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Abstract— We propose a reinforcement learning-based (RL)
controller for energy efficient climate control of commercial
buildings. Model-based control techniques like model predictive
control (MPC) for this problem are challenging to implement
as they need simple yet accurate models, which are hard to
obtain due to the complexity in hygrothermal dynamics of a
building and its HVAC system. RL is an attractive alternative to
MPC since once the policy is learned, computing the control in
real time involves solving a simple low dimensional optimization
problem that does not involve a model of building physics. How-
ever, training an RL controller is computationally expensive,
and there are many design choices that affect performance.

We compare in simulations the proposed RL controller, an
MPC controller, and a baseline rule-based controller that is
widely used in practice. Both the RL and MPC controllers
are able to maintain temperature and humidity constraints,
and they both reduce energy use significantly compared to the
baseline, though the savings by RL is smaller than that by
MPC.

I. INTRODUCTION

In the U.S., about 19% of the total energy consumption is
by commercial buildings [1], of which 44% is used by heat-
ing, ventilation, and air conditioning (HVAC) systems [2].
Using advanced climate control algorithms is a cost-effective
way to reduce the large energy footprint of HVAC systems.
A climate control algorithm must be able to maintain thermal
comfort and indoor air quality. It should also use minimal
energy. Currently used control algorithms are rule-based and
utilize conservatively designed set points, ensuring thermal
comfort and indoor air quality, but causing high energy
consumption.

In recent years model predictive control (MPC) has
emerged as a popular alternative to rule-based control in
the academic literature [3]. MPC has the ability to satisfy
these competing goals. Despite many simulation—and even
some experimental—works showcasing the ability of MPC
to significantly reduce energy usage, MPC has not been
widely adopted in practice. A challenge with MPC is that
simple yet accurate models are needed as it involves real-
time optimization. Obtaining such control-oriented models
is a challenging task particularly for HVAC systems since
the process dynamics of such systems are complex. Another
challenge with MPC for buildings is the associated com-
putational complexity. The optimization in MPC is typically
non-convex because of the nonlinearities in the hygrothermal
dynamics of building and its HVAC system [4–6]. Depending
on the planning horizon, the number of decision variables can
be large, and solving such a high dimensional non-convex
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constrained optimization problem in real-time, at every time
step, can be challenging.

An alternative approach to MPC is reinforcement learn-
ing (RL). RL is a collection of tools used to approximate an
optimal policy based on data gathered from a physical system
or its simulation. It has two key advantages over MPC:

• It is “model free”: no plant model is needed to compute
the control decisions in real-time. Although a simulation
model is typically needed for off-line learning, unlike
MPC, this model can be of arbitrary complexity as it is
not used for optimization.

• Despite large computational complexity in the learn-
ing phase, the final implementation is a simple state-
feedback control at each time step.

As a result of these advantages, along with increase in
computing power, application of RL for climate control of
buildings is gaining popularity [7–9]. Still, there are several
challenges involved in applying RL to commercial buildings.
Firstly, the indoor temperature and humidity of the building
needs to be maintained within the comfort limits, which is
a state constraint, and is hard to impose using model-free
techniques such as RL. Secondly, the control inputs such as
supply air flow rate, supply air temperature, etc., usually take
on continuous values, and have actuator constraints. There-
fore, popular RL techniques like Watkins’ Q-learning and
deep Q-network (DQN) [10], used in prior works [8, 11, 12],
cannot be directly applied. Lastly, performance of RL is
sensitive to the choice of many design options, such as the
cost function and states.

There are only a few prior works on using RL for climate
control of commercial buildings; see the review paper [7]
and references therein. In [11, 12], the authors use Watkins’
Q-learning algorithm which requires discretization of state
and action space, and is known to be slow [13]. Some works
use the deep reinforcement learning (DRL) technique which
can handle large state spaces. DRL is used to control radiant
heating system in an office building in [9], while [8] uses
DRL for controlling air flow rates. In both works [8, 9]
the action space is discretized. For the HVAC system con-
figuration considered in this work, which has four control
commands, even a coarse discretization of actions leads to a
large number of possible combinations.

