
Spectral Differential Privacy: Application to Smart Meter Data

Kendall Parker1, Matthew Hale1, Anand Radhakrishnan2, Prabir Barooah1

Abstract— We present Spectral Differential Privacy (SpDP),
a novel form of differential privacy designed to protect the
frequency content of time series data. First, a notion of
differential privacy on the space of power spectral densities
is introduced. We then present a Gaussian-like mechanism for
SpDP. Next, a novel streaming implementation is developed
to enable real-time use of our proposed mechanism. The
privacy guarantee provided by SpDP is independent of the time
duration over which data is collected or shared. In contrast,
time domain trajectory-level differential privacy will require
noise with infinite variance to provide privacy over an infinite
time duration. We numerically evaluate our technique using
smart meter data from a single home and compare the utility
of SpDP to that of time-domain trajectory-level differential
privacy. The noise added by spectral differential privacy is
substantially smaller than that added by time-domain trajectory
differential privacy, particularly when privacy over long time
horizons is sought.

I. INTRODUCTION

As data-driven technologies proliferate, there are increased
privacy concerns associated with harvesting user data. For
example, the smart power grid can use granular power usage
data to ensure demand is met and prevent waste. However,
such data is known to be quite revealing about users,
potentially exposing their daily habits and activities [1],
[2]. Similar privacy concerns exist for other cyber-physical
systems [3], as well as other forms of critical infrastructure,
such as autonomous transportation [4]. These applications
therefore require protection of sensitive data that still ac-
commodate system performance.

Differential privacy (DP) is a formal privacy framework
that can balance the need for data and individuals’ privacy
concerns. As a statistical notion of privacy, DP protects data
by carefully randomizing it or a function of it [5]. An appeal-
ing feature of DP is that it is immune to post-processing, in
the sense that privacy is not weakened by arbitrary post-
hoc operations on privatized data. In the smart grid, this
means that arbitrary downstream analytics are permitted on
privatized data, whether done by a utility company or a third-
party partner.

While differential privacy originated in the context of
databases, it has recently been extended to data that is in the
form of trajectories or signals, termed trajectory-level differ-
ential privacy (TrDP) [6]. TrDP is implemented by adding
noise to signals or functions thereof. It can require large noise
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variance, notably for data across long time horizons. In many
applications, such as data analytics with smart meter data,
an upper bound on data length for an analytic may not be
known. Further, for many types of trajectory data the required
noise to provide privacy over an arbitrary time duration can
be arbitrarily large, making the privatized data useless for
downstream analytics. This weakness of TrDP motivates the
need for a privacy mechanism that is suitable for providing
privacy to signals over arbitrary time durations. We provide
examples in this work for smart meter data.

Existing literature has identified the frequency content of
smart grid signals as highly sensitive data [7], [8], [9], and
this is what we will privatize with a new notion of differential
privacy. In this approach, which we term Spectral Differ-
ential Privacy (SpDP), we treat a signal’s power spectral
density (PSD), instead of the signal itself, as the sensitive
information to protect. In this setting, a privacy mechanism
is applied directly to a PSD to create a privatized PSD. If one
can compute a PSD offline, then this mechanism can also be
implemented offline. Since our motivation is privacy of smart
meter data, smart meters must transmit time domain data
in a streaming (as opposed to batch) fashion. We therefore
provide a streaming implementation to compute and share a
signal in real time so that the PSD of the transmitted signal
is the same as the privatized PSD that the SpDP mechanism
generates.

Privacy for PSDs masks differences between PSDs within
a specified distance of each other, and this distance cor-
responds to the magnitude of sensitive events that must
be masked. One can choose this magnitude irrespective of
the time duration of interest. Thus, the noise added to the
time domain signal to provide SpDP is independent of the
time duration of the data transmitted. In contrast, the noise
added in Trajectory-level Differential Privacy increases with
the duration of data. We illustrate the proposed method
numerically using consumer data from the Pecan Street
Project database [10], which illustrates the advantage of
SpDP over TrDP for long duration data privacy.

The value of differential privacy to smart metering and re-
lated applications has been recognized by many researchers;
a representative sample of existing works includes [11], [12],
[13], [14]. Relative to those existing works, our contribution
is developing the first differential privacy implementation
for PSDs, together with numerical results benchmarking its
performance on actual power usage data.

