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Abstract

Even though energy-efficient climate control of commercial buildings using model predictive control (MPC) has been widely
investigated, most MPC formulations ignore humidity and latent heat. The inclusion of moisture makes the problem considerably
more challenging, primarily since a cooling and dehumidifying coil model which accounts for both sensible and latent heat transfers
is needed. In this work, we propose an MPC controller in which humidity and latent heat are incorporated in a principled manner.
We construct low order data-driven models of a cooling and dehumidifying coil that can be used in the MPC formulation. The
resulting controller’s performance is tested in simulation using a plant that differs significantly from the model used by the optimizer.
Additionally, the performance of the proposed controller is compared with that of a naive MPC controller which does not explicitly
consider humidity, and also to that of a conventional rule-based controller. Simulations show that the proposed MPC controller
outperforms the other two in terms of energy use and thermal comfort. It is also observed that the naive MPC formulation which
does not consider humidity leads to poor humidity control under certain conditions. Such violations in humidity can adversely
affect occupant comfort and health.

Keywords: model predictive control, HVAC systems, humidity, smart buildings, energy efficiency, economic MPC, latent heat.

1. Introduction

The application of Model Predictive Control (MPC) for
energy-efficient climate control of buildings has been an active
area of research; see the review articles [1, 2] and references
therein. In MPC, control commands for a planning horizon
are decided at every decision instant by solving an optimiza-
tion problem, implementing only the first segment of the plan,
and then repeating the process ad infinitum. Because of its use
of numerical optimization, MPC can handle various constraints
that are otherwise challenging to ensure, which has led to the
success of MPC in many applications [3].

In case of building climate control, the advantage of MPC
over traditional rule-based controllers is that MPC can satisfy
conflicting goals such as keeping energy use small while main-
taining thermal comfort and indoor air quality. Moreover, most
modern day commercial buildings are equipped with powerful
controller hardware, communication infrastructure, and sensors
needed to implement advanced control algorithms like MPC [1].

Thermal comfort is influenced by several factors such as
space temperature, humidity, air speed, clothing, metabolic rate,
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etc. [4]. Space temperature and humidity are especially impor-
tant factors in determining comfort and health [5, 6, 7]. Despite
the importance of humidity and latent heat in building climate
control, it is ignored in most existing MPC formulations.

The principal challenge in including humidity and latent
heat is that variables that determine the building’s temperature
and humidity—humidity and temperature of the conditioned
air—are a complex function of control commands, and cannot
be independently chosen. The control commands that can be in-
dependently chosen are inlet conditions of the cooling coil that
cools and dehumidifies the air supplied to the indoor space. In-
corporating humidity into MPC requires a model of the cooling
and dehumidifying coil that accounts for both sensible and la-
tent heat transfers, and predicts how control commands (condi-
tions at the coil inlet) determines the temperature and humidity
of the conditioned air. Such models are usually highly com-
plex. Some are partial differential equations (PDEs) with a
large number of parameters and several sub-models based on
the condition of the cooling coil such as completely dry, com-
pletely wet, and partly wet [8]. Some are ordinary differential
equations or even static models consisting of a large number of
empirical relations that vary depending on coil geometry, con-
figuration, and manufacturer [9, 10]. Such complex models are
not suitable for MPC, which involves real-time optimization.
In addition, nonlinearities in the humidity dynamics make the
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Figure 1: Comparison of sensible load and latent load in a cooling coil for a
week. The data was obtained from an air handling unit (AHU-2) serving an
auditorium in Pugh Hall at the University of Florida, USA.

underlying optimization problem non-convex [11].
Rule-based controllers that are currently used in practice

employ conservatively designed rules that have been arrived at
after decades of experience. For instance, a widely used heuris-
tic in hot-humid climates is to keep the conditioned air setpoint
at 12.8 ◦C (55 ◦F) [12]. This low value ensures the air delivered
to the indoor space is dry enough to maintain humidity within
allowable limits under worst-case conditions. The downside is
that worst-case conditions occur rarely, which leads to high en-
ergy use. Not only is the air cooled unnecessarily, but it must
then be reheated to prevent the indoor space from becoming
too cold. Moreover, rule-based controllers do not take full ad-
vantage of the thermal inertia of buildings and thermal comfort
range of occupants which could lead to energy savings.

The recent literature on MPC for HVAC (heating, ventila-
tion and air conditioning) system control is focused on energy
use minimization while maintaining thermal comfort and in-
door air quality [1, 2]. The motivation is the large energy foot-
print of HVAC systems. An MPC controller which minimizes
energy/cost without including humidity and latent heat in its
problem formulation could have two potential issues. One, it
may lead to poor humidity control. Two, since the latent com-
ponent of cooling—energy required to dehumidify air—is not
accounted for in the objective function, the predicted energy use
by the controller may be far from the actual energy use when
the controller is used in practice. Figure 1 shows the sensible
load, latent load, and the latent fraction (ratio of latent load to
the total load) in a cooling coil for a week which was obtained
from an air handling unit (AHU-2) serving an auditorium in
Pugh Hall at the University of Florida, USA. It can be seen that
the latent load is not negligible and constitutes about 41% of
the total cooling load.

In this paper, we propose an MPC formulation for energy-

efficient climate control of a commercial building in which hu-
midity and latent heat are taken into account in a principled
manner. The proposed controller is hereafter referred to as
SL-MPC, because it accounts for both sensible and latent com-
ponents of cooling. We specifically focus on a variable-air-
volume (VAV) heating, ventilation and air conditioning (HVAC)
system that uses chilled water to cool and dehumidify, i.e., con-
dition the air supplied to the building. Figure 2 shows the
schematic of a a VAV HVAC system. To avoid clutter, we con-
sider a single zone building, though the proposed method can
be extended to multi-zone buildings.

As mentioned earlier, one of the main challenges of includ-
ing humidity and latent heat is the need for a cooling and dehu-
midifying coil model that is simple enough to be used in real-
time optimization and yet accurate enough to lead to useful re-
sults. To address this challenge we develop a data-driven low
order model that predicts temperature and humidity of the con-
ditioned air (outputs) as a function of the inputs: the tempera-
ture, humidity and flow rate of air incident on the coil, and tem-
perature and flow rate of chilled water entering the coil. This
model is used in the optimizer used by the MPC controller. We
also develop a slightly more complex, but much higher accu-
racy, data-driven model that is used to simulate the plant. Both
models are identified from data, which can come from experi-
ments or from software such as EnergyPlus [13].

Apart from the proposed MPC controller and the data-driven
cooling coil models, a third contribution of the paper is a com-
parison of the performance of the proposed controller with two
other controllers: (i) an MPC controller that does not have hu-
midity constraints and latent heat explicitly accounted for, which
is referred to as S-MPC since it only accounts for sensible heat,
and (ii) a widely used rule-based controller (“single maximum”
[14]), which is referred to as BL (for baseline).

The simulation studies reported here show that the proposed
SL-MPC controller uses the least amount of energy and meets
thermal comfort constraints as well or better, compared to the
other two controllers. It is also observed that S-MPC makes
decisions that lead to poor humidity control under certain con-
ditions. Over long periods of time, this can cause issues such as
mold growth, a critical health concern in hot-humid climates [6,
7].