Contributions:

(i) We address the challenges of continuous state and
action space by applying the Zap Q-learning algo-
rithm [13] with linear function approximation setting.
The algorithm is known to have very fast convergence,
and moreover, unlike other Q-learning algorithms, it is
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Fig. 1: Schematic of a single-zone commercial variable-air-volume
HVAC system.

known to be convergent even in a function approxima-
tion setting.

(ii) We provide design guidelines to address some of the
challenges mentioned above.
• We design the cost function to minimize the en-

ergy, while making sure that the temperature and
humidity constraints are not violated during imple-
mentation (even with no access to a model).

• We design the state-space so that the actuator con-
straints are implicitly imposed when implementing
a state-feedback controller.

(iii) We compare the performance of the RL controller
with an MPC controller proposed in our prior work [6]
and a widely used rule-based controller called single
maximum [14].

Simulation results show that the proposed RL controller is
able to maintain temperature and humidity within the comfort
limits, and reduces energy usage when compared to the
baseline. However, the energy savings are lower than that
provided by the MPC controller.

The rest of this paper is organized as follows. Section II
describes the HVAC system considered in this work and the
models used in simulating the plant. Section III presents our
proposed RL-based controller. Section IV describes the MPC
and baseline controllers used for comparison. Simulation
results are discussed in Section V. Section VI summarizes
the conclusions.

II. SYSTEM DESCRIPTION AND MODELS

In this paper we consider a single-zone commercial build-
ing equipped with a variable-air-volume HVAC system,
whose schematic is shown in Figure 1. In such a system,
the outdoor air is mixed with part of the air exhausted from
the zone. This mixed air is sent through the cooling coil
where the air is cooled and dehumidified to conditioned
air temperature (Tca) and humidity ratio (Wca). Then the
conditioned air is reheated as needed and finally supplied
to the zone. Note that there is only change in temperature
across the reheat coil, the humidity remains constant, i.e.,
Wsa = Wca, where Wsa is the humidity ratio of the supply
air.

There are 4 control commands a climate control system
needs to decide. They are: (i) supply air flow rate (msa), (ii)
outdoor air ratio (roa := moa

msa
, where moa is the outdoor air

flow rate), (iii) conditioned air temperature (Tca), and (iv)
supply air temperature (Tsa). So the control command/input
vector is, u(t) := [msa(t), roa(t), Tca(t), Tsa(t)]T ∈ <4.
These inputs need to be varied in such a way that the thermal
comfort and indoor air quality are maintained in the zone,
while using minimal energy.

In order to compare the performance of the control al-
gorithms presented and to train the proposed RL controller,
we need simulation models of the zone’s temperature and
humidity dynamics, certain HVAC system components, and
power consumed by the HVAC system. These models are
presented in detail in our prior work [6]. We present only
the relevant salient features below.

A. Humidity and Temperature Dynamic Model

For the thermal dynamics of the zone, we use a resistor-
capacitor (R-C) model, specifically a 2R-2C model with the
two states being the zone temperature and wall temperature.
The humidity dynamic is modeled based on mass balance.
The overall model is of the form:

ẋ(t) = f
(
x(t), u(t), v(t), w(t)

)
, (1)

where the state vector x(t) consists of zone temperature
(Tz), wall temperature (Tw), and humidity ratio of the zone
(Wz), i.e., x(t) := [Tz(t), Tw(t),Wz(t)]

T ∈ <3. The input
vector u(t) is defined above. The internal variable v(t)
consists of conditioned air humidity ratio, v(t) := Wca(t) ∈
<1. The exogenous input vector w(t) consists of outdoor
air temperature (Toa), outdoor air humidity ratio (Woa),
solar irradiance (ηsol), internal heat load (qocp) and rate of
internal water vapor generation (ωocp) due to people, and
internal heat load (qother) and rate of internal water vapor
generation (ωother) due to other sources like equipment, i.e.,
w(t) := [Toa(t),Woa(t), ηsol(t), qocp(t), ωocp(t), qother(t),
ωother(t)]

T ∈ <7.