The structure of this paper is as follows: Section II
summarizes formal definitions for trajectory-level differen-
tial privacy (TrDP) and reviews some of the mathematical
preliminaries. Spectral Differential Privacy definition and



associated mechanism design is covered in Section III.
Section IV then provides a streaming implementation design,
and Section V provides a numerical example with smart
meter data. Section VI provides conclusions and directions
for future work.

II. BACKGROUND, MOTIVATION, AND PROBLEM
STATEMENT

We first briefly review some background material, and then
formally state the two problems that are the subject of the
remainder of the paper. The symbols R and N denote the sets
of real and natural numbers. For a sequence x : N → Rn,

we use the notation ‖x‖`2 =
(∑∞

k=0 ‖x(k)‖22
)1/2

. We use

the notation ˜̀n
2 denote the set of all sequences x : N→ Rn

with ‖x(k)‖2 <∞ for all k, i.e., sequences x whose entries
are all finite.

A. Recap of TrDP

We state the essential notions from trajectory-level differ-
ential privacy (TrDP) in the following proposition; see [6]
for a thorough exposition.

Proposition 1: Fix B > 0.
1) Two sequences x, y ∈ ˜̀n

2 are said to be adjacent if ‖x−
y‖`2 ≤ B.

2) A mechanism M is (ε, δ)-differentially private with
respect to this adjacency relationship if

P
[
M(x) ∈ A

]
≤ eεP

[
M(y) ∈ A

]
+ δ

for all measurable A ⊆ ˜̀n
2

3) The Gaussian mechanism M(x) = x + w is (ε, δ)
differentially private with w(k) ∼ N (0, σ2I), if

σ ≥ B

2ε

(
Q−1(δ) +

√
Q−1(δ)2 + 2ε

)
and Q(a) = 1√

2π

∫∞
a

exp(−u2/2)du is the Gaussian
tail integral.

The purpose of differential privacy is to mask the differ-
ences between adjacent pieces of data by ensuring that
they produce approximately indistinguishable outputs when
a mechanism is applied to them. That is, given some output
sequence, it should be unlikely for its recipient to make
meaningful distinctions between input sequences that could
have produced it. We refer to the input x as the sensitive data
and the output - a realization of the DP mechanism M(x) -
as the privatized data.

The interpretation is as follows: the parameter ε controls
information leakage about a sensitive data, and smaller
values of ε imply less leakage and hence stronger privacy.
The parameter δ can be interpreted as the probability that ε-
differential privacy fails. For all data types, typical values
are ε ∈ (0, log 3) and δ ∈ [0, 0.05].

The adjacency parameter B is a design parameter: a larger
B effectively declares two sequences with large `2 distance
to be adjacent. An (ε, δ) privacy mechanism provides the
privacy protection to all the signals within a distance B.
The price one pays is the higher noise in the privatized data
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Fig. 1: The distance between d1:N and dN+1:2N , as a func-
tion of data duration n illustrates the trouble with TrDP. Data
used is a particular consumer’s power demand from [10].

and thus, the accuracy of any analytics with the privatized
data degrades. In particular, the variance of privacy noise is
proportional to B2.

Consider two power demand (in kW) trajectories of
length N from the same customer: d1:N := {dk}Nk=1 and
dN+1:2N := {dk}2Nk=N+1

1 . The distance ‖d1:N−dN+1:2N‖`2
keeps increasing without bound as N increases; see Figure 2
that uses electrical demand data collected at 1-minute sam-
pling interval from a single home [10]. Since these two time
series are from the same residence over two consecutive
time intervals, any reasonable notion of adjacency should
qualify them as adjacent. In a TrDP framework of differential
privacy, a large B will be required to ensure that they do
indeed count as adjacent. Larger B leads to larger noise to
be added to the sensitive data. The utility of the privatized
data is decreased commensurately. If one wants to provide
privacy that is independent of the time duration over which
data is collected, B - and thus the noise added - must
be infinitely large and the utility of the privatized data for
analytics becomes zero.

This discussion shows the difficulty of using standard
TrDP to provide privacy to smart meter data, or any time
series with a large number of samples. An exception is a
time series x with decaying xk’s so that x ∈ `2, but such
time series are not relevant to smart grid applications.

