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Energy-Efficient Control of a Building HVAC System using
Reinforcement Learning

Naren Srivaths Raman, Adithya M. Devraj, Prabir Barooah, and Sean P. Meyn

Abstract— Advanced climate control algorithms provide a
cost-effective approach to reduce the large energy footprint
of heating, ventilation, and air conditioning (HVAC) systems
in buildings. Although model predictive control (MPC) has
been extensively studied for this problem, it has not been
widely adopted in practice. The main challenges of MPC are
that it requires simple yet accurate models and complex real-
time computation. Reinforcement learning (RL) is an attractive
alternative to MPC: the real-time control computation is both
model free and simple. However, RL has a computationally
expensive learning process, and it has many design choices that
affect performance.

In this paper, we propose an RL controller for energy-
efficient indoor climate control of commercial buildings. Unlike
prior work on RL for HVAC systems, the proposed design is ap-
plicable to continuous actions and states. This feature makes the
controller applicable to common HVAC system configurations.
Extensive simulations are conducted under various scenarios
to compare the performance of the proposed RL controller
with that of an MPC controller and a common baseline (rule-
based) controller. The performance of the RL controller is seen
to be close to that of the MPC controller. Given the ease of
implementation of RL compared to MPC, these results indicate
RL is a strong competitor of MPC for HVAC control.

I. INTRODUCTION

Globally, about 20% of the total energy consumption is by
buildings, and it is expected to grow by 1.3% per year on av-
erage from 2018 to 2050 [1]. A major portion of this energy
is used by heating, ventilation, and air conditioning (HVAC)
systems. The use of advanced climate control algorithms is
a cost-effective way to reduce the large energy footprint
of HVAC systems. This is especially so in commercial
buildings: most modern commercial buildings are equipped
with the required sensors, actuators, and communication
infrastructure [2, 3].

A good climate control algorithm should be able to satisfy
three main goals: (i) ensure thermal comfort, (ii) maintain
good indoor air quality, and (iii) use the minimum amount of
energy. Currently used control algorithms are rule-based and
utilize conservatively designed set points, ensuring thermal
comfort and indoor air quality, but can cause high energy
consumption [4].

In recent years, model predictive control (MPC) has
emerged in the literature as a popular alternative to rule-based
control [2]. This is because MPC has the ability to satisfy
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all the competing goals mentioned above. Despite many
simulation—and even some experimental—works showcas-
ing the ability of MPC to substantially reduce energy usage,
MPC has not been widely adopted in practice. A challenge
with MPC is that simple yet accurate models are needed
for real-time optimization. Obtaining such control-oriented
models is a challenging task, particularly for HVAC systems,
since the process dynamics are complex. Another challenge
with MPC for buildings is the associated computational com-
plexity. The optimization in MPC is typically non-convex
because of the nonlinearities in the hygrothermal dynamics
of the building and its HVAC system [5–7]. Depending on
the planning horizon, the number of decision variables can
be large, and solving such a high dimensional non-convex
constrained optimization problem in real-time, at every time
step, can be challenging.

An alternative approach to MPC is reinforcement learn-
ing (RL): a collection of tools used to approximate an
optimal policy based on data gathered from a physical system
or its simulation. It has two key advantages over MPC:

• It is “model free”: no plant model is needed to compute
the control decisions in real-time. Although a simulation
model is needed for off-line learning, unlike MPC, this
model can be complex since it is not used for on-line
optimization.

• The real-time control computation required is quite sim-
ple since the RL controller is a state-feedback controller.

These benefits are accompanied with limitations as well.
First, the speed and simplicity of on-line computation comes
with computationally complex off-line learning. Second,
state constraints cannot be directly specified to the controller,
they can only be indirectly encouraged by appropriately
designing the so-called reward/cost function. These design
choices affect performance. HVAC control has strict state
constraints: the primary function of the climate controller is
to maintain indoor temperature and humidity within predeter-
mined limits, energy efficiency is secondary. Third, popular
RL techniques like Watkins’ Q-learning [8] and deep Q-
network (DQN) [9] lack theoretical convergence guarantees
when control actions and states take values from uncountable
sets. In case of building climate control, control actions (such
as air flow rate) and states (such as indoor temperature) are
continuous valued variables, and thus fall into this category.

In this paper, we propose and evaluate an RL controller for
control of a commercial building HVAC system. Although
application of RL to building climate control is gaining
popularity in the literature, work on this topic is limited;
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see the review paper [10] and references therein. In [11],
RL is used to optimally control active and passive thermal
storage inventory in a commercial building, while in [12]
RL is used to vary the cooling temperature setpoints of an
office building. Both use Watkins’ Q-learning algorithm. A
version of “deep reinforcement learning” (DRL) is used to
control radiant heating system in an office building in [13].
The controlled actions are on/off of a steam heat exchanger,
and discretized supply water temperature set point. In [14],
DRL is used to vary air flow rate supplied to zones in a
building (among discrete levels), while [15] uses DRL for
jointly controlling HVAC system and datacenter workloads
in mixed-use buildings (buildings in which datacenters are
physically co-located with office rooms). Ref. [16] uses DRL
to optimally control the temperature set point of a zone in
five discrete levels so that the thermal comfort of a group of
occupants in the zone is maximized.