B. Cooling and Dehumidifying Coil Model

The cooling coil model consists of five inputs and two
outputs. The inputs are supply air flow rate (msa), chilled
water flow rate (mw), chilled water temperature (Twi), mixed
air temperature (Tma) and humidity ratio (Wma). The outputs
are conditioned air temperature (Tca) and humidity ratio
(Wca). We use a gray box data-driven model which was
developed in [6]. The parameters of this model were fit based
on data collected from EnergyPlus [15].
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Fig. 2: Cooling and dehumidifying coil, and relevant variables
(model inputs in rectangles, outputs in circles).



C. Power Consumption Models

There are three major components which consume power
in the HVAC system considered in this work: fan, cooling
coil, and reheat coil. We assume that the power consumed
by other components such as damper motors is negligible.

The fan power consumption Pfan is modeled as being
proportional to a quadratic in the supply air flow rate.
The cooling coil power consumption is modeled as being
proportional to the heat extracted from the mixed air stream
and is of the form: Pcc(t) = gcc

(
msa(t), hma(t), hca(t)

)
,

where hma is the enthalpy of the mixed air and hca is the
enthalpy of the conditioned air.

The reheat coil power consumption is modeled
as being proportional to the heat added to the
conditioned air stream and is of the form:
Preheat(t) = greheat

(
msa(t), Tsa(t), Tca(t)

)
.

III. REINFORCEMENT LEARNING-BASED CONTROLLER

A. Markov Decision Process (MDP) Formulation

Reinforcement learning (RL) is a collection of tools used
to approximate an optimal policy based on data gathered
from a physical system or its simulation. In our application,
RL is used to learn a control policy that minimizes energy
consumption of a commercial building HVAC system, while
ensuring that the zone temperature and humidity are within
the desired comfort limits.

To this end, we model the problem as a discrete-
time Markov decision process comprised of the tuple
(X ,U ,P, c, β), where X denotes the state-space, U denotes
the action-space (a set of all feasible actions), P denotes
the transition kernel, c : X × U × X → < denotes the cost
function, and β denotes a discount factor.

Since the underlying system described in Section II is
evolving in continuous time, we discretize the time-steps for
our MDP formulation, with a sampling interval ∆t > 0. We
denote by Xk ∈ X the state, and Uk ∈ U the control input
at time-instant k∆t (or simply, time-step k).

The goal is to obtain a state-feedback policy φ∗ : X → U
that minimizes the sum of expected discounted cost:

φ∗ := argmin
φ:X→U

{ ∞∑
k=0

βkE
[
c(Xk, Uk, Xk+1)

]}
(2)

with Uk = φ(Xk) for k ≥ 0.
There are several design choices that need to be made

when formulating the underlying problem as an MDP. Here,
we discuss some of the choices we made in our formulation,
and the intuition behind them.

Choosing the state-action space:
Based on the system model defined in Section II, we

define:

Uk := [msa(k), roa(k), Tca(k), Tsa(k)]T . (3)

The choice of Xk is more subtle. Based on the discussion
in Section II-A, it is natural to include the zone temperature
Tz(k), wall temperature Tw(k), and zone humidity Wz(k).
However, since the wall temperature is only an auxiliary state

that is not directly measurable, we do not include it as a part
of Xk.

In addition to the observed states Tz and Wz , we also
make certain exogenous inputs part of Xk, since they can
provide valuable information. Among the various exogenous
inputs defined in Section II-A, only outdoor air temperature
Toa, outdoor air humidity Woa, and solar irradiance ηsol are
measured. Of these, we choose to include Toa and Woa in
the state for the following reasons:
• Since solar irradiance is highly correlated with the out-

door air temperature, making it a part of the system state
does not provide much additional useful information.

• In many cases, buildings are not equipped with a solar
irradiance sensor.