B. Spectral Differential Privacy Problem Statement

We are interested in privatizing power demand trajectories
from smart meters over arbitrarily long time horizons, which
motivates our development of a new differential privacy
framework. As noted in the introduction, the frequency
content of such signals is sensitive, and it is therefore
the frequency content that we privatize. We next state the
problem that is the subject of the remainder of the paper;
the ideas and terms contained in it - including the definition

1We use x to denote an arbitrary time series or stochastic process. Here,
we consider demand signals specifically, which is indicated by a change in
notation to d for the signal.



of a power spectral density - are formalized in the rest of
this section.

Problem 1: Given a time domain signal d = {dk}k∈N and
its power spectral density (PSD) Φdd, do the following:

a. Design an (ε, δ) differential privacy mechanismM that
privatizes Φ (in an appropriate sense).

b. Develop a streaming implementation of M that gener-
ates samples d̃k in real-time so that the PSD of d̃ is Φ̃.

The privatized data that the mechanism and its streaming
implementation produce must still be useful in downstream
analytics. We use differential privacy because it can provide
privacy while still allowing for reasonably accurate data
to be released. We solve Problem 1.a. in Section III and
Problem 1.b. in Section IV.

C. Mathematical Preliminaries

1) Power Spectral Density (PSD): A stochastic process
x is called wide sense stationary (WSS) if E[xk] = µ
and E[xkxk+m] := Rxx(k, k + m) = Rxx(m) for all k,
where E denotes expectation. The power spectral density of
a zero mean WSS process x is the Fourier transform of its
autocorrelation,

Φ(ω) = F [Rxx] =

∞∑
m=−∞

Rxx[m]e−jωm,

where F denotes the Fourier transform and ω is the (continu-
ous) frequency variable [15]. The process x is assumed to be
zero mean throughout for the sake for the sake of notational
convenience; otherwise the mean must be subtracted in every
definition that involves an expectation.

When the PSD exists, it is non-negative, 2π-periodic,
and even, which makes it uniquely specified by its values
over [0, π]. We therefore focus all operations on PSDs on
the interval [0, π] for the remainder of the paper.

2) Reproducing Kernel Hilbert Space: We will need to
limit PSDs to belong to a certain reproducing kernel Hilbert
space (RKHS). A reproducing kernel Hilbert space H with
kernel K(·, ·) (defined over some domain T ) is a Hilbert
space that is generated by the closure of functions which
can be represented as finite linear combinations of the
kernel [16]. The RKHS used in the rest of the paper is the
Sobolev space

H1[0, π] =
{
f ∈ C1[0, π] : ‖f‖2H <∞

}
,

where the norm is

‖f‖2H :=
f(0)2 + f(π)2

2C
+

1

2βC

∫ π

0

(f ′(t)2 + β2f(t)2)dλ(t),

with C, β > 0. The space H1[0, π] is a RKHS with kernel
K(x, y) = C exp(−β|y − x|) [16, Ch. 7].

In the sequel, H denotes the space H1[0, π] defined above.

III. SPECTRAL DIFFERENTIAL PRIVACY

This section develops Spectral Differential Privacy
(SpDP), including appropriate notions of adjacency, and a
specific mechanism for providing SpDP; this last develop-
ment solves Problem 1.a.

A. Defining SpDP

Let x be a real-valued wide-sense stationary (WSS)
stochastic process. In Spectral Differential Privacy we treat
the PSD of x, Φxx : [0, π]→ R+, as the sensitive data to be
protected. We consider PSDs that are in the RKHS H.

Remark 1: Differential privacy is often applied to col-
lections of data from N users. Here, we simply set N =
1 and apply differential privacy to each individual user,
an approach sometimes called “input perturbation” in the
literature. See [6] for other uses of this approach in control
systems. The interpretation of input perturbation privacy in
our context is that each user’s PSD is made approximately
indistinguishable from nearby PSDs, which are produced by
demand signals with similar frequency content. �

The approximate indistinguishability criterion is a hall-
mark of differential privacy and is enforced by a mechanism,
identical to TrDP.

Definition 1: Fix a choice of adjacency parameter B > 0.
Then adjacency relation AdjB is defined for all Φ,Ξ ∈ H as

AdjB(Φ,Ξ) =

{
1 ||Φ− Ξ||H ≤ B
0 otherwise.

In accordance with Remark 1, we will apply this definition
to each user individually, thereby masking differences among
all individuals’ data. We emphasize that the boundedness
defining AdjB is not an assumption but a specification.
Namely, a user selects an adjacency parameter B > 0, and
their true PSD is made approximately indistinguishable from
all other PSDs within distance B by the privacy mechanism.
This definition does not restrict users’ data in any way.