A preliminary version of this work has been reported in
[15], wherein we have compared the performance of SL-MPC
and BL. In this paper, we add S-MPC to the comparison and
quantify their performance in terms of energy consumption and
thermal comfort violation. This comparison clarifies the impli-
cation of ignoring humidity in the problem formulation: that
serious adverse effects can occur. To the best of our knowl-
edge, this paper is the only one that provides a performance
comparison of MPC schemes with and without humidity for
HVAC systems. Such a comparison is needed to examine the
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trade off between the benefit of incorporating humidity into the
controller and extra cost of doing so, which comes from the
additional sensors and models needed.

The rest of this paper is organized as follows. Section 1.1
reviews the related work on MPC-based building climate con-
trol vis-à-vis humidity and latent heat considerations. Section 2
describes a single-zone variable air volume (VAV) HVAC sys-
tem and the mathematical models we use in simulating the plant
(the system to be controlled). Section 3 presents the proposed
SL-MPC control strategy, and the control-oriented cooling and
dehumidifying coil model. It also describes the two other con-
trol algorithms used for comparison with the proposed con-
troller. The simulation setup and their results are discussed in
Sections 4 and 5 respectively. Concluding remarks are provided
in Section 6.

1.1. Review of prior work
There have been several studies in which MPC is used for

energy-efficient climate control of buildings—see the review
papers [1, 2] and the references therein. However, there are
only a few works which have considered humidity explicitly in
their MPC problem formulation. We limit ourselves to these
references. Based on the objective function to be minimized in
the MPC formulation, these works can be classified into two
broad categories: (i) economic MPC and (ii) set point track-
ing MPC. In set point tracking MPC, the objective function is
chosen so that minimization of the objective function helps to
drive the relevant output(s) to the desired set point. In eco-
nomic MPC, the objective function is chosen to be a perfor-
mance measure—usually the economic cost—that may not cor-
respond to a steady state operation as it does in case of set point
tracking. See [16, 17] for a through exposition of tracking and
economic MPC.

References [18, 19, 20, 21, 22] are examples of setpoint
tracking MPC. In [18], an MPC controller is designed to main-
tain the supply air temperature and humidity at a given set point
by varying the mass flow rate of chilled water and inlet water
temperature of the heating coil. A two layered control architec-
ture is presented in [19] and [20] for operating direct expansion
(DX) cooling systems. The upper layer is an open loop con-
troller while the lower layer is based on MPC. In [21], an ag-
gregated model of the building and HVAC system is obtained
with the supply air fan speed and the chilled water valve open-
ing as inputs, and room temperature and relative humidity as
outputs. Subsequently, an MPC controller is used to maintain
the room temperature and relative humidity at its set point with
the above model. Both temperature and humidity are consid-
ered in the problem formulation. A control-oriented desiccant
wheel model is used in an MPC-based control scheme to regu-
late humidity in [22].

The MPC controller proposed in this paper, and those in
references [23, 24, 25, 26, 27, 28, 29, 30, 31, 32] belong to

the category of economic MPC, with total energy use being
the objective function to minimize in this work. In [23], it is
assumed that the relative humidity of the conditioned air after
the cooling coil is always 90%, while [24] assumes both the
temperature and the humidity ratio of the conditioned air are
constant. These assumptions avoid the need for a cooling coil
model though the validity of these assumptions is questionable.
Occupancy-based control algorithms are experimentally eval-
uated in [25]. These algorithms are used to vary the control
inputs at the zone-level, while the inputs at the air handling unit
are not affected. An economic MPC scheme—for energy use
minimization—with humidity and latent heat considerations is
presented in [26]. Unlike the chilled water system used in this
work, the focus in [26] is on DX cooling systems.

In [27], MPC is used to control a variable refrigerant flow
(VRF) based HVAC system. The goal is to minimize economic
costs while maintaining the thermal comfort of occupants. Ther-
mal comfort is measured using the predicted mean vote (PMV)
index [33, 4]. PMV is dependent on several variables one of
which is humidity. Even though humidity is explicitly consid-
ered in this work, unlike the chilled water system used in our
work, the focus is on a VRF system.

A framework which concurrently optimizes thermal and elec-
tric storage in buildings is presented in [32]. The goal of the op-
timizer is to reduce the operating cost and demand peaks under
time-of-use tariffs by varying the temperature setpoints of the
zones in a building and battery dispatch. In [28], MPC is used
to optimize the performance of a hydronic radiant floor system
in an office building. However, the humidity in the building is
controlled using a proportional-integral (PI) controller, and is
not considered in the MPC formulation.

In [29], MPC is used to control an environmental chamber
located at the Pennsylvania State University campus. Humidity
is indirectly considered through a data-driven thermal comfort
model (dynamic thermal sensation model) developed by the au-
thors. However, latent heat is ignored in the MPC formulation.
In [31], a token based scheduling algorithm is used to minimize
the energy consumption for a building located at the Nanyang
Technological University, Singapore campus. It is based on a
distributed control algorithm presented in [34], and is used to
vary the supply air flow rate to the zones. Humidity is indi-
rectly maintained through the thermal sensation model used but
latent heat is ignored.

Ref. [30] provides a comprehensive MPC framework which
uses real-time building energy management system data. An
enthalpy control algorithm is used to regulate the amount of
outdoor air supplied to a building.

There are also a few papers in which the terms in the objec-
tive function consist of both energy use and deviation from set
points, so these can be thought of as a hybrid between tracking
and economic MPC—[35, 36, 37]. Multiple MPC strategies are
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compared for an air handling unit serving a single-zone in [35].
It is assumed that the temperature and humidity ratio after the
cooling coil can be chosen independently, thereby not requir-
ing the use of a cooling coil model. This assumption will not
hold in physical systems, as the only variables that can be in-
dependently chosen are the inlet conditions to the coil. Unlike
the cooling-based air dehumidification considered in this work,
reference [36] uses a liquid desiccant air conditioning (LDAC)
system. The inlet desiccant solution flow rate and temperature
are varied to maintain the temperature and humidity ratio of the
outlet air.

Ref. [37] is the most relevant to our work; they use a cooling
coil model in their optimization in which temperature and hu-
midity of the conditioned air is modeled correctly to be thermo-
dynamically coupled. The supply air flow rate is not a control
command, while in our formulation it is. The controller in [37]
will be unaware of disturbances in the longer time scales, since
a short prediction horizon of 10 minutes is used. In contrast, we
use a prediction horizon of 24 hours. Moreover, there are mul-
tiple elements included in the objective function: energy use,
thermal comfort, indoor air quality, etc., which needs careful
tuning of weights. In our formulation, energy use is the ob-
jective to be minimized, with thermal comfort and indoor air
quality being constraints to be met. Lastly, a nondeterministic
optimization algorithm (genetic algorithm) is used to perform
the minimization which is challenging to use for real-time con-
trol. In contrast, we use a deterministic search method through
a nonlinear programming (NLP) solver.