Lastly, we include Uk−1, the control inputs in the previous
time-step to be part of Xk. This is required to impose rate
constraints in a state-feedback policy. We therefore have:

Xk := [Tz(k),Wz(k), Toa(k),Woa(k),

msa(k − 1), roa(k − 1), Tca(k − 1), Tsa(k − 1)]T (4)

Feasible actions/control inputs:
At each time-step k, the input Uk needs to satisfy the

following constraints that are imposed due to actuator limits,
ventilation requirements, etc.

max
(
msa(k − 1)−mrate

sa ∆t,mlow
sa

)
≤ msa(k)

≤ min
(
msa(k − 1) +mrate

sa ∆t,mhigh
sa

)
(5a)

max
(
roa(k − 1)− rrateoa ∆t, rlowoa

)
≤ roa(k)

≤ min
(
roa(k − 1) + rrateoa ∆t, rhighoa

)
(5b)

max
(
Tca(k − 1)− T rateca ∆t, T lowca

)
≤ Tca(k)

≤ min
(
Tca(k−1) + T rateca ∆t, Tma(k)

)
(5c)

max
(
Tsa(k − 1)− T ratesa ∆t, Tca(k)

)
≤ Tsa(k)

≤ min
(
Tsa(k − 1) + T ratesa ∆t, Thighsa

)
(5d)

If Uk satisfies the above constraints, we say Uk ∈ U(Xk).
Constraint (5a) is imposed to take into account the capa-

bilities of the fan. The minimum allowed value for the supply
air flow rate is computed based on the ventilation require-
ments specified in ASHRAE 62.1 [16], as well as to maintain
positive building pressurization. This is computed as follows:
mlow
sa = max

{
(mp

oanp + mA
oaA)/roa, m

bp
oa/roa

}
, where

mp
oa is the outdoor air flow rate required per person, np

is the number of people, mA
oa is the outdoor air required per

zone area, A is the zone area, mbp
oa is the outdoor air rate

required to maintain positive building pressurization, and roa
is the outdoor air ratio.

Constraints (5b)-(5d) take into account the capabilities
of the damper actuators, cooling and reheat coils. In con-
straint (5c), Tma is the mixed air temperature computed as:
Tma(k) = roa(k)Toa(k)+(1−roa(k))Tz(k). The inequality
Tca(k) ≤ Tma(k) ensures that the cooling coil can only
cool the mixed air stream. Similarly, the inequality Tsa(k) ≥
Tca(k) ensures that the reheat coil can only add heat.



Cost function design:
A climate control system has to keep overall energy con-

sumption low while maintaining temperature and humidity of
the zone within a desired range. The cost function is designed
to capture both these features.

Denote by Xde the set of all desirable states: at time step
k ≥ 0, we say Xk ∈ Xde, if the zone temperature and
humidity are within desirable limits: T lowz ≤ Tz(k) ≤ Thighz

and W low
z ≤ Wz(k) ≤ Whigh

z , for given values of T lowz
Thighz , W low

z , and Whigh
z . The cost function is then defined

as,

c(Xk, Uk, Xk+1) =


Ek, if Xk+1 ∈ Xde

plow, if Xk ∈ Xde & Xk+1 /∈ Xde

phigh, if Xk /∈ Xde & Xk+1 /∈ Xde

where Ek denotes the energy consumed:

Ek := Efan(k) + Ecc(k) + Ereheat(k), (6)

where Efan(k), Ecc(k), Ereheat(k) are the energy con-
sumed by the fan, cooling coil, and reheat coil, respectively,
and phigh > plow are the penalties imposed for violating the
comfort limits.

An occasional violation of limits on Tz or Wz may not
be noticed by occupants; a continuous violation can cause
discomfort and even lead to serious adverse effects such as
mold. To discourage this behavior, we impose the higher
penalty phigh (> plow), when the Tz or Wz constraints are
violated over two consecutive time steps.

