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Abstract— With increase in the frequency of natural disasters
such as hurricanes that disrupt the supply from the grid, there
is a greater need for resiliency in electric supply. Rooftop
solar photovoltaic (PV) panels along with batteries can provide
resiliency to a house in a blackout due to a natural disaster.
Our previous work showed that intelligence can reduce the size
of a PV+battery system for the same level of post-blackout
service compared to a conventional system that does not
employ intelligent control. The intelligent controller proposed
is based on model predictive control (MPC) that has two main
challenges. One, it requires simple yet accurate models as it
involves real-time optimization. Two, the discrete actuation for
residential loads (on/off) makes the underlying optimization
problem a mixed-integer program (MIP) which is challenging
to solve. An attractive alternative to MPC is reinforcement
learning (RL) as the real-time control computation is both
model-free and simple. These points of interests accompany
certain trade-offs; RL requires computationally expensive off-
line learning, and its performance is sensitive to various design
choices.

In this work, we propose an RL-based controller. We com-
pare its performance with the MPC controller proposed in our
prior work and a non-intelligent baseline controller. The RL
controller is found to provide a resiliency performance—by
commanding critical loads and batteries—similar to MPC with
a significant reduction in computational effort.

I. INTRODUCTION

In the recent past the frequency of extreme weather
events like hurricanes, heat waves, and forest fires have
increased [1]. The powerful winds associated with hurricanes
have been responsible for damage to the transmission and
distribution system of the power grid leading to extended
power outages [2]. Some examples include Hurricane Irma
which led to the loss of electricity for 4.8 million utility
customers in Florida, with 1.5 million remaining without
electricity for five days or more [3], and Hurricane Maria
which led to months-long blackout in Puerto Rico [4], with
an estimated death toll in the thousands [5].

Distributed solar generation can provide a resilient energy
supply since the sky is often clear immediately after a
hurricane. However, as the average household load in the
U.S. is quite high 30.5 kWh/day [6], serving the entire
household load from an on-site PV+battery system will
require a large system, driving up cost substantially.

In our prior work [7] we show that an intelligent controller
can reduce the size—and thus, cost—of the PV+battery
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system to provide resiliency. It is able to do so by exploiting
the flexibility in demand and supply along with forecasts.
In order to maintain habitable conditions during an extended
outage, certain critical loads—like the refrigerator to keep
food and medicine safe, lights for illumination, and fans
to provide some thermal comfort—need to be serviced,
but noncritical loads need not. Among these critical loads,
refrigerators have a higher priority over lights and fans. The
lower priority loads can be shed in favor of servicing the
refrigerators; this offers flexibility in demand. Flexibility in
supply comes from the fact that the charging rate of a battery
is variable; a battery can be fast charged when low solar
irradiance is expected, however, at a cost to battery’s health.

The intelligent controller that we had proposed in our
prior work is based on model predictive control (MPC). A
challenge with MPC is that it requires simple yet accurate
models as it involves real-time optimization. Moreover, due
to the discrete nature of actuation for the residential loads
(on/off), the underlying optimization problem in the MPC
ends up being a mixed-integer program (MIP). Depending
on the planning horizon for MPC, the number of decision
variables can be large, and solving such a high dimensional
constrained mixed-integer program with limited computing
resources can be challenging. During power outages after a
hurricane, computing resources are limited. Accessing cloud-
based services might not be an option as communication
infrastructure might be damaged, and locally available con-
troller hardware might not be powerful.

In this work, we propose a reinforcement learning (RL)-
based controller for the same resiliency problem mentioned
above. RL is a set of tools used to approximate an optimal
policy based on data obtained from a physical system or
its simulation. It has two key advantages over MPC; the
real-time computation is both model-free and simple. This
simplicity makes RL an attractive alternative to MPC for
our problem.