Contributions:

(i) All the prior works mentioned above either discretize
both the state and action space or discretize just the
action space. For the HVAC system configuration con-
sidered in this work, which has four control commands,
even a coarse discretization of actions leads to a
large number of possible combinations. We address the
challenges of continuous state and action spaces by
applying the Zap Q-learning algorithm [17] with linear
function approximation; Zap-Q is the only Q-learning
algorithm that is designed to converge in a general
function approximation setting, and achieve optimal
convergence rate [18].

(ii) We provide guidelines to address some of the design
challenges in RL:
• The cost function is designed to reduce energy use

while keeping the temperature and humidity within
predetermined limits during implementation (even
without access to a prediction model).

• The state-space is designed so that the actuator
constraints are implicitly imposed when imple-
menting the state-feedback controller.

(iii) The performance of the RL controller is compared
with an MPC controller that is designed to minimize
energy use while maintaining indoor climate constraints
(in our prior work [7]) and a widely used rule-based
controller called single maximum [19].

(iv) The robustness of the RL controller is evaluated by
experimenting with different levels of occupancy in the
plant and different outdoor weather conditions.

(v) Interpretations of the control policy induced by the
Q-function learned by the RL algorithm are discussed.

Simulation results show that the proposed RL controller
is able to maintain temperature and humidity within the
comfort limits under most conditions, and reduces energy
usage when compared to the baseline. The energy savings
are comparable (only slightly lower) to those achieved by
the MPC controller. This is remarkable, given the obvious
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Fig. 1: Schematic of a single-zone commercial variable-air-volume
HVAC system.

advantages of RL: it is largely model free, and the on-line
computational complexity is reduced by orders of magnitude.
Further discussion can be found in the conclusion.

A preliminary version of this work was reported in [20],
wherein the performance of the RL, MPC, and baseline
controllers is compared. There are several differences be-
tween [20] and this paper. We have included a section in
this paper that provides interpretations of the control policy
learned by the RL controller (Section V-C). The baseline
controller used in this paper is more energy-efficient than
the one used in [20], which provides more confidence on
the energy efficiency achieved by the RL controller. Finally,
unlike [20], this paper contains a thorough investigation
of the robustness to differences between scenarios used
in learning and scenarios encountered in real-time control,
which is essential to assess field-readiness.

The rest of this paper is organized as follows. Section II
describes the HVAC system considered in this work and the
models used in simulating the plant. Section III presents our
proposed RL-based controller. Section IV describes the MPC
and baseline controllers used for comparison. Simulation
results are discussed in Section V. Section VI summarizes
the conclusions.

II. SYSTEM DESCRIPTION AND MODELS

We consider a single-zone commercial building equipped
with a variable-air-volume HVAC system, whose schematic
is shown in Figure 1. In such a system, the outdoor air is
mixed with part of the air exhausted from the zone. This
mixed air is sent through the cooling coil where the air
is cooled and dehumidified to conditioned air temperature
(Tca) and humidity ratio (Wca). Then the conditioned air is
reheated as needed and finally supplied to the zone. Note
that there is only change in temperature across the reheat
coil, the humidity remains constant, i.e., Wsa = Wca, where
Wsa is the humidity ratio of the supply air.

There are 4 control commands: (i) supply air flow
rate (msa), (ii) outdoor air ratio (roa := moa

msa
, where moa

is the outdoor air flow rate), (iii) conditioned air temper-
ature (Tca), and (iv) supply air temperature (Tsa). So, the
control command/input vector is:

u(t) := [msa(t), roa(t), Tca(t), Tsa(t)]T ∈ <4. (1)
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These inputs need to be varied in such a way that the thermal
comfort and indoor air quality are maintained in the zone,
while using minimal energy.

In order to compare the performance of the control algo-
rithms presented and to train the proposed RL controller, we
need simulation models of the zone’s temperature and hu-
midity dynamics, cooling and dehumidification coil, heating
coil, and HVAC system’s power consumption. These models
are presented in detail in our prior work [7]. We present only
the relevant salient features below.

A. Temperature and Humidity Dynamic Model

The overall plant model consists of hygrothermal dynam-
ics of a single-zone building coupled with that of a cooling
and dehumidification coil, and a heating coil. The zone
and the coils are interconnected as shown in Figure 1. A
resistor-capacitor (R-C) model is used to model the thermal
dynamics of the zone; specifically, a 2R-2C model with the
two states being the zone temperature and wall temperature.
The humidity dynamic is modeled based on mass balance.

The overall model is of the form:

ẋ(t) = f
(
x(t), u(t), w(t)

)
, (2)

where the state vector x(t) consists of zone temperature (Tz),
wall temperature (Tw), humidity ratio of the indoor air (Wz),
and humidity ratio of the conditioned air downstream of
the cooling coil before entering the building (Wca(t)), i.e.,
x(t) := [Tz(t), Tw(t),Wz(t),Wca(t)]T ∈ <4. The con-
trol command u(t) is defined in (1). The exogenous input
w(t) ∈ <7 consists of (i) outdoor air temperature (Toa), (ii)
outdoor air humidity ratio (Woa), (iii) solar irradiance (ηsol),
(iv,v) internal heat load (qocp) and internal water vapor
generation rate (ωocp) due to people, and (vi,vii) inter-
nal heat load (qother) and internal water vapor generation
rate (ωother) due to other sources like equipment, i.e.,
w(t) := [Toa(t),Woa(t), ηsol(t), qocp(t), ωocp(t), qother(t),
ωother(t)]

T .

B. Power Consumption Models

There are three major components which consume power
in the HVAC system: fan, cooling coil, and reheat coil. We
assume that the power consumed by other components such
as damper motors is negligible.