B. Value Function Approximation and Zap Q-Learning

Under the assumption that the underlying problem is an
MDP, it is known that the optimal policy in (2) satisfies:

φ∗(x) = min
u∈U(x)

Q∗(x, u) , x ∈ X (7)

where Q∗ : X × U → < denotes the associated optimal
Q-value function:

Q∗(x, u):= min
{Uk}

∞∑
k=0

βkE
[
c(Xk, Uk, Xk+1)|X0 =x, U0 =u

]
where the minimization is over all feasible inputs. It is known
that Q∗ solves the Bellman equation:

Q∗(x, u) := E
[
c(Xk, Uk, Xk+1) | Xk = x, Uk = u

]
+βE

[
Q∗(Xk+1) | Xk = x, Uk = u

] (8)

where, for any Q : X × U → <, we use the notation:

Q(x) := min
u∈U(x)

Q(x, u).

Reinforcement learning algorithms such as Q-learning can
be used to estimate an approximation for the Q-function, but
the theory is weak for the general function approximation
setting. Moreover, much of the literature considers a setting
wherein the state and action spaces are discretized [11, 12],
due to the lack of existing RL algorithms that are capable of
dealing with the complex setting.

In this work, we apply the Zap Q-learning of [13] to
approximate Q∗ using a parameterized family of functions
{Qθ : θ ∈ <d}. Specifically, we consider linear parameteri-
zation, so that for each x ∈ X and u ∈ U ,

Qθ(x, u) = θTψ(x, u), (9)

where ψ : X × U → <d denotes the “basis functions”. We
choose the parameterized family to be a set of all quadratic
functions in (x, u), leading to basis functions {ψi} defined
in Table I. Once the basis functions are fixed, the Zap Q-
learning algorithm defined below can be used to estimate Q∗

using the approximation Qθ
∗
.

Algorithm 1 Zap Q-learning with ε-greedy exploration

Input: θ0 ∈ <d, Â0 ∈ <d×d, X0 ∈ X , k = 0, T ∈ Z+, ρ ∈
(0.5, 1), ε ∈ (0, 1)

1: repeat
2: With prob. ε, choose Uk ∈ U(Xk) uniformly at random, and

with prob. 1− ε, choose: Uk = argmin
u∈U(Xk)

Qθk (Xk, u)

3: Sample next state Xk+1 with current state Xk and input Uk
4: φk(Xk+1) := argmin

u∈U(Xk+1)

Qθk (Xk+1, u);

5: dk+1 :=c(Xk, Uk, Xk+1)+βQ
θk (Xk+1, φk(Xk+1))

−Qθk (Xk, Uk); . Temporal difference

6: Ak+1 :=ψ(Xk, Uk)
[
βψ(Xk+1, φk(Xk+1))−ψ(Xk, Uk)

]T ;

7: Âk+1 = Âk + γk
[
Ak+1 − Âk

]
; . Matrix gain update

8: θk+1 = θk − αkÂ−1
k+1ψ(Xk, Uk)dk+1; . Zap-Q update

9: k = k + 1

10: until k ≥ T

In the above algorithm, the step-size sequences {αk} and
{γk} are chosen to be:

αk = (k + 1)−1 and γk = αρk , k ≥ 0

where ρ ∈ (0.5, 1) is a hyper-parameter. The input sequence
defined in line 2 is known as “ε-greedy” exploration.

The use of Zap-Q with linear function approximation
(specifically, the quadratic basis) has several advantages over
existing techniques:

(i) Contrary to existing Q-learning algorithms, it is ar-
gued in [13] that Zap-Q can converge even in a function
approximation setting; this is due to a novel matrix gain
technique that is capable of stabilizing a potentially
unstable recursion.

(ii) Algorithms such as DQN [10], though they use
neural-networks to approximate the Q-function, can
only be applied to a finite action space setting; this is
due to the fact that minimization of a continuous func-
tion of the actions (a necessary step in the Q-learning
algorithm), when the function is the output of a neural
network, can be computationally very expensive [8, 9].
Our formulation on the other hand does not have these
issues.



TABLE I: Basis functions ψki := ψi(Xk, Uk) at iteration k.