As in [7], our focus is on designing a controller only
for post-disaster scenarios during which grid supply is un-
available. When grid supply is restored, it is assumed that
the software will switch to a “normal operating” mode. The
normal operating mode may also be a sophisticated controller
that seeks to, for instance, minimize the utility bill of the
consumer by controlling the PV+battery system. There is a
plethora of work in that direction; see [8], [9], [10], [11],
and [12], with some recent works using RL [13], [14],
and [15]. Therefore we do not consider that problem here.
The work [16] presents a rule-based controller for charging
the house battery to its maximum before an outage occurs;



however, it does not consider developing a controller for a
post-disaster scenario. Works on controlling the PV+battery
system to maximize resiliency performance in a post-disaster
scenario, the focus of this paper, is extremely limited. To the
best of our knowledge, only [17], their follow up work [18],
and our prior work [7] consider the problem of operation
for resilient energy supply to a house. Both [17] and [18]
use MPC, however, they ignore the mixed-integer nature of
the optimization problem, and also ignore the capability of
a battery to vary charging rate which can be exploited.

We consider a single family house with solar PV panels, a
battery energy storage system, and three loads: refrigerator,
lights, and fans. These devices are shown in Figure 1,
along with other relevant infrastructure. Among the loads
we consider refrigerator to be the primary load, and lights
and fans together as the secondary load. The primary goal
of a control system during an extended power outage is to
maintain the refrigerator temperature and to keep the battery
alive. A secondary goal is to service the secondary load as
much as possible while following a user-defined load profile
and use fast charging of the battery judiciously.

The RL controller presented is designed to satisfy the
goals mentioned above. There are several challenges in
applying RL for the resiliency problem. First, there are
state constraints like maintaining the refrigerator temperature
within bounds, which are hard to impose using a model-
free technique like RL. In addition, performance of RL is
sensitive to many design choices, such as the states and
cost function. The proposed RL formulation addresses some
of these challenges. We design the state-space to include
certain exogenous inputs along with their forecasts, as they
can provide valuable information to the controller. We design
the cost function, which helps the controller to learn the state
constraints, and thus, maintains the refrigerator temperature
within the desired bounds during implementation (even with-
out access to a model).

We compare the performance of the proposed RL con-
troller with the MPC controller from our prior work [7], and
a baseline controller that is representative of the commercial
systems one can install today. We also test the robustness of
the RL controller to forecast errors. Simulations show that
the proposed RL controller is able to service the primary
load similar to the MPC controller, but with a significant
reduction in real-time computational effort. It is also found
that the baseline controller fails to service the primary load
for several hours each day. The secondary load servicing
performance of RL is found to be poorer than MPC.

The rest of this paper is organized as follows. Section II
describes the system. Section III presents our proposed RL-
based controller. Section IV describes the mathematical mod-
els used in simulating the plant. Section V briefly describes
the MPC and baseline controllers used for comparison. The
simulation setup is described in Section VI. Simulation
results are presented and discussed in Section VII. Finally,
the main conclusions are provided in Section VIII.
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Fig. 1: Hardware involved in the proposed control system.

II. SYSTEM DESCRIPTION

In order to achieve the goals mentioned in Section I,
a control system can command the following: (i) on/off
state of the refrigerator (ufr(k) ∈ {0, 1}), (ii) on/off state
of the secondary load (aggregate of lights and fans,
us(k) ∈ {0, 1}), (iii) charging/discharging state of the battery
(c(k), d(k) ∈ {0, 1}), and (iv) when charging the battery, the
charging mode of the battery (m(k) ∈ {1, 2}). The battery
has two charging modes: normal and fast charging, where
fast charging is undesirable as it degrades battery life. Hence,
the control commands are,

u(k) := [ufr(k), us(k), c(k), d(k),m(k)]T . (1)

Time is discrete, with k = 0, 1, 2, . . . denoting the time index
and ∆Ts denoting the interval (hours or minutes) between k
and k+ 1. In the sequel, E(k) (Wh) will denote the energy
consumed/generated during the time interval between time
indices k and k+ 1, with the subscript specifying the source
or consumer of the energy.