Although the papers on HVAC control that do not consider
humidity and latent heat are outside the scope of this review,
a subset of those works report experimental evaluations in real
buildings. These deserve special attention: if an MPC controller
that does not consider humidity and latent heat can still provide
good performance in real buildings that are affected by humid-
ity and latent heat, then incorporating these features into the
controller—which necessarily increase complexity—is perhaps
not necessary. In particular, refs. [38, 39, 40] describe exper-
imental demonstrations that have been carried out with MPC-
based controllers on real buildings. The problem formulations
in these references do not consider latent heat/room humidity
dynamics. It is not clear from the reported assessment if the
controllers were able to maintain humidity, since humidity mea-
surements were not reported.

In [38], an MPC based controller was implemented in a
Swiss office building. They used thermally activated build-
ing systems, an air handling unit, and blinds, for actuation.
Majority of the experiments were done when the weather was
cold and dry in which humidity and latent cooling loads were
unlikely to be of concern. However, one set of experiments
was done between May-August when it was hot and humid.
Space humidity was not reported in the evaluations. The MPC
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Figure 2: Schematic of a single-zone commercial variable-air-volume HVAC
system.

demonstration reported in [39] controlled the heating system of
a building in Prague during winter when humidity is not a con-
cern for that climate.

The work [40] describes an MPC-based controller that was
implemented in a mid-size (650m2) commercial building in Cham-
paign, Illinois, which is hot and humid during the summer. Two
sets of tests were conducted. One was during the transition sea-
son in October and the other was during cold season (Febru-
ary). It is not clear from published results whether humidity
was maintained within acceptable limits, since only zone tem-
perature and CO2 levels were reported, not humidity.

In summary, it is not possible to say from the published
literature if an MPC controller that does not consider humid-
ity and latent heat is able to provide humidity control. Our
results—reported later in the paper—indicate it is unlikely in
hot and humid climates, thus motivating a need for an MPC
formulation that includes these features.

2. System description and models

Our focus is a single-zone variable-air-volume HVAC sys-
tem used in commercial buildings. The schematic of a typical
configuration used is shown in Figure 2. In such a system, part
of the air exhausted from the zone is recirculated and mixed
with outdoor air. Then the mixed air is sent through a cool-
ing coil where it is cooled and dehumidified to conditioned air
temperature (Tca) and humidity ratio (Wca). This air is then
passed through a reheat coil where the air is heated to supply
air temperature (Tsa) before being supplied to the zone. There
is no water vapor phase change across the heating coil, so the
humidity ratio of supply air and conditioned air is the same:
Wsa =Wca. The role of the climate control system is to vary the
following control commands: (i) supply air flow rate (msa), (ii)
outdoor air ratio (roa, which is the ratio of outdoor air flow rate
to supply air flow rate, roa =

moa
msa

= moa
moa+mra

), (iii) conditioned
air temperature (Tca), and (iv) supply air temperature (Tsa), to
maintain thermal comfort and indoor air quality in the zone. So
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the control command vector is:

u = [msa, roa, Tca, Tsa]
T ∈ℜ

4. (1)

These four values can be commanded as setpoints to lower level
control loops, and thus we treat u as a control command to be
decided by the proposed MPC controller. We assume that the
controller also has access to the zone dry-bulb temperature and
zone humidity measurements in real time; these can be mea-
sured using commercially available sensors. The controller will
also need prediction of certain exogenous disturbances, which
will be described in Section 3.

2.1. Plant model used for simulation assessment

It is convenient to first describe the models that are used
to simulate the plant, i.e., the system being controlled, since
simplified versions of some of the components of the plant are
used by the controller to make decisions. In the following sub-
sections we describe these mathematical models. The plant pa-
rameters are chosen to mimic a real HVAC system of the type
shown in Figure 2, the one that serves a 465 m2 (5000 sq.ft.)
auditorium in Pugh Hall at the University of Florida, USA.

2.1.1. Hygro-thermal dynamics model
We use the following RC (resistor-capacitor) network model

for the temperature dynamics of the zone serviced by the HVAC
system [41]:

CzṪz(t) =
(Tw(t)−Tz(t))

Rw
+qHVAC(t)+Aeηsol(t)+qother(t)

(2)

CwṪw(t) =
(Toa(t)−Tw(t))

Rz
+

(Tz(t)−Tw(t))
Rw

(3)

where Tz is the zone temperature, Tw is the wall temperature,
Toa is the outdoor air temperature, qHVAC is the heat influx due
to the HVAC system, ηsol is the solar irradiance, qother is the
internal heat load due to occupants, lights, equipments, etc., Cz

and Cw are the thermal capacitance of the zone and the wall
respectively, Rz is the resistance to heat exchange between the
outdoors and wall, Rw is the resistance to heat exchange be-
tween the wall and indoors and Ae is the effective area of the
building. The heat influx due to the HVAC system is a function
of the supply air temperature and zone temperature:

qHVAC(t) = msa(t)Cpa(Tsa(t)−Tz(t)), (4)

where msa is the supply air flow rate and Cpa is the specific heat
of air at constant pressure.

The dynamics of zone humidity ratio Wz is modeled as:

Ẇz(t) =
RgTz(t)
V Pda

[
ωother(t)+msa(t)

Wsa(t)−Wz(t)
1+Wsa(t)

]
(5)

Tma

Wma

msa

Twimw, 

Tca

WcaAir Air

Two

Chilled
water

Figure 3: A cooling and dehumidifying coil, and relevant variables (model in-
puts in rectangles, outputs in circles).

where V is the zone volume, Rg is the specific gas constant of
dry air, Pda is the partial pressure of dry air, Wsa is the supply
air humidity ratio, and ωother is the rate of internal water vapor
generation due to people and other sources [11].

2.1.2. Cooling and dehumidifying coil model
The inputs for the model are supply air flow rate (msa),

mixed air temperature (Tma), mixed air humidity ratio (Wma),
chilled water flow rate (mw), and inlet water temperature (Twi);
see Figure 3. The outputs are conditioned air temperature (Tca)
and humidity ratio (Wca).

There is a rich literature on modeling cooling and dehumid-
ifying coils; see [8, 10] and references therein. However, some
of these models require coil geometry data which is hard to ob-
tain. Another class of models involve complex partial differen-
tial equations [8]. For our purposes a simple static model would
suffice as the time constants for a cooling coil are small—about
60 to 120 seconds (see Figures 4 to 7 in [8])—compared to the
time constant of zone thermal dynamics, which is in hours [41].
The model used in EnergyPlus (see Section 16.2.1 in [9]) is
such a static model. It is still complex and difficult to replicate
as it involves many empirical relations. Therefore, we opt for
a grey box data-driven model. EnergyPlus is used as a “virtual
cooling coil testbed”, and data collected from EnergyPlus sim-
ulations is used to fit the parameters of the model. The process
is explained below.

A single-zone commercial building is simulated in Energy-
Plus version 8.9 [13], with a cooling coil pulling in unmixed
outdoor air and supplying it to the zone after cooling and de-
humidifying it. Using unmixed air ensures that we have full
control over the temperature and humidity ratio of air entering
the cooling coil, as EnergyPlus allows the use of a custom gen-
erated weather file to specify outdoor conditions. The HVAC
air loop also contains a variable flow fan motor to control the
mass flow rate of air, and the plant loop contains an electric
chiller with variable flow pump to control the mass flow rate of
water. The inlet and outlet conditions of the cooling coil are
measured.