ψk1 = 1 ψk2 = Tz(k) ψk3 =Wz(k)

ψk4 = Toa(k) ψk5 =Woa(k) ψk6 = msa(k)

ψk7 = roa(k) ψk8 = Tca(k) ψk9 = Tsa(k)

ψk10 = (ψk2 )
2 ψk11 = (ψk3 )

2 ψk12 = (ψk4 )
2

ψk13 = (ψk5 )
2 ψk14 = (ψk6 )

2 ψk15 = (ψk7 )
2

ψk16 = (ψk8 )
2 ψk17 = (ψk9 )

2 ψk18 = ψk2ψ
k
3

ψk19 = ψk2ψ
k
4 ψk20 = ψk2ψ

k
5 ψk21 = ψk2ψ

k
6

ψk22 = ψk2ψ
k
7 ψk23 = ψk2ψ

k
8 ψk24 = ψk2ψ

k
9

ψk25 = ψk3ψ
k
4 ψk26 = ψk3ψ

k
5 ψk27 = ψk3ψ

k
6

ψk28 = ψk3ψ
k
7 ψk29 = ψk3ψ

k
8 ψk30 = ψk3ψ

k
9

ψk31 = ψk4ψ
k
5 ψk32 = ψk4ψ

k
6 ψk33 = ψk4ψ

k
7

ψk34 = ψk4ψ
k
8 ψk35 = ψk4ψ

k
9 ψk36 = ψk5ψ

k
6

ψk37 = ψk5ψ
k
7 ψk38 = ψk5ψ

k
8 ψk39 = ψk5ψ

k
9

ψk40 = ψk6ψ
k
7 ψk41 = ψk6ψ

k
8 ψk42 = ψk6ψ

k
9

ψk43 = ψk7ψ
k
8 ψk44 = ψk7ψ

k
9 ψk45 = ψk8ψ

k
9

(iii) Assuming that competing algorithms are convergent,
the Zap-Q algorithm is known to be orders of magni-
tude faster than existing techniques in terms of sample
efficiency [13].

C. Off-Line Learning and Real-Time Control

Algorithm 1 is implemented on a simulation model of the
building. Once we approximate Q∗(x, u) using QθT (x, u),
with θT denoting the parameter vector estimate obtained
from the algorithm after T iterations, the online state-
feedback control can be obtained using (7), with Q∗ replaced
by QθT . Notice that the optimization problem in (7) is
straightforward to solve; from (9) we can see that the cost
function is quadratic in u, with box constraints (5a)-(5d), and
just 4 decision variables.

IV. CONTROL ALGORITHMS USED FOR COMPARISON

We compare the performance of the RL controller with
two others, an MPC controller and a rule-based controller.
These are briefly described below. The interested reader
is referred to [6] for a detailed description of the MPC
controller.

A. Model Predictive Controller

This controller was proposed in our prior work [6]. The
goal of this MPC controller is the same as the proposed
RL controller: minimize energy use while maintaining tem-
perature and humidity constraints. The control inputs are
computed in discrete time steps ∆t, for a finite planning
horizon N , by solving a constrained optimization problem.
There are three pieces of information needed for solving this
problem. They are: (i) the current value of the states, (ii)
prediction of the exogenous inputs mentioned in Section II-
A over the planning horizon, and (iii) model of the building
and HVAC system. The control inputs for the first time step,
obtained from solving this problem, are applied to the plant.
At the next time step this process is repeated.

The states for this MPC controller are the zone temper-
ature and humidity, x(k) = [Tz(k),Wz(k)]T . The control
inputs are the same as those mentioned in Section II.

The optimization problem solved is to minimize the total
energy consumption—fan, cooling coil, and reheat coil—
over a planning horizon N , subject to: (i) the various control
input constraints—(5a)-(5d)—mentioned in Section III, (ii)
equality constraints due to model of the temperature and
humidity dynamics of the zone, (iii) box constraints to
maintain temperature and humidity of the zone within the
allowed comfort limits, (iv) equality constraints due to model
of the cooling and dehumidifying coil. Unlike RL, state
constraints are explicitly imposed, as MPC has models to
compute the state evolution/trajectory.

B. Baseline Controller

For the baseline, we consider the widely used rule-based
controller called single maximum [14]. This controller oper-
ates in three modes based on the zone temperature: cooling,
deadband, and reheating. The supply air flow rate (msa) and
supply air temperature (Tsa) are varied based on the mode
the controller is in.