Figure 1 shows a schematic of the plant. The various
components of the plant and the key quantities associated
with them are listed next. (i) Solar PV panels, we denote
their energy production potential as Epv(k). (ii) Battery, we
denote its energy level as Ebat(k), which is bounded between
a minimum and maximum, i.e., Ebat(k) ∈ [

¯
Ebat, Ēbat].

(iii) Refrigerator (primary load), we denote its internal
temperature as Tfr(k), and its desired range is between
a minimum (

¯
Tfr) and maximum (T̄fr). Moreover, Tfr(k)

is affected by the house temperature which is denoted by
Thouse(k). (iv) Lights and fans (secondary load), we denote
their user-defined demand trajectory as Es(k). Mathematical
models used for simulating these are presented in Section IV.



III. REINFORCEMENT LEARNING-BASED CONTROLLER

A. Markov Decision Process (MDP) Formulation

The proposed RL controller is designed to construct a
control policy which can satisfy the goals mentioned in
Section I. As a way to motivate RL design, we model
the problem as a discrete-time Markov decision process
comprised of the tuple (X ,U ,P, C, β), where X denotes the
state-space, U denotes the action-space (a set of all feasible
actions), P denotes the transition kernel, C : X×U×X → R
denotes the cost function, and β denotes a discount factor. We
denote by Xk ∈ X the state, and Uk ∈ U the control input
at time-step k. Next, we define some of the key components
of the MDP for our problem.

Choosing the state space: Based on the system described
in Section II and the goals mentioned in Section I, it is natural
to include the battery energy level Ebat and the refrigerator
internal temperature Tfr in the state Xk. In addition to
these, we include certain exogenous inputs along with their
forecasts, as they can provide valuable information to the
controller. So we have:

Xk := [Ebat(k), Tfr(k), Thouse(k), Es(k), Es,1(k),

Es,2(k), Es,3(k), Epv(k), Epv,1(k), Epv,2(k),

Epv,3(k), Epv,4(k), Epv,5(k), Epv,6(k)]T ∈ R14 (2)

where Epv,1, . . . , Epv,6 are 4 hour averages of forecast of
the PV energy production potential for the next 24 hours:
Epv,i(k):= 1

24

∑k+i×24
j=k+(i−1)×24+1Epv(j), and Es,1, . . . , Es,3

are a function of the desired secondary load (lights-fans)
trajectory: Es,i(k) :=

∑k+i×6
j=k+(i−1)×6+1Es(j).

Choosing the action space: Based on the system de-
scribed in Section II, we define the control inputs as:

Uk := [ufr(k), us(k),Γ(k)]T , (3)

where Γ(k) ∈ {−1, 0, 1, 2} denotes discharging, idle, charg-
ing at normal rate, and fast charging, respectively. The map-
ping of Γ(k) into its constituent battery control commands
[c(k), d(k),m(k)] is defined below:

c(k) =

{
1 , if Γ(k) = 1 or 2

0 , otherwise
(4)

d(k) =

{
1 , if Γ(k) = −1

0 , otherwise
(5)

m(k) =


1 , if Γ(k) = 1

2 , if Γ(k) = 2

0 , otherwise.
(6)

In total, there are 16 combinations of control inputs (Uk)
possible. Of these various combinations, Uk = [0, 0,−1]T is
not feasible because if the battery is discharging, then either
the primary or the secondary load needs to be served. So
there are 15 feasible combination of control inputs in total
which are listed in Table I.