We next state differential privacy for PSDs, which is based
on developments for functional data in [17]. In accordance
with established differential privacy principles, this definition
gives immunity to post-processing, in that post-hoc com-
putations do not weaken privacy, and robustness to side
information, in that learning additional information beyond
a privatized PSD does not weaken differential privacy by
much [5].

We use the notation Σ∞ to denote the Borel σ-algebra
over H under the topology induced by the ∞-norm, de-
fined as ‖Φ‖∞ = supω∈[0,π] |Φ(ω)|. When the function
Φ ∈ H is also non-negative and integrable (

∫ π
0

Φ(ω)dω
exists), it is a valid PSD since the inverse DTFT R[k] =
1

2π

∫ 2π

0
Φext(ω)ejωkdω — where Φext is the extension of

Φ to [0, 2π] by mirroring so that it repeated tiling over the
entire real line produces a periodic function — yields a valid
autocorrelation sequence. We denote by P the set of real-
valued non-negative functions in [0, π].

Definition 2 (Spectral Differential Privacy (SpDP)):
Consider functions in H, which was defined in Sec. II-C.2,
and fix B > 0, ε ∈ [0,∞), and δ ∈ [0, 1). Then a



mechanism M provides (ε, δ)-Spectral Differential Privacy
(SpDP) if the following two conditions are satisfied:

1) For all Φ,Ξ such that AdjB(Φ,Ξ) = 1, and all A ∈ Σ∞,

P
[
M(Φ) ∈ A

]
≤ eεP

[
M(Ξ) ∈ A

]
+ δ.

2) M(Φ) ∈ H ∩ P .
If M only satisfies the first condition, we say M provides
(ε, δ)-functional differential privacy (FnDP).

B. Advantage of SpDP Over TrDP

With the definition in hand, we now point out the ad-
vantage of SpDP over TrDP. Section II-A already presented
evidence that the adjacency parameter B for TrDP needs to
increase with time duration over which privacy protection is
provided. This increases the amount of noise required for
differential privacy.

SpDP does not suffer from this weakness because the
distance between PSDs does not depend on time. Imagine a
consumer Alice and let Φ

(A)
1 and Φ

(A)
2 be two possible PSDs

of Alice’s demand. Meaning, these two PSDs represent two
possible, statistically distinct behaviors of Alice. To provide
SpDP to Alice within the input perturbation framework
referred to in Remark 1, the adjacency parameter B needs
to be chosen so that ‖Φ(A)

1 −Φ
(A)
2 ‖H ≤ B for all allowable

Φ
(A)
1 ,Φ

(A)
2 . Even if the value of B needed is large, the value

is independent of any time duration involved.
In practice, the PSD — or the possible PSDs — of a

consumer’s demand is not known. It is possible to estimate
the PSD of a stochastic process from sample paths [15].
Estimates with different data lengths can be thought of as
possible PSDs that this consumer can produce. Figure 2
shows the distance ‖Φ1:N − ΦN+1:2N‖H, where the two
PSDs Φ1:N and ΦN+1:2N are distinct estimates of the
consumer’s PSD computed with distinct data sets d1:N and
dN+1:2N , respectively2. We see from the figure that the
distance between the PSDs do not increase with increase in
data length N . This is expected since the data is generated
by the same consumer’s behavior, so the statistics of the
underlying stochastic process does not change with time. In
other words, a fixed B can be used irrespective of the time
duration involved.

C. A SpDP Mechanism

Similar to TrDP, additive Gaussian noise can be used
to design a SpDP mechanism. The difference is that a
continuous Gaussian process is used in SpDP since the
sensitive data in this case is functional data.

Theorem 1: Let H be the RKHS H1[0, π] defined in
Section II-C.2, with kernel K. Define the mechanism M

M(Φ) = Φ +B
c(δ)

ε
G, (1)

2The norms are computed by using the definition of ‖ · ‖H provided
in Section II-C.2, after fitting a parametric model to the data-driven
non-parametric PSD estimate to facilitate computation of the derivatives
involved.
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Fig. 2: A comparison of the distance between time-domain
sensitive data and corresponding frequency-domain sensitive
data (PSD) obtained with increasing data length. Data from
Pecan Street project [10].

where G is a sample path of a zero mean Gaussian process
whose auto-covariance is the kernel K, B is the adjacency
parameter in Definition 1, and c(δ) ≥

(
2 log(2

δ )
) 1

2 . ThenM
provides (ε, δ)-functional differential privacy in the sense of
Definition 2.
Due to its technical nature, proof of the theorem is in the
appendix.