The rates of flow through the pump and fan are varied us-
ing Building Controls Virtual Test Bed (BCVTB) [42]. The air
flow rate is varied from 0.1705 kg/s (300 f t3/min) to 4.6 kg/s
(8100 f t3/min) and the water flow rate is varied from 0 kg/s (0
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Figure 4: Cooling coil binned model (used in simulating the plant).

gallons/minute) to 2.21 kg/s (35 gallons/minute). The limits
are chosen to mimic the equipment in Pugh Hall. The temper-
ature and humidity ratio of outdoor air are controlled using a
custom weather file. Since there are no other components be-
fore the coil that interact with outdoor air, we are able to use it
to modulate the input conditions to the coil. The temperature
is varied from 10 ◦C (50 ◦F) to 43.3 ◦C (110 ◦F) with steps of
0.56 ◦C (1 ◦F). The relative humidity is varied from 10 % to
100 % with steps of 5 %. The model is calibrated using 296,704
data points generated by varying inputs. A separate data set is
generated for model validation.

We observe from our initial attempts that for a fixed mixed
air temperature and relative humidity, the outputs Tca and Wca

can be predicted quite well by modeling them as polynomial

functions of the mass flow rates of chilled water and supply
air. Figure 4 shows an example, using a 5th degree polyno-
mial. However, a single polynomial leads to large errors when
used at different mixed air temperatures and relative humidi-
ties. We therefore bin the inputs according to Tma and RHma

into 1159 bins, and use a 5th degree polynomial model for each
bin. The resulting model is called a “binned model”. The root
mean square error for the validation data is less than 0.28 ◦C
(0.5 ◦F , 1%) for Tca and 0.3×10−4 kgw/kgda (1%) for Wca.

2.1.3. Power consumption models
We assume that the power consumed by components such

as dampers is negligible; the only power consuming compo-
nents are the air supply fan, the reheat coil, and the cooling
coil. The fan power is usually modeled as a quadratic function
of the supply air flow rate [43]:

Pf an = α f msa(t)2. (6)

The power consumed by the cooling and dehumidifying coil is
modeled as being proportional to the heat it extracts from the
mixed air stream as follows:

Pcc(t) =
msa(t)

[
hma(t)−hca(t)

]
ηccCOPc

, (7)

where hma(t) and hca(t) are the specific enthalpies of the mixed
and supply air respectively, ηcc is the cooling coil efficiency,
and COPc is the chiller coefficient of performance. Since a part
of the return air is mixed with the outside air, the specific en-
thalpy of the mixed air is:

hma(t) = roa(t)hoa(t)+(1− roa(t))hz(t), (8)

where hoa(t) and hz(t) are the specific enthalpies of the out-
door and zone air respectively, and roa(t) is the outside air ratio:
roa(t) := moa(t)

msa(t)
. The specific enthalpy of moist air with tem-

perature T and humidity ratio W is given by [44]: h(T,W ) =

CpaT +W (gH20 +CpwT ), where gH20 is the heat of evaporation
of water at 0 ◦C, and Cpa,Cpw are specific heat of air and water
at constant pressure.

The power consumed by the reheat coil is modeled as being
proportional to the heat added to the conditioned air stream by
the coil. Since the humidity ratio does not change across the
reheat coil (Wsa =Wca), the power consumption has the form

Preheat(t) =
msa(t)Cpa

[
Tsa(t)−Tca(t)

]
ηreheatCOPh

, (9)

where ηreheat is the reheat coil efficiency, and COPh is the boiler
coefficient of performance.

3. Control algorithms

3.1. Proposed controller: SL-MPC
Figure 5 shows the control architecture for the proposed

SL-MPC controller. Control decisions are computed in discrete
time indices k = 0,1, . . . , with ∆t being the sampling interval.
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The control inputs for N time steps are obtained by solving
a constrained optimization problem of minimizing the energy
consumption subject to thermal comfort, indoor air quality, and
actuator constraints. Then the control inputs obtained for the
first time step are applied to the plant. The optimization prob-
lem is solved again for the next N time steps with the initial state
of the model obtained from plant measurements. This process
is repeated at the next time instant. To describe the optimization
problem, first we define the state vector x(k) and the vector of
control commands and internal variables v(k) as:

x(k) := [Tz(k),Wz(k)]T ∈ℜ
2,

v(k) := [u(k)T , mw(k),Wca(k)]T ∈ℜ
6,

where u(k) is the control command vector defined in (1). The
exogenous input vector is:

w(k) := [ηsol(k), Toa(k),Woa(k), qother(k), ωother(k)]T ∈ℜ
5.

(10)

At time index j, the decision variables in the optimization prob-
lem underlying the proposed MPC controller are denoted by X
and V , where X = [xT ( j + 1),xT ( j + 2), . . . ,xT ( j +N)]T and
V = [vT ( j),vT ( j+ 1), . . . ,vT ( j+N− 1)]T . The predictions of
the exogenous inputs W = [wT ( j),wT ( j + 1), . . . ,wT ( j +N −
1)]T are assumed known at time index j. In simulations re-
ported later, we use ∆t = 5 minutes and prediction/planning
horizon of N = 288 (corresponding to 24 hours).

The optimization problem at time index j is:

min
V,X

j+N−1

∑
k= j

[
Pf an(k)+Pcc(k)+Preheat(k)

]
∆t, (11)

where Pf an, Pcc and Preheat are given by (6), (7) and (9) respec-
tively, and is subject to the following constraints:

Tz(k+1) = Tz(k)+
∆t
C

[
(Toa(k)−Tz(k))

R
+qHVAC(k)+

Aeηsol(k)+qother(k)
]
, (12a)

Wz(k+1) =Wz(k)+
∆tRgTz(k)

V Pda

[
ωother(k)+

msa(k)
Wsa(k)−Wz(k)

1+Wsa(k)

]
, (12b)

Tca(k) = fco
(
Tma(k),Wma(k),msa(k),mw(k)

)
, (12c)

Wca(k) = gco
(
Tma(k),Wma(k),msa(k),mw(k)

)
, (12d)

T low
z (k)≤ Tz(k)≤ T high

z (k), (12e)

W low
z (k)≤Wz(k)≤W high

z (k), (12f)

msa(k+1)≤ min
(
msa(k)+mrate

sa ∆t,mhigh
sa
)
, (12g)

msa(k+1)≥ max
(
msa(k)−mrate

sa ∆t,mlow
sa
)
, (12h)

roa(k+1)≤ min
(
roa(k)+ rrate

oa ∆t,rhigh
oa
)
, (12i)

roa(k+1)≥ max
(
roa(k)− rrate

oa ∆t,rlow
oa
)
, (12j)

Tca(k+1)≤ min
(
Tca(k)+T rate

ca ∆t,Tma(k+1)
)
, (12k)

Tca(k+1)≥ max
(
Tca(k)−T rate

ca ∆t,T low
ca
)
, (12l)

Tsa(k+1)≤ min
(
Tsa(k)+T rate

sa ∆t,T high
sa
)
, (12m)

Tsa(k+1)≥ max
(
Tsa(k)−T rate

sa ∆t,Tca(k+1)
)
, (12n)

Wca(k)≤Wma(k), (12o)

where constraints (12a)-(12d) and (12o) are for k = j, ..., j +
N− 1, constraints (12e) and (12f) are for k = j + 1, ..., j +N,
and constraints (12g)-(12n) are for k = j, ..., j+N−2.