The fan power consumption Pfan is modeled as
quadratic in the supply air flow rate [21]. The cooling
coil power consumption is modeled as proportional to
the heat extracted from the mixed air stream: Pcc(t) =
gcc
(
msa(t), hma(t), hca(t)

)
, where hma is the enthalpy of

the mixed air and hca is the enthalpy of the conditioned air.
The reheat coil power consumption is modeled as pro-

portional to the heat added to the conditioned air stream:
Preheat(t) = greheat

(
msa(t), Tsa(t), Tca(t)

)
.

III. REINFORCEMENT LEARNING-BASED CONTROLLER

A. Markov Decision Process (MDP) Formulation

Reinforcement learning (RL) is a collection of tools used
to approximate an optimal policy based on data gathered

from a physical system or its simulation. In our application,
RL is used to learn a control policy that minimizes energy
consumption of a commercial building HVAC system, while
ensuring that the zone temperature and humidity are within
the desired comfort limits.

To this end, we model the problem as a discrete-
time Markov decision process comprised of the tuple
(X ,U ,P, c, β), where X denotes the state-space, U denotes
the action-space (a set of all feasible actions), P denotes the
transition kernel, c : X × U(X ) × X → < denotes the cost
function, and β denotes a discount factor.

Since the underlying system described in Section II is
evolving in continuous time, we discretize time for our MDP
formulation, with a sampling interval ∆t > 0. We denote by
Xk ∈ X the state, and Uk ∈ U the control input at time-
instant k∆t (or simply, time-step k).

The goal is to obtain a state-feedback policy φ∗ : X → U
that minimizes the sum of expected discounted cost:

φ∗ := argmin
φ:X→U

{ ∞∑
k=0

βkE
[
c(Xk, Uk, Xk+1)

]}
(3)

with Uk = φ(Xk) for k ≥ 0.
There are several design choices that need to be made

when formulating the underlying problem as an MDP. Here,
we discuss some of the choices we made in our formulation,
and the rationale behind them.

Choosing the state-action space:
Based on the system model defined in Section II, we

define:

Uk := [msa(k), roa(k), Tca(k), Tsa(k)]T . (4)

The choice of Xk is more subtle. The notion of “state”
is flexible in both control theory [22] and reinforcement
learning [23]. The original motivation is the same in each
field: for the purposes of on-line decision making, replace
the full history of observations at time k by some finite di-
mensional “sufficient statistic” Xk. One constraint that arises
in RL is that the state process must be directly observable;
in particular, the belief state that arises in partially observed
MDPs requires the (model based) nonlinear filter, and is
hence not directly useful for model-free RL. In practice,
the “RL state” is specified as some compression of the
full history of observations. The reader is referred to [23,
Section 17.3] for further discussion. In this paper, as in many
others, the “RL state” will be based on an intuitive selection
of variables: present and recent observations.

Based on the discussion in Section II-A, it is natural to
include the observables zone temperature Tz(k) and zone
humidity Wz(k) to be a part of Xk. In addition, we
also include certain exogenous inputs, as they can provide
valuable information for decision-making1. Among the var-
ious exogenous inputs defined in Section II-A, only outdoor
air temperature Toa, outdoor air humidity Woa, and solar

1See Section V-C for details on how this can help the controller make
use of the latent heat load information to make “good” decisions.
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irradiance ηsol are measured. Of these, we choose to include
Toa and Woa in the state for the following reasons:
• Since solar irradiance is highly correlated with the out-

door air temperature, making it a part of the system state
does not provide much additional useful information.

• In many cases, buildings are not equipped with a solar
irradiance sensor.

Lastly, we include Uk−1 in Xk: the control inputs in the
previous time-step. This is required to impose rate constraints
in a state-feedback policy. In conclusion:

Xk := [Tz(k),Wz(k), Toa(k),Woa(k),

msa(k − 1), roa(k − 1), Tca(k − 1), Tsa(k − 1)]T (5)

Feasible actions/control inputs:
At each time-step k, the input Uk needs to satisfy the

following constraints that are imposed due to actuator limits,
ventilation requirements, etc.

max
(
msa(k − 1)−mrate

sa ∆t,mlow
sa

)
≤ msa(k)

≤ min
(
msa(k − 1) +mrate

sa ∆t,mhigh
sa

)
(6a)

max
(
roa(k − 1)− rrateoa ∆t, rlowoa

)
≤ roa(k)

≤ min
(
roa(k − 1) + rrateoa ∆t, rhighoa

)
(6b)

max
(
Tca(k − 1)− T rateca ∆t, T lowca

)
≤ Tca(k)

≤ min
(
Tca(k−1) + T rateca ∆t, Tma(k)

)
(6c)

max
(
Tsa(k − 1)− T ratesa ∆t, Tca(k)

)
≤ Tsa(k)

≤ min
(
Tsa(k − 1) + T ratesa ∆t, Thighsa

)
(6d)

If Uk satisfies the above constraints, we say Uk ∈ U(Xk).
Constraint (6a) is imposed to take into account the capa-

bilities of the fan. The minimum allowed value for the supply
air flow rate is computed based on the ventilation require-
ments specified in ASHRAE 62.1 [24], as well as to maintain
positive building pressurization. This is computed as follows:
mlow
sa = max

{
(mp

oanp + mA
oaA)/roa, m

bp
oa/roa

}
, where

mp
oa is the outdoor air flow rate required per person, np

is the number of people, mA
oa is the outdoor air required per

zone area, A is the zone area, mbp
oa is the outdoor air flow rate

required to maintain positive building pressurization, and roa
is the outdoor air ratio.