The conditioned air temperature (Tca) is typically kept
constant at a low value (55◦F ), which ensures that the
air supplied to the zone is dry enough at all times. The
outdoor air ratio (roa) is varied to maintain the ventilation
requirements dictated by ASHRAE 62.1 [16] and the positive
building pressurization requirements. The zone temperature
set points vary based on occupied/unoccupied hours.

V. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Parameters

The parameters for the building and HVAC system models,
presented in Section II, are chosen to mimic an auditorium in
Pugh hall (5000 sq.ft.), located in the University of Florida
campus. Due to lack of space we present only the relevant
details here, the interested readers are referred to [6].

The scheduled hours of occupancy are 8:00 AM
to 5:00 PM, during which the following tempera-
ture and humidity constraints are used: T low,occz =
294.3 K (70 ◦F ), Thigh,occz = 296.5 K (74 ◦F ),
W low,occ
z = 0.0046 kgw/kgda, and Whigh,occ

z =
0.0104 kgw/kgda. The unoccupied hours are between
5:00 PM to 8:00 AM, during which the constraints are
relaxed to: T low,unoccz = 292 K (66 ◦F ), Thigh,unoccz =
298.7 K (78 ◦F ), W low,unocc

z = 0.0046 kgw/kgda, and
Whigh,unocc
z = 0.0104 kgw/kgda.
RL parameters: The various parameters used in the RL

controller are listed in Table II.
The constraints on zone temperature are more relaxed

during the unoccupied mode when compared to the occupied
mode, i.e., [T low,occz , Thigh,occz ] ⊆ [T low,unoccz , Thigh,unoccz ].
Let’s say Tz is between Thigh,occz and Thigh,unoccz at a given
time step. Depending on the mode, the zone is warmer than
the allowed limit or not. Since distinct control decisions are
expected in situations like this, we use different parameters
in the Q function for the occupied and unoccupied modes.
So the number of parameters (θ) in the Q function are:
2d = 2× 45 = 90.
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Fig. 3: Comparison of RL and MPC controllers for a hot-humid day (September/07/2016) and 100% occupancy level. The scheduled
hours of occupancy are shown as the gray shaded area. Outdoor weather data obtained from nsrdb.nrel.gov for Gainesville, FL.

TABLE II: RL parameters.

β ρ plow phigh

0.95 0.8 15 20

mratesa T rateca T ratesa rrateoa

(kg/s/min) (K/min) (K/min) (%/min)

0.37 0.56 0.56 6

mhighsa T lowca Thighsa rlowoa
(kg/s) (K) (K) (%)

4.6 285.9 303.2 0

mpoa mAoa mbpoa rhighoa

(kg/s/person) (kg/s/m2) (kg/s) (%)

0.0043 3.67× 10−4 0.1894 100

The simulations to learn the parameters of the Q function
are performed using MATLAB. Three months of summer
weather data, between June/06 to September/05 of 2016,
for Gainesville, Florida, is obtained from the National Solar
Radiation Database (nsrdb.nrel.gov). The parameters
of the Q function for the occupied and unoccupied modes are
obtained through separate simulations. We use 100% design
occupancy of 175 people (ndesignp ) for the implementation of
Algorithm 1 in the occupied mode. For the unoccupied mode,
zone has no occupants in our application of Algorithm 1.

We warm start the training simulations by using the
Kalman filter matrix gain of [17] for the first 2 × 105

iterations after which the ZAP gain (Â) is used.
MPC parameters: We used a planning horizon of 24

hours, with sampling period of 5 minutes, resulting in N =
288. The underlying optimization problem has 2304 decision
variables. The rate constraint values are the same as those
presented for the RL controller.

Baseline controller parameters: The cooling and re-
heating set points are chosen to be 296.5 K (74 ◦F ) and
294.3K (70 ◦F ) respectively, during the occupied mode. For
the unoccupied mode, the cooling and reheating set points

are 298.7 K (78 ◦F ) and 292 K (66 ◦F ) respectively. The
conditioned air temperature is kept at 285.9 K (55 ◦F ).