Cost function design: The cost function is designed to
capture four key features: (i) maintain the internal tempera-
ture of the refrigerator (primary load) within bounds so that

TABLE I: Feasible control inputs Uk.

ufr 0 1 1 0 0 1 1
us 1 0 1 0 1 0 1
Γ -1 -1 -1 0 0 0 0

ufr 0 0 1 1 0 0 1 1

us 0 1 0 1 0 1 0 1

Γ 1 1 1 1 2 2 2 2

Cp

Tfr

Tfr Tfr

cfr

Slope pfr

Fig. 2: Cost function for the primary load (refrigerator).

the food is safe, (ii) service the secondary load (fans and
lights) as desired by the occupants, (iii) keep the battery
alive, and (iv) use fast charging judiciously. The overall cost
function is the sum:

Ctotal := Cp + Cs + Cbat + Cc + Cpv, (7)

where each of the terms are discussed in detail next.
The cost function for the primary load (refrigerator) is:

Cp(Xk, Uk, Xk+1) = cfr

+ pfr

(
[Tfr(k + 1)− T̄fr]+ + [

¯
Tfr − Tfr(k + 1)]+

)
(8)

where cfr is the (low) cost for maintaining Tfr within
bounds [

¯
Tfr, T̄fr], and pfr is the (large) penalty/cost for

violating the bounds; see Figure 2.
The cost function for the secondary load (lights-fans) is:

Cs(Xk, Uk, Xk+1) =
cs , if Es(k) > 0 & Ecs(k) > 0

ps , if Es(k) > 0 & Ecs(k) = 0

ps , if Es(k) = 0 & Ecs(k) > 0

cs , if Es(k) = 0 & Ecs(k) = 0

(9)

where ps is the (high) cost for not servicing the secondary
load when desired or servicing when not desired, cs is the
(low) cost for servicing when desired or not servicing when
not desired, and Ecs(k) is the energy consumed by secondary
load.

The cost function for maintaining the battery state of
charge is:

Cbat(Xk, Uk, Xk+1) = cbat

+ pbat[
¯
Ebat + ∆Ebat − Ebat(k + 1)]+

(10)

where cbat is the (low) cost for keeping the battery alive,
and pbat is the (high) cost for allowing the battery to go
below a prescribed minimum level of

¯
Ebat + ∆Ebat and

thus eventually die.



We use a hierarchical cost structure to promote normal
charging over fast charging as shown below:

Cc(Xk, Uk, Xk+1) =

cn , if Γ(k) ∈ {1} & Ebat(k) < Ēbat

& Epv(k) > ufr(k)Efr(k) + us(k)Es(k)

cf , if Γ(k) ∈ {2} & Ebat(k) < Ēbat

& Epv(k) > ufr(k)Efr(k) + us(k)Es(k)

0 , otherwise
(11)

where cf (> cn) is the higher cost for fast charging.
When there is no PV production potential (for example,

during nighttime), charging the battery is not possible. More-
over, if a load is trying to be serviced when there is no
PV potential, then the battery cannot be idle and needs to
discharge. To discourage such undesired behaviors, we define
the following cost function:

Cpv(Xk, Uk, Xk+1) =
ppv , if Epv(k) = 0 & Γ(k) ∈ {1, 2}
ppv , if Epv(k) = 0 &

(
ufr(k) = 1 orus(k) = 1

)
& Γ(k) ∈ {0}

0 , otherwise
(12)

The constants ppv , cn, cf , cbat, pbat, cs, ps, cfr, and pfr are
design choices.

B. Value Function Approximation and Zap Q-Learning

The goal is to obtain a state-feedback policy φ∗ : X → U
that minimizes the sum of expected discounted cost:

φ∗ := argmin
φ:X→U

{ ∞∑
k=0

βkE
[
c(Xk, Uk, Xk+1)

]}
(13)

with Uk = φ(Xk) for k ≥ 0.
Under the assumption that the underlying problem is an

MDP, it is known that the optimal policy satisfies:

φ∗(x) = arg min
u∈U(x)

Q∗(x, u) , x ∈ X (14)

where Q∗ : X × U → R denotes the associated optimal Q
function:

Q∗(x, u):= min
{Uk}

∞∑
k=0

βkE
[
c(Xk, Uk, Xk+1)|X0 =x, U0 =u

]
where the minimization is over all feasible inputs.