Constraints (6b)-(6d) take into account the capabilities
of the damper actuators, cooling and reheat coils. In con-
straint (6c), Tma is the mixed air temperature computed as:
Tma(k) = roa(k)Toa(k)+(1−roa(k))Tz(k). The inequality
Tca(k) ≤ Tma(k) ensures that the cooling coil can only
cool the mixed air stream. Similarly, the inequality Tsa(k) ≥
Tca(k) ensures that the reheat coil can only add heat.

Cost function design:
A climate control system has to keep overall energy con-

sumption low while maintaining temperature and humidity of
the zone within a desired range. The cost function is designed
to capture both these features.

Denote by Xde the set of all desirable states: at time step
k ≥ 0, we say Xk ∈ Xde, if the zone temperature and

humidity are within desirable limits: T lowz ≤ Tz(k) ≤ Thighz

and W low
z ≤ Wz(k) ≤ Whigh

z , for given values of T lowz
Thighz , W low

z , and Whigh
z . The cost function is then defined

as,

c(Xk, Uk, Xk+1) =


Ek, if Xk+1 ∈ Xde

plow, if Xk ∈ Xde & Xk+1 /∈ Xde

phigh, if Xk /∈ Xde & Xk+1 /∈ Xde

where Ek denotes the energy consumed:

Ek := Efan(k) + Ecc(k) + Ereheat(k), (7)

where Efan(k), Ecc(k), Ereheat(k) are the energy con-
sumed by the fan, cooling coil, and reheat coil, respectively,
and phigh > plow are the penalties imposed for violating
the comfort limits. In Section V-C we discuss how adding
such penalties can lead to a model-free approach to implicitly
impose state-constraints.

An occasional violation of limits on Tz or Wz may not
be noticed by occupants, whereas a sustained violation can
cause discomfort and even lead to serious adverse effects
such as mold. To discourage this behavior, we impose the
higher penalty phigh (> plow) in the cost c(·) when temper-
ature/humidity constraints are violated over two consecutive
time steps.

B. Value Function Approximation and Zap Q-Learning

Under the assumption that the underlying problem is an
MDP, it is known that the optimal policy in (3) satisfies:

φ∗(x) = argmin
u∈U(x)

Q∗(x, u) , x ∈ X (8)

where Q∗ : X × U(X )→ < denotes the associated optimal
Q-function:

Q∗(x, u):= min
{Uk}

∞∑
k=0

βkE
[
c(Xk, Uk, Xk+1)|X0 =x, U0 =u

]
where the minimization is over all feasible inputs. The
function Q∗ solves the Bellman equation:

Q∗(x, u) = E
[
c(Xk, Uk, Xk+1) | Xk = x, Uk = u

]
+βE

[
Q∗(Xk+1) | Xk = x, Uk = u

] (9)

where, for any Q : X × U(X )→ <, we use the notation:

Q(x) := min
u∈U(x)

Q(x, u).

We apply the Zap Q-learning of [17] to approximate Q∗

using a parameterized family of functions {Qθ : θ ∈ <d}.
Specifically, we consider linear parameterization, so that for
each x ∈ X and u ∈ U(X ),

Qθ(x, u) = θTψ(x, u), (10)

where ψ : X × U(X ) → <d denotes the “basis functions”.
We choose the basis functions to be a quadratic in (x, u):
the components of the vector ψ(·) are shown in Table I.
Once the basis functions are fixed, the Zap Q-learning
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algorithm defined below can be used to estimate Q∗ using
the approximation Qθ

∗
.

Algorithm 1 Zap Q-learning with ε-greedy exploration

Input: θ0 ∈ <d, Â0 ∈ <d×d, X0 ∈ X , k = 0, T ∈ Z+, ρ ∈
(0.5, 1), ε ∈ (0, 1)

1: repeat
2: With prob. ε, choose Uk ∈ U(Xk) uniformly at random, and

with prob. 1− ε, choose: Uk = argmin
u∈U(Xk)

Qθk (Xk, u)

3: Sample next state Xk+1 with current state Xk and input Uk
4: φk(Xk+1) := argmin

u∈U(Xk+1)

Qθk (Xk+1, u);

5: dk+1 :=c(Xk, Uk, Xk+1)+βQ
θk (Xk+1, φk(Xk+1))

−Qθk (Xk, Uk); . Temporal difference

6: Ak+1 :=ψ(Xk, Uk)
[
βψ(Xk+1, φk(Xk+1))−ψ(Xk, Uk)

]T ;

7: Âk+1 = Âk + γk
[
Ak+1 − Âk

]
; . Matrix gain update

8: θk+1 = θk − αkÂ−1
k+1ψ(Xk, Uk)dk+1; . Zap-Q update

9: k = k + 1

10: until k ≥ T

The step-size sequences {αk} and {γk} are chosen to be:

αk = (k + 1)−1 and γk = αρk , k ≥ 0

where ρ ∈ (0.5, 1) is a hyper-parameter. The input sequence
defined in line 2 is known as “ε-greedy” exploration. The
matrix Âk in Algorithm 1 may not be invertible in initial
iterations. We therefore warm start the training by applying
the Kalman filter matrix gain algorithm of [25] (which is
well-defined for each k ≥ 0) for the first Tws iterations. The
warm-start parameter Tws � T is a design choice.