The Gaussian-like mechanism in Theorem 1 does not pro-
vide Spectral Differential Privacy because it may not produce
a valid PSD; the Gaussian process added can make the output
function negative at some frequencies. Algorithm 1 presented
next describes a mechanism to provide SpDP in the sense of
Definition 2. We encapsulate all the steps of the algorithm
into the notation MSpDP so that Φ̃ = MSpDP

(
Φ
)

is the
output of the algorithm.

The algorithm uses a positive filter. A positive filter is a
dynamical system whose output is positive if the input is a
non-negative signal and the initial state is non-negative [18].
A simple example is P (s) = 1

s+1 , where s is the Laplace
variable.

Algorithm 1: MechanismMSpDP to provide (ε, δ)-
Spectral Differential Privacy (SpDP).

Input: The sensitive PSD of a user’s power usage
signal, Φ, adjacency parameter B, privacy
parameters ε and δ, sample path G of zero
mean Gaussian process with auto-covariance
K, positive filter P (s)

Output: Φ̃: A differentially private form of Φ
/* Apply Gaussian mechanism */

1 Set Φinter ← Φ +B c(δ)
ε G as in Equation (1)

/* Make values non-negative */
2 Set Φinter(ω)← Φinter(ω)+ for all ω ∈ [0, π]

/* Apply P (s) non-causally */
3 Set Φ̃← P (s)[Φinter]

We next show through Theorem 2 that Algorithm 1 solves
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Fig. 3: Comparison of power spectral densities for true,
sensitive demand and private demand. The sensitive PSD
was smoothed with a low-pass filter to remove numerical
artifacts. Private demand contains added noise from (1). Data
from Pecan Street project [10].

Problem 1.a.
Theorem 2: Algorithm 1 provides (ε, δ)-spectral differen-

tial privacy.
Proof: The intermediate function Φinter = Φ+B c(δ)

ε G
satisfies (ε, δ)-functional differential privacy by Theorem 1.
However, Φinter is negative at some frequencies with non-
zero probability because of Gaussian process path G. Thresh-
olding negative values to 0 (in step 2) makes the function
non-negative at all frequencies, but the resulting function can
have points of non-differentiability. Filtering with a positive
filter makes the resulting function sufficiently smooth and
retains non-negativity. The filter is applied non-causally
to avoid phase change. Since all operations are done on
[0, π], symmetry is maintained by mirror imaging, which
ensures that the output of the mechanism, Φ̃, is a valid
PSD. That Φ̃ is (ε, δ)-differentially private follows from
immunity to post-processing of differential privacy: Φinter
is (ε, δ)-functional differentially private, and all subsequent
operations are merely post-processing, which means their
outputs have the same level of privacy.

Figure 3 shows a numerical example of the sensitive data
Φdd (the PSD of a customer’s demand d) and the privatized
data Φ̃ obtained by applying the mechanism MSpDP . The
privacy parameters used are δ = 0.001, ε = log 2, and B =
14.5kW

2

Hz . Choice of B will be discussed in Section V.
A note on numerical computation is in order. Algorithm 1

is for PSDs, which are functions of the continuous frequency
parameter ω. All numerical calculations must be done on
discrete data, so the PSD is first sampled, and instead of the
filter P (s), its sampled-data counterpart P (z) is applied on
the sampled PSD.

A related practical issue is obtaining the PSD Φdd of
a consumer’s demand {dk}k∈N. One can estimate a non-
parametric form of the sampled version of the PSD, from the
samples dk by using a standard estimation algorithm, such
as averaging of periodograms [15]. To avoid technicalities
regarding estimation accuracy, the difference between the
sampled version of the PSD (by using the DFT) versus
the true PSD (which is the DTFT), we assume that the
customer’s smart meter has access to the PSD Φdd(ω),

whether by a non-parametric estimation method, or by fitting
a parametric model to the data, or by a combination thereof.

Strictly speaking, the filter P (s) in Algorithm 1 is not
needed. However, the filter makes the resulting PSD suffi-
ciently smooth so that satisfies the differentiability conditions
needed for the output Φ̃ belongs to H. Apart from theo-
retical convenience, this smoothness helps with the spectral
factorization involved in streaming implementation, which is
discussed in Section IV.