The constraint (12a) is due to the thermal dynamics of the
zone, which is a discretized form of a first-order RC network
model where R is the resistance to heat exchange between out-
doors and indoors, and C is the thermal capacitance of the zone.
Note that this is a simpler model of building hygro-thermal dy-
namics than that used in the plant simulation. The constraint
(12b) is due to the zone humidity dynamics which is a dis-
cretized form of (5) presented in Section 2.1.1.

Constraints (12c) and (12d) are for the cooling and dehu-
midifying coil model which is presented in the next subsection
(Section 3.1.1).

Constraints (12e) and (12f) are thermal comfort constraints:
they specify the range in which the zone temperature and hu-
midity ratio can vary without compromising occupants’ com-
fort. The upper and lower limits for these vary based on the
scheduled hours of occupancy. Usually the limits during unoc-
cupied mode (unocc) are relaxed when compared to the occu-
pied mode (occ), i.e. [T low,occ

z ,T high,occ
z ]⊆ [T low,unocc

z ,T high,unocc
z ],

[W low,occ
z ,W high,occ

z ]⊆ [W low,unocc
z ,W high,unocc

z ], as shown in Fig-
ure 7.

Constraints (12g) and (12h) are to take into account the ca-
pabilities of the fan. The minimum allowed value for the sup-
ply air flow rate is computed based on the ventilation require-
ments specified in ASHRAE 62.1 [45] as well as to maintain
positive building pressurization. ASHRAE 62.1 demands ven-
tilation based on two factors: number of people and floor area.
Positive pressurization is required as dehumidification results in
a drop in indoor vapor pressure. This negative pressure gradient
may cause the infiltration of moisture from outside, especially
if the building envelope is not airtight [44]. The minimum al-
lowed supply air flow rate is:

mlow
sa = max

(
(mp

oanp +mA
oaA)/roa, mbp

oa/roa
)
, (13)

where mp
oa is the outdoor air rate required per person, np is the

number of people, mA
oa is the outdoor air required per zone area,

A is the zone area, mbp
oa is the outdoor air rate required to main-

tain positive building pressurization, and roa is the outdoor air
ratio.

Constraints (12i)-(12n) are to take into account the capabil-
ities of the damper actuators, cooling and reheat coils. In con-
straints (12k) and (12o) the inequalities Tca(k+1)≤ Tma(k+1)
and Wca(k)≤Wma(k) ensure that the cooling coil can only cool
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PlantSL-MPC

u = [msa, roa, Tca, Tsa]

w

x = [Tz, Wz]

w = [ηsol, Toa, Woa, qother, ωother]

Figure 5: Proposed SL-MPC, control architecture.

and dehumidify the mixed air stream; it cannot add heat or
moisture. Similarly, in constraint (12n) the inequality Tsa(k+
1)≥ Tca(k+1) ensures that the reheat coil can only add heat; it
cannot cool.

3.1.1. Cooling and dehumidifying coil model used in SL-MPC
Even though the binned model of cooling and dehumidify-

ing coil presented in Section 2.1.2 is quite accurate, it cannot
be used in the optimizer as doing so makes the optimization a
mixed integer nonlinear programming (MINLP) problem which
is quite challenging to solve. Therefore, we develop a control-
oriented cooling and dehumidifying coil model which makes
the optimization problem a nonlinear program (NLP). It is a
static model with the outputs being a polynomial function of
the inputs. Note that when the chilled water flow rate is zero,
no cooling or dehumidifying of the air can occur so that the
conditioned air temperature and humidity ratio must be equal
to the mixed air temperature and humidity ratio: Tca = Tma and
Wca =Wma, when mw = 0. To make the model have this behav-
ior, the following functional form is chosen:

Tca = Tma +mw f (Tma,Wma,msa,mw) (14)

Wca =Wma +mw g(Tma,Wma,msa,mw) (15)

For the functions f and g, we use a quadratic form as higher
degree polynomials did not show substantial gain in accuracy.
The final form of the model is:

Tca = fco(Tma,Wma,msa,mw) (16)

= Tma +mw
[
α1Tma +α2Wma +α3msa +α4mw +α5+

α6T 2
ma +α7W 2

ma +α8m2
sa +α9m2

w+

α10TmaWma +α11Wmamsa +α12msamw +α13mwTma+

α14Tmamsa +α15Wmamw
]

Wca = gco(Tma,Wma,msa,mw) (17)

=Wma +mw
[
β1Tma +β2Wma +β3msa +β4mw +β5+

β6T 2
ma +β7W 2

ma +β8m2
sa +β9m2

w+

β10TmaWma +β11Wmamsa +β12msamw +β13mwTma+

β14Tmamsa +β15Wmamw
]
,

where the αi’s and β j’s are the model parameters to be deter-
mined. For the numerical results shown next, data obtained

from EnergyPlus simulations—as explained in Section 2.1.2—
are used to fit these parameters. In practice, measurements
can be used to fit them. For the validation data set, the max-
imum prediction errors observed are 1.61 ◦C (3 ◦F) and 1.1×
10−3 kgw/kgda for Tca and Wca, respectively. This is twice the
maximum error observed when using the binned cooling and
dehumidifying coil model presented in Section 2.1.2.

3.2. Model predictive control incorporating only sensible heat
(S-MPC)

This controller is similar to the one described in Section
3.1, with the main difference being that the moisture and latent
heat of the air are not considered. The optimization problem
formulation is similar to the one presented in [46].

For this controller, the vectors x(k) and v(k) are defined as
follows: x(k) := Tz(k) ∈ℜ1 and v(k) := u(k) ∈ℜ4, where u(k)
is the control command vector defined in (1). The optimization
problem at time index j is:

min
V,X

j+N−1

∑
k= j

[
Pf an(k)+Pcc(k)+Preheat(k)

]
∆t, (18)

subject to the constraints: (12a),(12e), (12g)-(12n), where Pf an

and Preheat are given by (6) and (9), and

Pcc(t) =
msa(t)Cpa

[
Tma(t)−Tca(t)

]
ηccCOPc

, (19)

where Tma(t) and Tca(t) are the dry bulb temperatures of the
mixed and conditioned air. The exogenous disturbance needed
to compute the constraints in the optimizer are:

w(k) := [ηsol(k), Toa(k),Woa(k), qother(k)]T ∈ℜ
4. (20)

Notice the difference with SL-MPC: since this controller
does not consider humidity and latent heat, the constraints placed
on the humidity ratio at various locations in the air loop as well
as the zone—(12b), (12f), and (12o)—are no longer used. The
constraints placed on the system due to the cooling and dehu-
midifying coil model—(12c) and (12d)—are also not present.
The cooling power term in the objective function is based only
on the sensible heat; latent heat is ignored.