Reinforcement learning algorithms such as Q-learning can
be used to estimate an approximation for the Q-function. In
this work, we use Zap Q-Learning to approximate Q∗ using
a parameterized family of functions {Qθ : θ ∈ Rd} [19]. We
employ a linear parameterization, so that,

Qθ(x, u) = θTψ(x, u), x ∈ X , u ∈ U , (15)

where ψ : X × U → Rd denotes the “basis functions”. For
our problem, we choose the basis functions as follows:

ψ(x, u) := [f(x)I[0,1,−1]T (u); f(x)I[1,0,−1]T (u);

f(x)I[1,1,−1]T (u); f(x)I[0,0,0]T (u); f(x)I[0,1,0]T (u);

f(x)I[1,0,0]T (u); f(x)I[1,1,0]T (u); f(x)I[0,0,1]T (u);

f(x)I[0,1,1]T (u); f(x)I[1,0,1]T (u); f(x)I[1,1,1]T (u);

f(x)I[0,0,2]T (u); f(x)I[0,1,2]T (u); f(x)I[1,0,2]T (u);

f(x)I[1,1,2]T (u)], (16)

where IA : U → {0, 1} is the indicator function of the set
A. For f(x), we choose a quadratic function of the states:

f(x) := [E2
bat, T

2
fr, T

2
house, E

2
pv, EbatTfr, EbatThouse,

EbatEpv, EbatEs, TfrThouse, TfrEpv, TfrEs,

ThouseEpv, ThouseEs, EpvEs, Ebat, Tfr, Thouse,

Epv, Epv,1, Epv,2, Epv,3, Epv,4, Epv,5, Epv,6,

Es, Es,1, Es,2, Es,3, 1]T ∈ R29.

Therefore, there are 29×15 = 435 parameters to be learned,
i.e., θ ∈ R435. Once the basis functions are fixed, the
Zap Q-learning algorithm can be used to estimate Q∗ using
the approximation Qθ

∗
. We refer the interested reader to

Algorithm 1 in [20] for details. The algorithm is implemented
using the simulation models presented in Section IV; given a
current state Xk and a control input Uk, the state Xk+1 at the
next time step is obtained using these simulation models, and
the tuple (Xk, Uk, Xk+1) is used to update the parameters θ.

C. Real-Time Control

The online state-feedback control is computed as follows:

Uk = φθT (Xk) = arg min
u∈U(Xk)

QθT (Xk, u)

= arg min
u∈U(Xk)

θTTψ(Xk, u) , Xk ∈ X , (17)

where θT is the estimate of θ∗ obtained from the algorithm.
The minimum is over only 15 values, so the optimization
problem above is trivial to solve.

IV. SYSTEM MODELS

To compare the performance of the control algorithms
presented and to train the proposed RL controller, we need
models of refrigerator thermal dynamics, battery dynamics,
and energy consumption of the loads. The detailed models
are presented in our prior work [7]. We present only the
relevant prominent features here.

A. Refrigerator Thermal Dynamics

We use the following discretized form of the continuous
time refrigerator thermal dynamic model presented in [21]:
xfr(k + 1) = ffr

(
xfr(k), ufr(k), wfr(k)

)
, where the state

xfr(k) consists of the refrigerator internal temperature, i.e.,
xfr(k) := Tfr(k) ∈ R. The input ufr(k) is the refrigerator
on-off command. The exogenous input wfr(k) consists of the
house internal temperature, i.e., wfr(k) := Thouse(k) ∈ R.