The use of Zap-Q with linear function approximation
(specifically, the quadratic basis) has several advantages over
existing techniques:

(i) Contrary to existing Q-learning algorithms, it is
shown in [18] that Zap-Q converges under very general
assumptions, even in a non-linear function approxima-
tion setting. The proof is based on approximating the
evolution of the parameters by a globally convergent
Newton-Raphson flow [26, 27].

(ii) Algorithms such as DQN [9], though they use
neural-networks to approximate the Q-function, imple-
mentation in continuous action-space setting can be
hard; this is due to the fact that minimization of a
continuous function of the actions (a necessary step
in the Q-learning algorithm), when the function is the
output of a neural network, can be computationally very
expensive [13–16]. Our formulation on the other hand
does not have these issues.

(iii) Under mild conditions, Zap-Q algorithm is known
to be the fastest converging Q-learning algorithm [17,
18, 28].

C. Dealing with Occupied and Unoccupied Modes
The constraints on zone temperature (Tz) are typi-

cally more relaxed during the unoccupied mode when

TABLE I: Basis functions ψki := ψi(Xk, Uk) at iteration k.

ψk1 = 1 ψk2 = Tz(k) ψk3 =Wz(k)

ψk4 = Toa(k) ψk5 =Woa(k) ψk6 = msa(k)

ψk7 = roa(k) ψk8 = Tca(k) ψk9 = Tsa(k)

ψk10 = (ψk2 )
2 ψk11 = (ψk3 )

2 ψk12 = (ψk4 )
2

ψk13 = (ψk5 )
2 ψk14 = (ψk6 )

2 ψk15 = (ψk7 )
2

ψk16 = (ψk8 )
2 ψk17 = (ψk9 )

2 ψk18 = ψk2ψ
k
3

ψk19 = ψk2ψ
k
4 ψk20 = ψk2ψ

k
5 ψk21 = ψk2ψ

k
6

ψk22 = ψk2ψ
k
7 ψk23 = ψk2ψ

k
8 ψk24 = ψk2ψ

k
9

ψk25 = ψk3ψ
k
4 ψk26 = ψk3ψ

k
5 ψk27 = ψk3ψ

k
6

ψk28 = ψk3ψ
k
7 ψk29 = ψk3ψ

k
8 ψk30 = ψk3ψ

k
9

ψk31 = ψk4ψ
k
5 ψk32 = ψk4ψ

k
6 ψk33 = ψk4ψ

k
7

ψk34 = ψk4ψ
k
8 ψk35 = ψk4ψ

k
9 ψk36 = ψk5ψ

k
6

ψk37 = ψk5ψ
k
7 ψk38 = ψk5ψ

k
8 ψk39 = ψk5ψ

k
9

ψk40 = ψk6ψ
k
7 ψk41 = ψk6ψ

k
8 ψk42 = ψk6ψ

k
9

ψk43 = ψk7ψ
k
8 ψk44 = ψk7ψ

k
9 ψk45 = ψk8ψ

k
9

compared to the occupied mode: [T low,occz , Thigh,occz ] ⊆
[T low,unoccz , Thigh,unoccz ]. Suppose that at a given time k,
Tz(k) is between the higher limit of the occupied mode
(Thigh,occz ) and the higher limit of the unoccupied mode
(Thigh,unoccz ). If the building is in the occupied mode, then
the zone is clearly violating the temperature constraints, but
if the building is in the unoccupied mode, the zone is within
the constraints. This suggests that we learn different control
policies for each of the two, occupied and unoccupied modes.
To enable such distinct control decisions, we use different set
of Q-function parameters for the occupied and unoccupied
modes: The total number of parameters (θ) in the Q function
is 2d = 2× 45 = 90.

D. Off-Line Learning and Real-Time Control

Algorithm 1 is implemented using a simulation model of
the building to learn the optimal policy. Once the optimal
Q-function—rather its approximation—is learned, the online
state-feedback control is obtained using (8), with Q∗ replaced
by QθT , where θT denotes the parameters learned with
Algorithm 1, after T iterations. That is, real-time control
command is computed as:

Uk = φθT (Xk) := argmin
u∈U(Xk)

QθT (Xk, u) . (11)

Notice that the optimization problem involved in real-
time control computation (11) is straightforward to solve.
From (10) and Table I we can see that the cost function
is quadratic in u, with box constraints (6a)-(6d), and just 4
decision variables.

IV. CONTROL ALGORITHMS USED FOR COMPARISON

We compare the performance of the RL controller with
two others, an MPC controller and a rule-based controller.
These are briefly described below. The interested reader
is referred to [7] for a detailed description of the MPC
controller.
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Fig. 2: Closed-loop response obtained using the parameters (θ) learned after different number of iterations for the RL controller. Left:
zone air temperature. Right: zone air humidity ratio. There are no temperature or humidity violations after 1e6 iterations. The scheduled
hours of occupancy are shown as the gray shaded area.

A. Model Predictive Controller

This controller is a slightly modified version of the MPC
controller proposed in our prior work [7]. The goal of this
MPC controller is the same as the proposed RL controller:
minimize energy use while maintaining temperature and
humidity constraints. The control inputs are computed in
discrete time steps ∆t, for a finite planning horizon N ,
by solving a constrained optimization problem. There are
three pieces of information needed for solving this problem.
They are: (i) the current value of the states, (ii) prediction
of the exogenous inputs mentioned in Section II-A over the
planning horizon, and (iii) model of the building and HVAC
system. The control inputs for the first time step, obtained
from solving this problem, are applied to the plant. At the
next time step this process is repeated.