3.3. Baseline control (BL)

The baseline controller—against which the performance of
the proposed SL-MPC, and S-MPC is compared—is chosen to
be the single maximum controller that is widely used in prac-
tice [14]. In single maximum control, whose schematic repre-
sentation is shown in Figure 6, the HVAC system operates in
three modes based on the zone temperature: cooling, heating,
and deadband. When the zone temperature is above the cool-
ing set point for more than 5 minutes the system is in cooling
mode and the supply air flow rate (msa) is varied between the
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Figure 6: Schematic of Single Maximum control algorithm.

minimum and maximum allowed values to maintain the zone
temperature. Similarly, when the zone temperature is below the
heating set point for more than 5 minutes the supply air temper-
ature (Tsa) is varied to maintain the zone temperature. In this
mode the supply air flow rate is kept at the minimum allowed
value. Finally when the temperature is between the cooling and
heating set points the system is in deadband mode with the sup-
ply air flow rate kept at the minimum and the supply air temper-
ature is equal to the conditioned air temperature (Tsa=Tca). The
minimum allowed value for the supply air flow rate should sat-
isfy the following conditions: one, the ventilation requirements
specified by ASHRAE 62.1 [45] and positive building pressur-
ization, as described in Section 3.1. Two, it should be high
enough to meet the design heating load at a supply air temper-
ature that is low enough to prevent stratification (e.g., 30 ◦C).
The outdoor air ratio and the conditioned air temperature are
kept constant at all times.

3.4. Information requirement for implementation

All three controllers studied make decisions for the same
four control commands in the vector u; see (1). The proposed
SL-MPC controller needs real-time measurements of zone tem-
perature and humidity, while the S-MPC and BL controllers
need real-time measurements of zone temperature alone. BL
controller does not need any predictions, while both the MPC
controllers need prediction of the exogenous disturbances, w,
over the prediction horizon. Most of these predictions are di-
rectly available from weather forecasts. The exceptions are in-
ternal heat gains (needed by both MPC schemes), and internal
moisture generation (needed by SL-MPC alone). Predictions
for these signals can be obtained from occupancy schedules,
or from time-series models fitted to estimated heat gains and
moisture generation rates that are estimated from temperature
and humidity measurements by using methods such as those
in [41].

The BL controller does not need any models while both the
MPC controllers do. These models are learned off-line. Both
the MPC controllers need models of the thermal dynamics of
the zone; its parameters can be identified off-line by one of sev-
eral existing methods. The parameters used in this paper are fit-

ted to Pugh Hall data by using the method in [41]. The SL-MPC
requires a humidity dynamic model of the zone and a cooling
coil model while the S-MPC does not. The humidity dynamic
model used in this paper is a physics-based model; volume of
the zone is the only parameter and was obtained from the me-
chanical drawings for the Pugh Hall building. The cooling coil
model parameters can be fitted by a regression technique, to
data collected from an actual HVAC system or a high fidelity
simulation. The parameters used in this paper are fitted using
least squares to data collected from an EnergyPlus model of an
AHU. The EnergyPlus model was created using manufacturer
provided data about the Pugh Hall equipment; see Section 2.1.2.

4. Simulation setup

The plant is simulated in SIMULINK. The optimization
problem is solved using CasADi [47] and IPOPT [48], a nonlin-
ear programming (NLP) solver, on a Desktop Linux computer
with 16GB RAM and a 3.60 GHz × 8 CPU. On an average
it takes 2 seconds for SL-MPC and 0.6 seconds for S-MPC to
solve their respective optimization problems. The higher com-
putation time for SL-MPC is attributed to the larger number of
decision variables. Both the NLPs are non-convex, and the NLP
solver indicates that it is able to find a local minimum success-
fully 100% of the time. In cases where they may not be feasi-
ble, the controllers are programmed to use the control command
computed at the previous time step.

Three types of outdoor weather conditions are tested: hot-
humid (Aug/06/2016), mild (Mar/25/2016), and cold (Dec/20/-
2016), all for Gainesville, FL, USA. The weather data is ob-
tained from Weather Underground [49] and National Solar Ra-
diation Database [50]. The simulations are run for 24 hours
starting at 8:00 AM.

4.1. Plant parameters and thermal comfort envelope

The plant parameters are chosen based on a large class-
room/auditorium (∼ 6 m high, floor area of ∼ 465 m2) in Pugh
Hall located at the University of Florida campus. The RC net-
work parameters are chosen to be Rz = 0.6×10−3 ◦C/W , Rw =

0.55× 10−3 ◦C/W , Cz = 3.132× 107 J/◦C, Cw = 7.092× 107

J/◦C, and Ae = 8.12 m2 from [41], which were obtained by fit-
ting the model to measured data from the building. Volume of
the zone (V ) is 2831.7 m3 and was obtained from mechanical
drawings for the building. The scheduled occupancy is between
8:00 AM to 5:00 PM during which the following constraints are
used: T low,occ

z = 21.1 ◦C (70 ◦F), T high,occ
z = 23.3 ◦C (74◦F),

W low,occ
z = 0.0046 kgw/kgda, and W high,occ

z = 0.0104 kgw/kgda.
The unoccupied hours are between 5:00 PM to 8:00 AM dur-
ing which the constraints are: T low,unocc

z = 18.9 ◦C (66 ◦F),
T high,unocc

z = 25.6 ◦C (78 ◦F), W low,unocc
z = 0.0046 kgw/kgda,

and W high,unocc
z = 0.0104 kgw/kgda. The chosen thermal com-

fort envelope is shown in Figure 7.
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Occupied mode comfort envelope
Unoccupied mode comfort envelope

Figure 7: Thermal comfort envelope from [44] shown as the hatched areas.
Comfort envelope chosen in this paper shown as the shaded area during sched-
uled hours of occupancy and the unshaded area enclosed by dashed line during
unoccupied hours.

The values for mp
oa = 0.0043 kg/s/person (7.5 c f m/person)

and mA
oa = 3.67× 10−4 kg/s/m2 (0.06 c f m/ f t2) are chosen

based on ASHRAE 62.1 [45] for a lecture classroom. For pos-
itive pressurization, mbp

oa = 0.1894 kg/s is chosen so that there
are 0.2 air changes per hour. qother and ωother are computed
based on the number of people in the zone, assuming that each
person produces 100 W of heat and 1.39×10−5 kg/s (50 g/hr)
of water vapor [44], with np being 175, which is the design oc-
cupancy for the building. For qother, an additional heat load of
6000 W is considered based on lighting/equipment power den-
sity of 12.92 W/m2 (1.2 W/ f t2).

4.2. Controller parameters

The controller parameters for SL-MPC and S-MPC are listed
in Table 1. For the 1R-1C model used in the SL-MPC and
S-MPC, we use R = 1.15× 10−3 ◦C/W and C = 6.0167× 107

J/◦C. These values are obtained by creating a 1R-1C model
equivalent to the 2R-2C model (2), and equating the DC gains
and rise times for the transfer functions, with Toa and the heat
gains as inputs and the zone temperature as output. As men-
tioned earlier, ∆t = 5 minutes and N = 288 (corresponding to
prediction/planning horizon of 24 hours). The number of deci-
sion variables for SL-MPC is 2304 (= 288× 8) and S-MPC is
1440 (= 288×5).