B. Battery Energy Storage Dynamics

The battery storage system dynamics is given by: xbat(k+
1) = fbat (xbat(k), vbat(k)) , where the state xbat(k)
consists of the battery energy level, i.e., xbat(k) :=
Ebat(k) ∈ R. The vector vbat(k) consists of charging
energy (Ecbat) and discharging energy

(
Edcbat

)
, i.e., vbat(k) :=

[Ecbat(k), Edcbat(k)]T ∈ R2, and both are bounded between a
minimum and maximum as Ecbat ∈ [0, Ēcbat] and Edcbat ∈
[0, Ēdcbat].

C. Energy Consumption

The energy consumed by the refrigerator, lights, and fans
in the time interval ∆Ts is modeled as the integral of
their rated powers, and are denoted by Efr, El, and Ef
respectively. The energy consumed by the primary load
(refrigerator) is given as Ecp(k) ∈ {0, Efr}, and the energy
consumed by the secondary load (fans-lights) is given as
Ecs(k) ∈ {0, El, Ef , El + Ef}.

The overall plant simulation utilizes the above models,
and the control commands are implemented in a way that
the energy transactions between the sources (PV-battery) and
sinks (primary-secondary loads) follow energy balance.

V. CONTROL ALGORITHMS USED FOR COMPARISON

The performance of the RL controller is compared with
two others: an MPC controller which was proposed in our
prior work [7], and a rule-based baseline controller. These
are briefly discussed in the following subsections. See [7]
for further details.

A. Model Predictive Control (MPC)

The goal of the MPC controller is the same as that of
the proposed RL controller. The controller solves a Mixed-
Integer Linear Program (MILP) over a finite planning horizon
N to compute the control commands in discrete time steps
∆Ts. The controller uses the following pieces of information
to solve this problem: (i) the current value of the states,
(ii) forecasts of the exogenous inputs (Epv , Thouse, and Es),
and (iii) models for refrigerator thermal dynamics and battery
energy dynamics. The control commands for the first time
step obtained from the solution of this problem are applied
to the plant. This process is repeated at the next time step.

The MPC controller has the battery energy level (Ebat)
and refrigerator internal temperature (Tfr) as states, hence
we have x(k) := [Ebat(k), Tfr(k)]

T . The control commands
are similar to the ones mentioned in II; however the discrete
battery control commands [c(k), d(k),m(k)]T are mapped
on to a single continuous command Γc(k) ∈ R. The
transformation of Γc(k) to its constituent [c(k), d(k),m(k)]T

is carried out using rule-based logic. The MILP is solved
to minimize: refrigerator temperature deviation from its
bounds, and battery degradation; and to maximize: battery
energy level, and servicing of secondary load; subject to:
(i) equality constraints due to battery storage system dynam-
ics model, refrigerator thermal dynamics model, and energy
balance model, (ii) box constraints to maintain battery energy
level and refrigerator temperature within desired limits, and

(iii) various control command constraints. Details of the
MPC controller are omitted due to lack of space, see [7]
for details.

B. Baseline Controller

The baseline controller consists of two rule-based con-
trollers that are independent of each other. The refrigerator
on-off command (ufr(k)) is computed by a thermostat con-
troller. The battery charging (c(k)) and discharging (d(k))
commands are computed by the battery logic controller; it
commands the battery to charge when there is excess PV
energy and to discharge when the PV energy cannot meet
the load demand. The baseline controller does not have a
fast charging mode, as certain amount of intelligence is
required to exploit the fast charging mode so as to avoid
battery degradation. The detailed rule-based logic of both
the controllers are presented in [7].

VI. SIMULATION STUDY SETUP

Simulations are conducted for a period of 7 days starting at
00:00 hours from Sept. 11, 2017, to Sept. 17, 2017. The plant
is initialized with battery state at Ēbat (i.e., Ebat(0) = Ēbat)
and the refrigerator initial temperature at 2◦C (i.e., Tfr(0) =
2◦C). The simulation period selected corresponds to the time
hurricane Irma made landfall and passed over Gainesville,
FL, USA. The source of weather data is National Solar
Radiation Database (nsrdb.nrel.gov). The simulations
are carried out in MATLAB.