The states for this MPC controller are the zone temper-
ature and humidity, x(k) = [Tz(k),Wz(k)]T . The control
inputs are the same as those mentioned in Section II. The
optimization problem solved is to minimize the total energy
consumption—fan, cooling coil, and reheat coil—over a
planning horizon N , subject to: (i) the various control input
constraints—(6a)-(6d)—mentioned in Section III, (ii) equal-
ity constraints due to model of the temperature and humidity
dynamics of the zone, (iii) box constraints to maintain
temperature and humidity of the zone within the allowed
comfort limits, with slack variables for feasibility, (iv) equal-
ity constraints due to model of the cooling and dehumidifying
coil. Unlike RL, state constraints are explicitly imposed, as
MPC has models to compute the state evolution/trajectory.

B. Baseline Controller

For the baseline, we consider the widely used rule-based
controller called single maximum [19]. This controller oper-
ates in three modes based on the zone temperature: cooling,
deadband, and reheating. The supply air flow rate (msa) and
supply air temperature (Tsa) are varied based on the mode the
controller is in. The minimum allowed value for the supply
air flow rate is typically high so that the controller is capable
of maintaining the design heat load with a low enough supply
air temperature to prevent stratification.

The conditioned air temperature (Tca) is typically kept
constant at a low value (55◦F ), which ensures that the

air supplied to the zone is dry enough at all times. The
outdoor air ratio (roa) is varied to maintain the ventilation
requirements dictated by ASHRAE 62.1 [24] and the positive
building pressurization requirements.

The zone temperature set points vary based on occu-
pied/unoccupied hours. The minimum allowed value for the
supply air flow rate is reduced to meet just the building
pressurization requirements when the controller is in the
deadband mode during unoccupied hours; this prevents any
unnecessary energy consumption.

V. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Parameters

The parameters for the building and HVAC system models,
presented in Section II, are chosen to mimic an auditorium
in Pugh hall (5000 sq.ft.), located in the University of
Florida campus. We present only the relevant details here,
the interested readers are referred to [29] for a complete list
of the parameter values used.

The scheduled hours of occupancy are 8:00 AM
to 5:00 PM, during which the following tempera-
ture and humidity constraints are used: T low,occz =
294.3 K (70 ◦F ), Thigh,occz = 296.5 K (74 ◦F ),
W low,occ
z = 0.0046 kgw/kgda, and Whigh,occ

z =
0.0104 kgw/kgda. The unoccupied hours are between
5:00 PM to 8:00 AM, during which the constraints are
relaxed to: T low,unoccz = 292 K (66 ◦F ), Thigh,unoccz =
298.7 K (78 ◦F ), W low,unocc

z = 0.0046 kgw/kgda, and
Whigh,unocc
z = 0.0104 kgw/kgda.
RL parameters: The various parameters used in the

RL controller are listed in Tables II and III. MATLAB is
used to run simulations to learn the parameters of the Q
function. Three months of summer weather data, between
June/06 to September/05 of 2016, for Gainesville, Florida,
is obtained from the National Solar Radiation Database
(nsrdb.nrel.gov). The parameters of the Q function for
the occupied and unoccupied modes are obtained through

TABLE II: RL parameters.

β ρ plow phigh Tws

0.95 0.8 15 20 2× 105
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TABLE III: Parameters used in the RL and MPC controllers.

mratesa T rateca T ratesa rrateoa

(kg/s/min) (K/min) (K/min) (%/min)

0.37 0.56 0.56 6

mhighsa T lowca Thighsa rlowoa

(kg/s) (K) (K) (%)

4.6 285.9 303.2 0

mpoa mAoa mbpoa rhighoa

(kg/s/person) (kg/s/m2) (kg/s) (%)

0.0043 3.67× 10−4 0.1894 100

separate simulations as follows: We use 100% design oc-
cupancy of 175 people (ndesignp ) for the implementation of
Algorithm 1 in the occupied mode. For the unoccupied mode,
zone has no occupants in our application of Algorithm 1. For
performance evaluation, a different weather data from 2017
is used; see Section V-B for details.

The number of iterations T used before learning is stopped
is chosen to be T = 2.5 × 106. This value is obtained
by examining the closed loop performance of the policy
learned after a specific number of iterations T , and repeat-
ing it with increasing T , until acceptable performance—
meaning consistent satisfaction of temperature and humidity
constraints—is observed. Figure 2 shows the closed-loop re-
sponses obtained during this process; each curve corresponds
to a distinct RL controller, i.e., distinct policy, differing in
the amount of learning used to obtain the policy.

MPC parameters: We used a planning horizon of
24 hours, with sampling period of 5 minutes, resulting
in N = 288. The underlying optimization problem has
3456 (=288×12) decision variables. The rate constraint val-
ues are the same as those presented in Table III for the RL
controller.

Baseline controller parameters: The cooling and re-
heating set points are chosen to be 296.5 K (74 ◦F ) and
294.3K (70 ◦F ) respectively, during the occupied mode. For
the unoccupied mode, the cooling and reheating set points
are 298.7 K (78 ◦F ) and 292 K (66 ◦F ) respectively. The
conditioned air temperature is kept at 285.9 K (55 ◦F ).