For the baseline controller, outdoor air ratio is kept at 30%
and conditioned air temperature is kept at 12.8 ◦C (55 ◦F).

4.3. Performance metrics

To evaluate the various controllers in this study, we look at
the energy consumed by each of them as well as the violations
caused with respect to thermal comfort limits specified in Sec-
tion 4.1.

Table 1: Parameters used in the MPC controllers.

Parameter Notation Value Unit
Maximum allowed
supply air flow rate mhigh

sa 4.6 kg/s

Minimum allowed
outdoor air ratio rlow

oa 0 %

Maximum allowed
outdoor air ratio rhigh

oa 100 %

Minimum allowed
conditioned air

temperature
T low

ca 12.8 ◦C

Maximum allowed
supply air temperature T high

sa 30 ◦C

Maximum allowed
rate of change of

supply air flow rate
mrate

sa 0.37 kg/s/min

Maximum allowed
rate of change of
outdoor air ratio

rrate
oa 6 %/min

Maximum allowed
rate of change of
conditioned air

temperature

T rate
ca 0.56 ◦C/min

Maximum allowed
rate of change of

supply air temperature
T rate

sa 0.56 ◦C/min

Sampling interval ∆t 5 min

The total energy consumed by the controllers for 24 hours
is computed as follows:

Etotal =
∫

24hrs
Pf an(t)+Pcc(t)+Preheat(t) dt, (21)

where Pf an, Pcc, and Preheat are computed using (6), (7), and (9)
respectively.

We define the daily temperature violation as:

VT =
∫

24hrs
∆Tz(t)dt, (22)

where the term ∆Tz(t) is defined as [24]:

∆Tz(t) =


Tz(t)−T high

z , if Tz(t)> T high
z

T low
z −Tz(t), if Tz(t)< T low

z

0, otherwise.

(23)

The unit of VT is ◦C-hours. Similarly, we define the daily hu-
midity violation as:

VW =
∫

24hrs
∆Wz(t)dt, (24)

where the term ∆Wz(t) is defined as [24]:

∆Wz(t) =


Wz(t)−W high

z , if Wz(t)>W high
z

W low
z −Wz(t), if Wz(t)<W low

z

0, otherwise.

(25)

10



9 12 15 18 21 24 27 30
20

25

30

9 12 15 18 21 24 27 30
0

50

100

9 12 15 18 21 24 27 30
0

200

400

9 12 15 18 21 24 27 30
Time (Hours)

0

100

200

(a) Outdoor weather data and occupancy profile used in simulations (outdoor
air temperature, outdoor air relative humidity, solar irradiance, and number of
people).
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(b) Comparing the power consumptions (fan, cooling, and reheat power).
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(c) Zone and air loop conditions with the black dashed lines showing the upper
and lower comfort limits (zone air temperature, zone air humidity ratio, outdoor
air ratio, and supply air flow rate).
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(d) HVAC system conditions (conditioned air temperature, conditioned air hu-
midity ratio, supply air temperature, and chilled water flow rate).

Figure 8: Comparison of the three controllers for a hot-humid day (August/06/2016, Gainesville, Florida, USA). The scheduled hours of occupancy are shown as
the gray shaded area.

The unit of VW is kgw/kgda-hours.
The larger VT and VW are, greater the adverse impact on

occupants’ comfort and health.

5. Results and discussions

5.1. Results for the different outdoor weather conditions

5.1.1. Hot-humid day
Figure 8 shows the simulation results for a hot-humid day.

It is found that SL-MPC consumes the least amount of energy
when compared to S-MPC and BL, as presented in Figure 10.
There are large violations in humidity limits by S-MPC, specif-

ically during the unoccupied hours, as shown in Figures 10 and
8(c).

All three controllers are able to maintain thermal comfort
limits during scheduled hours of occupancy almost all the time;
see 08:00-17:00 hours in Figure 8(c). The BL ensures that dry
air is supplied to the zone and hence the humidity limit is not
violated since it keeps the conditioned air temperature at a con-
stant value of 12.8 ◦C (55◦F). In the case of S-MPC, the optimal
control decisions made by it are observed to be similar to those
made by SL-MPC. This can be attributed to the high internal
heat load and hot outdoor air temperature. Specifically, S-MPC
decides to keep the conditioned air temperature low enough (at
12.8 ◦C) to meet the heat load which has the unintended, but
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(b) Comparing the power consumptions (fan, cooling, and reheat power).
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(c) Zone and air loop conditions with the black dashed lines showing the upper
and lower comfort limits (zone air temperature, zone air humidity ratio, outdoor
air ratio, and supply air flow rate).
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(d) HVAC system conditions (conditioned air temperature, conditioned air hu-
midity ratio, supply air temperature, and chilled water flow rate).

Figure 9: Comparison of the three controllers for a mild day (March/25/2016, Gainesville, Florida, USA). The scheduled hours of occupancy are shown as the gray
shaded area.

good, side effect of maintaining zone humidity within the com-
fort limits.

Both the MPC controllers consume lesser energy when com-
pared to BL during occupied hours; see 08:00-17:00 hours in
Figure 8(b). The reason for this is that the outdoor air ratio is
kept constant for BL and it also assumes full occupancy from
08:00 to 17:00 hours. Therefore, the air flow rate has to be
kept high enough so that the ventilation requirements specified
in ASHRAE 62.1 [45] are met. This high air flow rate, com-
bined with the low conditioned air temperature, is highly sub-
optimal, especially when there is a reduction in occupancy: not
only is the air cooled unnecessarily, but reheating must also be
performed to prevent the zone from becoming too cold. This
phenomenon can be seen between 12:00-13:00 hours in Fig-

ures 8(b) and 8(c). The MPC controllers in contrast vary the
outdoor air ratio and air flow rate as occupancy varies, leading
to a lower fan and cooling energy consumption. It should be
noted that this reduction in energy use by the MPC controllers
requires accurate prediction of occupancy.

From Figure 8(c) it can be seen that S-MPC violates the hu-
midity limits during unoccupied hours while SL-MPC and BL
do not. This is because S-MPC decides to bring in the slightly
cooler outside air in an attempt to provide “free” cooling but
fails to realize that the air is humid. If this violation of hu-
midity limit occurs over several months, serious and costly is-
sues such as mold growth are a real possibility [6]. This does
not occur with SL-MPC as humidity is a part of the problem
formulation—the humidity constraint is found to be active be-
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tween 18:00-28:00 hours as shown in Figure 8(c).
The difference in energy consumption between S-MPC and

SL-MPC occurs over unoccupied hours. This is another effect
of the attempt to use “free” cooling by S-MPC. The use of
slightly cool, but humid, outdoor air results in the cooling coil
always having to reduce the temperature of mixed air and de-
humidify it, resulting in high power consumption. In the case of
SL-MPC, it decides to re-circulate return air and reduce the out-
door air ratio, thereby reducing the amount of de-humidification
required. This lowers the cooling coil energy consumption and
the overall energy consumption.