The sizing of the PV battery system is done using a con-
servative method described in [22]. Canadian Solar CS6K-
285 polycrystalline panel, and Trojan SPRE 12 225 (lead
acid type) solar battery unit were selected for the system
sizing. Lead acid batteries were chosen over Lithium-Ion (Li-
Ion) batteries for system cost reduction, as Li-Ion batteries
are four times more expensive than lead acid batteries per
kWh [23]. The size of the system obtained from this method
is as follows: 3 PV panels connected in parallel, 2 units of
battery connected in series.

The house described in [24] consists of four bedrooms (1
fan [65 W ] and 1 LED [8 W ] each), a living room (1 LED),
and a kitchen (1 refrigerator [250 W ] and 1 LED). Fig. 3
illustrates the secondary load trajectory for a given day which
is composed of: LED lights (total units = 6) being on from
18:00 hours to 00:00 hours and fans (total units = 4) running
from 21:00 hours to 09:00 hours and is constant for all the
days of the simulation.

0 3 6 9 12 15 18 21 24
0

200

Fig. 3: Secondary load demand (daily trajectory).

nsrdb.nrel.gov


TABLE II: RL parameters.

β ρ cfr pfr cbat pbat

0.95 0.8 -1 12500.25 -1 162340.9
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Fig. 4: Histograms of the computation time when using the
RL and MPC controllers. Note that for RL, the time is in
milliseconds, while for MPC, it is in seconds.

A. Simulation Parameters

The parameters for the plant system models presented
in IV are mentioned here concisely due to lack of space.
For detailed simulation parameters refer our prior work [7].

PV panels: P ratedpv = 285 W ; Battery:
¯
Ebat = 1080 Wh,

Ēbat = 5400 Wh, Ēcbat = 81 Wh, Ēdcbat = 84.45 Wh;
Refrigerator:

¯
Tfr = 0 ◦C, T̄fr = 4 ◦C.

RL parameters: The various parameters used in the RL
controller are listed in Table II. During learning, the Q
function parameters are seen to settle after 107 iterations,
and takes about 7.5 hours to train. For these learning
simulations, we use 2016 weather data for Gainesville,
Florida, obtained from the National Solar Radiation Database
(nsrdb.nrel.gov).

MPC parameters: A planning horizon of 24 hours is used
with a time-step of 10 minutes (i.e. ∆Ts = 10 mins, N =
144). Hence, the MILP optimization problem central to the
MPC has a total of 1008 decision variables comprising of
720 continuous and 288 binary decision variables.

VII. RESULTS AND DISCUSSION

A. Load Servicing Performance

Figure 6 shows the simulation results when using the
RL, MPC, and baseline controllers. Both the proposed RL
controller and the MPC controller keep the refrigerator
temperature within the prescribed limits for the entire 7
days with negligible excursions; see Figures 6a and 6b. In
contrast, the baseline controller fails to keep the refrigerator
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0
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0.15

Actual
Forecast
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-0.05
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Fig. 5: Comparison of the actual PV energy production
potential used in the plant and the forecast used in the RL
controller to test its robustness to forecast errors.

temperature within bounds for elongated periods; see Fig-
ure 6c. The average daily refrigerator temperature violation
is 8.37 hours/day for the baseline controller, but none for the
proposed RL controller; see Table III. Note that the Centers
for Disease Control and Prevention state that perishable
foods (including meat, poultry, fish, eggs and leftovers) in
the refrigerator should be thrown away if the power has been
off for 4 hours or more [25]. Thus, while the RL and MPC
controllers will be able to keep perishable foods fresh for the
entire seven days of the outage, with the baseline controller,
the stored food will get spoiled after the very first day without
grid power.