Computational complexity: The optimization problem in
RL and MPC is solved using CasADi [30] and IPOPT [31],
a nonlinear programming (NLP) solver, on a Desktop com-
puter running Linux with 16 GB RAM and a 3.60GHz ×
8 CPU. Note that the number of decision variables for RL
is only 4 while for MPC it is 3456. On an average it takes
0.1 seconds to solve the optimization problem for RL and
3 seconds for MPC. The parameters of the Q function are
seen to settle after 2.5 × 106 iterations and takes about 42
hours to train.

B. Results and Discussions

We now compare the performance of the controllers
through simulations. Outdoor weather data for Gainesville,
Florida, obtained from National Solar Radiation Database
(nsrdb.nrel.gov) is used. Simulations are done for

different levels of occupancy (number of people) in the
plant and different outdoor weather conditions to test the
robustness of the RL controller; these are discussed in detail
below.

1) Robustness to different levels of occupancy: Typically,
in auditoriums/lecture classrooms, the actual occupancy level
is lower than the design value. We test the performance of the
RL controller, the MPC controller, and the baseline controller
under such conditions. This is to examine if the controllers
are robust to mismatch between the design conditions and
reality. Four levels of occupancy are tested: 25%, 50%, 75%,
and 100%. The simulations are done for 24 hours starting
from 8:00 AM. The occupancy pattern considered in the
plant is shown in Figure 3(a).

For each of the three controllers we assume the following:
(i) the number of occupants is not measured, (ii) the zone
is occupied throughout the scheduled hours of occupancy,
between 8:00 AM to 5:00 PM, shown as the gray shaded
area in Figure 3. So the controllers need to ensure that the
outdoor air needed to satisfy the ventilation requirements
corresponding to the designed number of occupants (175),
is provided during these scheduled hours of occupancy,
according to ASHRAE 62.1.

The MPC controller requires prediction of the exogenous
inputs for the planning horizon N . We compute the occupant
induced heat load (qocp) and rate of internal water vapor gen-
eration due to people (ωocp), based on the above mentioned
occupancy pattern and designed number of occupants (175).
The remaining exogenous inputs are assumed fully known.

Figure 4 shows a comparison of the total energy consumed
for a hot-humid day (July/03/2017) when using the three
controllers for different levels of occupancy. The proposed
RL controller saves 5 to 20% energy when compared to the
baseline, while the MPC controller saves slightly more, 13
to 26%.

Figure 3 shows the simulation results for a hot-humid day,
Jul/03/2017, with 75% occupancy level. The baseline con-
troller sometimes leads to simultaneous heating and cooling,
which can be seen between 10:00-11:00 hours and 15:00-
16:00 hours in Figures 3(b) and 3(d). Such a phenomenon
does not occur with the RL controller, which leads to energy
savings; see Figure 3(b). As the occupancy level in the plant
deviates from the design conditions (100%), this effect is
more prominent, leading to higher energy savings by the RL
controller as shown in Figure 4.

It can be seen from Figure 3(c) that both the RL and MPC
controllers are able to maintain zone temperature and hu-
midity within the comfort limits (shown as the black dashed
lines). Note that for the MPC controller, the temperature and
humidity constraints are active most of the time; see 19:00-
29:00 hours in Figure 3(c). This behavior can be interpreted
as the MPC controller being aggressive: it is trying to keep
the zone as warm and humid as allowed so as to save energy,
since it is a hot and humid day. Such behavior is not observed
in the RL controller; it is less aggressive than the MPC
controller. Since the RL controller is model-free, the state
constraints cannot be explicitly imposed as in the case of
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(a) Outdoor weather data and occupancy profile used (outdoor air tempera-
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(c) Zone conditions with the black dashed lines showing the upper and lower
comfort limits (zone air temperature and zone air humidity ratio).
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Fig. 3: Comparison of RL, MPC and baseline (BL) controllers for a hot-humid day (July/03/2017 starting from 8:00 AM) and 75%
occupancy level. The scheduled hours of occupancy are shown as the gray shaded area.
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Fig. 4: Comparison of the total energy consumed over 24 hours
by baseline (BL), RL, and MPC controllers for a hot-humid day
(July/03/2017) and different levels of occupancy.

MPC. Rather it is learned from the penalties imposed due
to state constraint violation during the learning process. This
could be one of the reasons why the RL controller does not
save as much energy as MPC.

The RL controller seems to have learned the state con-
straints, i.e., thermal comfort constraints, well. It can be seen
from Figures 3(c) and 3(d) that as the zone temperature gets
very close to the boundary—see around 20:00 hours and

23:00 hours—the supply airflow rate is increased and thus
the zone temperature gets pushed back into its allowed limits.

The RL controller is found to be robust to lack of
occupancy information. It is able to maintain the temperature
and humidity at all four levels of occupancy even though it
is trained assuming 100% occupancy.

2) Robustness to different outdoor weather conditions:
We now test the performance of the RL controller under
different outdoor weather conditions. Three kinds of weather
conditions are considered: mild, cold, and very cold. Figure 5
shows the simulation results when using the RL controller
for the three weather conditions. The simulations are done
for 5 days starting from 8:00 AM.

The RL controller is able to maintain the zone temperature
and humidity under mild and cold weather conditions almost
always; see Figure 5(b). It is only under very cold weather
condition that the RL controller is unable to maintain the
temperature and humidity constraints; see between days 2
and 3 in Figure 5(b). We conjecture that the reason for
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(a) Outdoor weather data (outdoor air temperature and outdoor air humidity
ratio). The gray shaded area is the region that is never explored during the
learning phase.
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(b) Zone conditions with the black dashed lines showing the upper and
lower comfort limits (zone air temperature and zone air humidity ratio). The
scheduled hours of occupancy are shown as the gray shaded area.

