inAmerican Control Conferengeluly 2010, pp. 5100—
5105.

D. Gyalistras and M. Gwerder, “Use of weather and occapan
forecasts for optimal building climate control (opticasiyr Two years
progress report,” Siemens Switzerland Ltd, Tech. Rep.p201

D. Crawley, L. Lawrie, C. Pedersen, and F. WinkelmanméEgyPlus:
Energy simulation programASHRAE Journalvol. 42, no. 4, pp. 49—
56, 2000.

S. Klein and J. D. anad WA Beckman, “Trnsys: A transiemagliation
program,” Tech. Rep., 1976.

B. Birdsall, W. Buhl, K. Ellington, A. Erdem, and F. Winkaann,
“Overview of the doe-2 building energy analysis progranrsian 2.
1d,” Tech. Rep., Feb 1990.

M. Wetter, “Multizone building model for thermal buildg simulation
in modelica,” in 8" International Modelica Conferenceol. 2, 20086,
pp. 517-526.

Z. Lin, T. Chow, J. Liu, and K. Fong, “Cfd simulation of maient
cooling in a typical hong kong office,” 2000.

M. Gouda and S. D. C. Underwood, “Low-order model for the
simulation of a building and its heating systenBuilding Services
Energy Research Technolggyol. 21, pp. 199-208, Aug 2000.

] S. Wang and X. Jin, “Model-based optimal control of VAVr-ai

conditioning system using genetic algorithnBtilding and Environ-
ment vol. 35, no. 6, pp. 471 — 487, 2000.

M. Gouda, S. Danaher, and C. Underwood, “Building thairmmodel
reduction using nonlinear constrained optimizatioBuilding and
Environment vol. 37, pp. 1255-1265, 2002.

Z. Neill, S. Narayanan, and R. Brahme, “Model-basedrtted load
estimation in buildings,” inin SimBuild, 4th national conference of
IBIPSA 2010.

Z. Zhai and Q. Chen, “Performance of coupled buildingrgy and
cfd simulations,”Energy and buildingsvol. 37, pp. 333-344, April
2005.

] H. Awbi and A. Hatton, “Natural convection from heatedom

surfaces,”"Energy and buildingsvol. 30, pp. 233-244, Aug 1999.
S. Goyal and P. Barooah, “A method for model-reductidnnon-
linear thermal dynamics of multi-zone buildings,” 201 1bmitted for
journal publication. [Online]. Available: http://plazdl.edu/siddgoya/
Homepage/Publications.html

K. Deng, P. Barooah, P. Mehta, and S. Meyn, “Buildingrthal model
reduction via aggregation of states,” Aimerican Control Conference
2010, pp. 5118-5123.

S. Goyal and P. Barooah, “A method for model-reductibmanlinear
building thermal dynamics,” inn proceedings of the 2011 American
Control ConferenceJuly 2011.

M. Drton and M. Perlman, “Model selection for gaussiamcentration
graphs,”’Biometrika 91 pp. 591-602, 2004.

“University of florida department of physics weatheratiin.”
[Online]. Available: http://www.phys.ufl.edu/weather/