Figures 6d, 6e, and 6f show the trajectories of the
secondary load serviced by the RL, MPC, and baseline
controllers respectively. It can be seen that none of the
controllers are able to meet the secondary load for the desired
duration. The MPC controller has a better performance
than the RL controller in servicing the secondary load; see
Table III.

Hence, the proposed RL controller demonstrates similar
performance in servicing the primary load compared to
the MPC controller, but MPC performs better than RL in
servicing the secondary load.

B. Computational Performance

Figure 4 shows a histogram of the time taken for the real-
time computation in the RL and MPC controllers. There
is a several-orders (4 × 105) of magnitude reduction in the
computational effort when using the RL controller compared

TABLE III: Performance comparison of RL, MPC, and
Baseline Controllers.

RL MPC Baseline
Refrigerator temp. violation (hours/Day) 0 0.042 8.375

secondary load served (% time) 28 53 48
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Fig. 6: Comparison of controllers’ performances for the primary load (top row) and secondary load (bottom row). The
weather data used is for the week after Hurricane Irma made landfall in Gainesville, FL.

to the MPC controller, which makes RL an attractive choice
for our problem.

The optimization problem in MPC is solved using
GUROBI [26], a MILP solver, on a Desktop Linux computer
with 8GB RAM and a 3.60 GHz×8 CPU. Recall that the
optimization problem has a total of 1008 decision variables
of which 288 are binary. On an average it takes 62.47 seconds
for GUROBI to solve the MILP in MPC for one planning
horizon; however, the solver stalled for 4.6% of the times.
Note that both the computer hardware and the software
(GUROBI, a commercial solver) used for solving the op-
timization problem is quite powerful. Despite using such
powerful hardware and software, it takes about 62.47 seconds
to solve. During an extended power outage, the computing
resources available are going to be much lower, which might
make an MILP-based controller quite challenging to use.

On the other hand, the real-time control computation in
the RL controller involves finding the minimum over only 15
values, and thus on an average takes only 0.14 milliseconds
to solve.

The speed and simplicity of real-time computation in RL
comes with computationally complex off-line learning. It
takes about 7.5 hours to learn the Q function parameters.
However, the learning can happen during a non-contingency
situation, i.e., when there is no power outage. Under such
conditions, using cloud-based computing resources is also a
possibility.

C. Robustness

During an extended power outage access to accurate
weather forecast can be challenging. We test the performance
of the RL controller under such conditions to see if it is
robust to forecast errors. Recall that the forecast of PV
energy production potential (Epv(k), Epv,1(k), . . . ) is a part
of the state in the RL controller. Figure 4 shows Epv used
in simulating the plant (actual) and the forecast used in
the controller. The RL controller is found to be robust to
errors in forecast. The refrigerator temperature is kept within
the prescribed limits for the entire 7 days with negligible
excursions, and the secondary load is served 30% of the
time. The MPC controller is also found to have a similar
degree of robustness to forecast errors.

In addition, recall that for the RL controller, the learning
simulations are done using weather data from 2016, while
all the testing simulations are done using weather data from
2017, during which Hurricane Irma occurred.

VIII. CONCLUSION

We presented an RL-based controller for resilient energy
management of a house—consisting of solar PV panels and
battery energy storage—during extended grid power failures.
Simulation results show that the RL controller performs
similar to the MPC controller (proposed in our prior work) in
servicing the primary load (refrigerator), but with five orders
of magnitude reduction in the real-time computational effort.
Moreover, no special purpose solver is required for the real-
time control computation in the RL controller as opposed



to the MPC controller, which requires an MILP solver. The
secondary load (lights and fans) servicing performance of
RL is found to be poorer than MPC. The RL controller
uses sensing and forecast information similar to the MPC
controller, and it is found to be robust to forecast errors.

RL is sensitive to many design choices such as the cost
function and the penalties. It might be possible to improve
the performance of RL in servicing the secondary load by
varying these design choices. We plan to explore this in the
future.
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