Fig. 5: Performance comparison of the RL controller under different outdoor weather conditions. Mild: Mar/06/2017 to Mar/10/2017.
Cold: Nov/27/2017 to Dec/01/2017. Very cold: Dec/11/2017 to Dec/15/2017. Outdoor weather data obtained from nsrdb.nrel.gov
for Gainesville, FL.

this is the drastically different weather condition used in the
testing phase when compared to the learning phase. Recall
that summer weather data is used for learning the parameters
of the RL controller as discussed in Section V-A. The con-
ditions under which the RL controller is unable to maintain
constraints—outdoor air temperature less than 53.6 ◦F and
the outdoor air humidity ratio less than 0.0054 kgw/kgda—
are conditions that the controller has never explored during
the learning phase. The region that is never explored is shown
as the gray shaded area in Figure 5(a).

C. Under The Hood

In this section we take a closer look at the policy induced
by the Q function learned by the RL algorithm. Our goal is
to obtain insights into the policy learned by the controller.

Including zone humidity in the state: Contrary to much
of the previous literature [11, 14, 15], we include zone
humidity in the state, as optimal control decisions taken in
the absence of humidity can lead to higher energy use or
humidity constraint violation, especially in hot and humid
climates [29]. Figure 6 shows the optimal conditioned air
temperature Tca chosen by the RL controller under two
different conditions: zone air is dry and zone air is humid.
Except for the zone humidity ratio Wz being different, all
other conditions are the same. The RL controller chooses a
lower value for the conditioned air temperature Tca—shown
as the red dots—when the zone air is humid. This ensures
that dryer air is supplied to the zone. If humidity is excluded
from the state, such behavior would not be possible.

Including outdoor air humidity in the state: Including
Woa (an exogenous input) to be part of the state helps the
controller to be aware of the latent cooling load while making
decisions. For example, Figure 7 shows the optimal outdoor
air ratio roa—shown as the red dots—chosen by the RL

controller under two different conditions: outdoor weather is
dry and outdoor weather is humid. It can be seen that the
RL controller reduces the outdoor air ratio when the weather
is humid, so that latent load of the cooling coil is reduced,
thus reducing energy consumption.

Penalties for temperature and humidity constraints:
We use large penalties in the cost function—see Section III-
A—when the constraint on zone temperature (Tz) or zone
humidity ratio (Wz) is violated during the learning phase. It
is found that this did ensure that the RL controller kept Tz
and Wz within the allowed limits under most conditions.

Figure 8 shows the optimal supply air flow rates—shown
as the red dots—chosen by the RL controller under two
conditions: zone air temperature at 72◦F and at 74◦F . It
can be seen that as Tz gets closer to the high limit (74◦F
during the occupied mode), the air flow rate is increased to
cool down the zone. Note that a lower energy solution would
be to let the zone get warm and not increase the air flow
rate, since the outdoor condition used is hot (Toa = 80◦F )
and humid (RHoa = 50%). The controller does not do so
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55 65 75 8520

30

40

50

60
Wz = 7.6× 10−3 Wz = 10.4× 10−3
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Fig. 6: RL controller chooses a lower conditioned air temperature
for a more humid zone. Left: Wz = 0.0076 kgw/kgda (low). Right:
Wz = 0.0104 kgw/kgda (high). Optimal control input chosen by
the RL controller shown as the red dots.
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because of the penalty imposed during the learning phase.

VI. CONCLUSION

The proposed RL controller performs nearly as well as
the MPC controller. The main performance criterion for
HVAC control is maintenance of indoor climate. As long
as the weather conditions are not drastically different from
the conditions explored during the learning phase, the RL
controller maintains temperature and humidity within allow-
able limits just as the MPC and the baseline controllers do.
The second criterion is energy savings, and though both RL
and MPC provide substantial energy savings over baseline,
energy savings with RL are slightly lower than those with
MPC. A much more extensive simulation study is needed
to truly map out the performance boundaries of the two
competing controllers. This is a topic of future research.

The slightly lower energy savings of RL observed here
should be considered together with the dramatic reduction
in on-line computation of the control command: RL involves
solving a quadratic program with 4 decision variables, while
MPC involves solving a non-convex optimization problem
with 3456 decision variables (for a 24 hour long planning
horizon). The low computation complexity of RL comes
from its model-free nature, which also eliminates the need for
identification of a control-oriented and yet accurate model,
which is an important and costly aspect of MPC.

Apart from high performance, acceptance by building and
equipment operators is also needed for an HVAC control
technique to be adopted. RL falls under the category of
artificial intelligence (AI) techniques and is not designed
to be interpretable, which may hamper its adoption. The
RL controller presented here is, however, interpretable to a
limited extent, in the sense that the trend of its decisions—
though perhaps not the numerical values—can be predicted
by examining the Q-function it learns, and these decisions
are also consistent with the underlying physics.

RL trades off low on-line computation cost with high off-
line computation cost incurred during learning. Performance
depends on the learning algorithms used, the model used
for simulations during learning, amount of exploration dur-
ing learning, and many design choices such as the reward
function, choice of state, etc. Investigating the impact of the
remaining design dimensions is an obvious avenue of future
work. Extending to multi-zone building control is another
topic of exploration.
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