5.1.2. Mild day
Figure 9 shows the simulation results for a mild day. It is

found that SL-MPC consumes the least amount of energy when
compared to S-MPC and BL, as seen in Figure 10. Similar to the
results from hot day, there are huge violations in humidity limit
during unoccupied hours when using S-MPC. The conservative
set points in BL ensure that the comfort limits are not violated
but at the cost of high energy use. Therefore, we discuss only
the MPC controllers in further detail here.

As discussed in Section 2, there are four control commands
the MPC controllers need to decide. They are msa, roa, Tca,
and Tsa. Since the weather condition is not too cold, there will
be no reheat (Tsa = Tca) and the controllers need to decide the
remaining three: msa, roa, and Tca. During the occupied hours, it
is seen that S-MPC decides to keep Tca low enough (at 12.8 ◦C)
similar to SL-MPC due to the high internal heat load, and hence
maintains the zone humidity. This behavior is similar to the
one seen for a hot-humid day. But, the biggest difference in the
decisions made by the two MPC controllers are for roa and msa.
S-MPC decides to use 100% of the slightly cold outside air in an
attempt to lower the cooling and fan energy consumption, but
fails to realize that it is humid. Whereas SL-MPC uses much
lesser outside air. As a result, the cooling energy consumed by
S-MPC is much higher than that consumed by SL-MPC, and
can be seen between 12:00-17:00 hrs in Figures 9(b) and 9(c).

During unoccupied hours both the MPC controllers decide
to bring in 100% outside air, but SL-MPC decides to keep Tca

lower than the one decided by S-MPC to ensure that the air is
dehumidified enough before being supplied to the zone.

5.1.3. Cold day
Since the outdoor weather is dry, no matter what decisions

are made by a controller, it is unlikely to violate humidity con-
straints in the building. The energy consumed by the two MPC
controllers is almost the same, which is much smaller than that
by BL (Figure 10). BL performs simultaneous heating and cool-
ing in a pronounced manner leading to high energy consump-
tion: the fixed outdoor air ratio combined with the 12.8 ◦C
(55 ◦F) conditioned air requires usage of cooling energy, addi-
tionally reheating is required to keep the building warm enough
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(a) Comparison of total energy consumed over 24 hours by SL-MPC,
S-MPC, and BL for different outdoor weather conditions.
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Figure 10: Comparison of controllers’ performance.

because of the cold weather. The MPC controllers choose to use
as much outdoor air as possible, since the cold outdoor condi-
tions provide free cooling without having to use chilled water.

5.2. Comparison among controllers

The performance metrics discussed in Section 4.3 are com-
puted from simulation data for each of the three controllers, and
are shown in Figure 10. The temperature violation VT was ob-
served to be minimal for all three controllers, and is therefore
not shown in the figure. We see from the figure that space hu-
midity is a concern only during hot-humid and mild weather
conditions.

Figure 10 shows that SL-MPC outperforms the other two
controllers: it consumes the least amount of energy under var-
ious outdoor weather conditions with negligible violation in
thermal comfort constraints.

The simulation results discussed in the previous section show
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that S-MPC makes decisions that either leads to thermal com-
fort violations, or higher energy use when compared to SL-MPC,
under the following conditions.

1. Mild internal heat load but high outdoor humidity (e.g.
spring/summer night): In such a condition, S-MPC de-
cides that slightly cooler outside air can provide free cool-
ing, but the high humidity of the outside air causes high
indoor humidity; see Figures 10(b), 8(c), and 9(c). Thus,
S-MPC makes decisions in the interest of reducing en-
ergy/cost that leads to violation of humidity constraints.

2. During occupied hours on a mild weather day: In this
case, the S-MPC decides to meet the air flow requirement
with a larger fraction of outdoor air due to its small sensi-
ble heat, failing to recognize its high latent heat. Because
of the high internal sensible load during occupied hours,
it uses a low conditioned air setpoint which incidentally
reduces humidity of the air supplied, so fortunately no
space humidity violations occur. However, the decision
is energy inefficient compared to the proposed SL-MPC
controller.

Interestingly, S-MPC makes decisions similar to the pro-
posed SL-MPC controller either when (i) the internal heat load
is high and outdoor weather is hot and humid, or (ii) the outdoor
weather is cold and dry. In the latter case, the cold outdoor is
used to provide free (sensible) cooling, and since it is dry there
is no risk of space humidity becoming large. In the former sce-
nario, S-MPC recognizes that the conditioned air temperature
must be low enough to maintain the indoor temperature within
allowable limits. That decision has an unintended, but good,
side effect of maintaining space humidity even though the con-
troller has no knowledge of humidity.

BL uses conservative set points which ensures that there are
no violations in humidity and temperature constraints almost all
the time, but leads to higher energy use when compared to the
two MPC controllers.

These observations provide a basis for a cost-benefit trade-
off analysis of the three controllers. One should first note that
the proposed SL-MPC requires more sophisticated modeling
and additional humidity sensors compared to an MPC controller
that ignores humidity/latent heat, and thus is more expensive
to use in practice. The additional energy cost savings due to
the proposed MPC controller over the naive MPC controller
S-MPC is small, about 5%; see Figure 10(a). The larger dif-
ference is space humidity. As discussed previously, in mild
outdoor weather conditions such as spring/summer nights, the
proposed MPC controller is able to maintain space humidity
constraints while the naive MPC controller leads to poor space
humidity. Since this large space humidity occurs over many
hours in a night (see Figures 8(c) and 9(c)), and this behav-
ior is likely to repeat every night over the entire season, it may
lead to mold growth which can seriously affect occupant health.

In fact, additional simulations that are not reported here due to
space constraints, show that with larger internal moisture gener-
ation, poor space humidity occurs even during occupied hours.
Therefore, the benefit of incorporating humidity/latent heat in
MPC control of HVAC—or conversely the cost of not doing
so—maybe more about occupant health and comfort, and less
about energy savings. Additionally, since these benefits (con-
versely, costs) manifest only over long time periods, experi-
mental evaluations conducted over a short time period, say, less
than a few months, may not be adequate to provide a complete
assessment.

6. Conclusion

An MPC-based (model predictive control) controller which
incorporates humidity and latent heat in a principled manner is
presented. Simulations show that the proposed MPC controller
outperforms both a naive MPC controller (that does not con-
sider humidity/latent heat) and a baseline rule-based controller
in both energy use and thermal comfort, despite large plant-
model mismatch. A thorough comparison for several weather
conditions indicate the key advantage of the proposed controller
over the naive MPC is not energy savings but humidity control.
The naive controller may lead to poor humidity control, espe-
cially during mild outdoor weather conditions such as spring
or summer nights. Such violations in humidity over long peri-
ods can cause mold growth and can affect occupant health and
comfort.

This study is a first step; there are several avenues for further
exploration. A natural extension is to multi-zone buildings. A
thorough numerical investigation for various climate zones and
HVAC systems is also needed. It may be possible to reformulate
the underlying optimization problem in the proposed controller
to guarantee feasibility and convexity. Theoretical properties of
the controller need to be investigated as well. Another avenue
for future work is extension to supply side applications, such
as development of humidity-aware HVAC control to provide
ancillary services to energy supply networks.
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