Computational complexity: The optimization problem in
RL and MPC is solved using CasADi [18] and IPOPT [19],
a nonlinear programming (NLP) solver, on a Desktop com-
puter running Linux with 16 GB RAM and a 3.60GHz ×
8 CPU. Note that the number of decision variables for RL
is only 4 while for MPC it is 2304. On an average it takes
0.01 seconds to solve the optimization problem for RL and
2 seconds for MPC. The parameters of the Q function are
seen to settle after 2.5 × 106 iterations and takes about 42
hours to train.

B. Results and Discussions

We now compare the performance of the RL controller,
the MPC controller, and the baseline controller through
simulations. Typically, in auditoriums/lecture classrooms, the
actual occupancy level is lower than the design value. We
test the performance of the controllers under such conditions.
This is to examine if the controllers are robust to mismatch
between the design conditions and reality. Four levels of
occupancy are tested: 25%, 50%, 75%, and 100%. The
simulations are done for 24 hours starting from 8:00 AM.
The occupancy pattern considered in the plant is: the zone
is occupied between 8:00 AM to 12:00 PM and 1:00 PM to
5:00 PM.

For each of the three controllers we assume the following:
(i) the number of occupants is not measured, (ii) the zone
is occupied throughout the scheduled hours of occupancy,
between 8:00 AM to 5:00 PM, shown as the gray shaded
area in Figure 3. So the controllers need to ensure that the
outdoor air needed to satisfy the ventilation requirements
corresponding to the designed number of occupants (175),
is provided during these scheduled hours of occupancy,
according to ASHRAE 62.1.



The MPC controller requires prediction of the exogenous
inputs for the planning horizon N . We compute the occupant
induced heat load (qocp) and rate of internal water vapor gen-
eration due to people (ωocp), based on the above mentioned
occupancy pattern and designed number of occupants (175).
The remaining exogenous inputs are assumed fully known.

For all the four levels of occupancy, simulation results
show that compared to the baseline, the proposed RL
controller reduces energy use by ∼ 20% while the MPC
controller reduces by ∼ 30%. The high energy use of the
baseline can be attributed to two main factors. First, the
minimum allowed value of the supply air flow rate needs
to be high enough so that it is able to maintain the design
heating load with a low enough supply air temperature to
prevent stratification. But this leads to high energy use [14].
Second, the conditioned air temperature is kept at a low value
in the interest of humidity, but such a low value is not always
necessary.

Figure 3 shows the simulation results for a hot and humid
day, Sep/07/2016, with 100% occupancy level. For the sake
of clarity we do not present the baseline in the figure. It
can be seen from Figure 3(a) that both the RL and MPC
controllers are able to maintain zone temperature and hu-
midity within the comfort limits (shown as the dashed black
lines). Note that for the MPC controller, the temperature
and humidity constraints are active most of the time. This
behavior can be interpreted as the MPC controller trying to
keep the zone as warm and humid as is allowed to save
energy, especially considering that it is a hot and humid
day. Such behavior is not observed in the RL controller.
Since the RL controller is model-free, the state constraints
cannot be explicitly imposed. Rather it is learnt from the
penalties imposed due to state constraint violation during
the learning process. This could be one of the reasons why
the RL controller does not save as much energy as MPC.

The RL controller is found to be robust to lack of occu-
pancy information (results not shown due to lack of space).
It is able to maintain the temperature and humidity at all
four levels of occupancy even though it is trained assuming
100% occupancy.

VI. CONCLUSION

An RL-based controller is presented for commercial
HVAC systems. Unlike prior work in this area, the pro-
posed controller does not need discretization of action space;
instead it works with continuous state and action spaces.
The controller uses information that is readily available
in most modern commercial buildings. Simulation results
show that the proposed RL controller is able to maintain
temperature and humidity within the comfort limits, while
reducing energy use compared to a baseline controller. MPC
performs slightly better than RL in terms of energy use. We
believe that combining RL with MPC could lead to better
performance. We plan to explore this in the future.
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