IV. A STREAMING IMPLEMENTATION OF SPDP

Thus far, we have identified a method to privatize the PSD
of a power demand signal which occurs offline. Since smart
meters cannot transmit PSDs, a time-domain implementation
of SpDP is needed that we call streaming implementation
due to its real-time requirement. We assume for development
of this privacy mechanism that smart meters are tamper
resistant, trusted, and have the ability to perform filtering.

Recall the streaming implementation problem specified in
Prob. 1.b.: for a demand signal d := {dk}k∈N, the streaming
implementation must produce in real time a sequence of
samples d̃k so that the PSD of the process d̃ := {d̃k}k∈N
is the privatized PSD Φ̃ := MSpDP

(
Φdd

)
. The streaming

implementation will occur at the smart meter.
For the algorithm performing streaming implementation,

Φdd and Φ̃ are thus known a priori. However, dk is available
only in real-time. Our streaming implementation is shown in
Algorithm 2.

Algorithm 2: Streaming implementation of SpDP
Input: The sensitive signal {dk}, its PSD Φdd, its

privatized form Φ̃, and the filter F (z)
Output: A time-domain signal d̃ := {d̃k}k∈N related

to d whose PSD is Φ̃
/* Offline: */

1 Compute

η(ω) := Φ̃dd(ω)− |F (ejω)|2Φdd(ω)

2 Compute H(z) such that |H(ejω)|2 = η(ω)
/* Online: */

3 for k = 0, 1, . . . do
4 Generate white noise wk with 0 mean and unit

variance.
/* Apply H(z) to wk */

5 ck ← H(z)[wk]
/* Apply F (z) to dk */

6 dFk ← F (z)[dk]

7 Release d̃k = dFk + ck
8 end for

To explain the algorithm and discuss the role of the filter F
that must be provided to the algorithm, as well as its design,
we first recall the following basic facts.

Proposition 2 ([15]): 1) If w is a white, WSS, and
zero-mean stochastic process with variance σ2, then
Φww(ω) = σ2 for all ω.
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Fig. 4: Visualizing streaming implementation.

2) If x and y are mutually uncorrelated processes, and z =
x+ y, then Φzz(ω) = Φxx(ω) + Φyy(ω) for all ω.

3) If G(z) is a stable linear filter with WSS input x, its
output z is also WSS and Φzz(ω) = |G(ejω)|2Φxx(ω).

4) (Paley-Wiener condition) If a function Φ(ω), ω ∈ R,
is real-valued, non-negative, even and 2π-periodic, then
there exists an H(z) and H(z−1) with both analytic in
|z| > 1 satisfying |H(ejω)|2 = Φ(ω) if and only if η
and log(η) are integrable functions over [0, 2π).

The offline and online operations involved are illustrated
in Figure 4. In it, we use dF to denote the signal resulting
from applying a filter F to the process d, and ΦF to denote
the PSD of dF . As seen from Figure 4a, use of the filter F on
the sensitive data d reduces the PSD of the filtered process
dF compared to the sensitive PSD Φ. The difference between
the “target” PSD Φ̃ and that of the PSD of the filtered data
is η(ω). A process with this PSD is generated by driving the
filter H with white noise, so that their sum has the desired
PSD Φ̃.

The next theorem establishes the conditions under which
Algorithm 2 is a valid streaming implementation of the
privacy mechanism MSpDP in Algorithm 1.

Theorem 3: If η(ω) defined in Algorithm 2 satisfies the
Paley-Wiener criterion described in Proposition 2, then Al-
gorithm 2 produces a private demand signal d̃k in real-time
with PSD Φ̃dd.

Proof: By hypothesis, η is a valid PSD and it can be
spectrally factorized to obtain H(z) so the offline steps are
feasible. To show that the samples d̃k have the desired PSD,

PSD({d̃k}) = PSD({dF }) + PSD({ck})
⇒ Φd̃d̃(ω) = |F (ejω)|2Φdd(ω) + |H(ejω)|2

= Φ̃(ω).

The first equality follows from colored noise ck and filtered

demand dFk being uncorrelated, since ck is obtained by
filtering a white noise sequence that is independent on the
demand. The second equality follows from Proposition 2.
The third equality results from plugging in the definition of
η — since it is equal to |H|2 — in the right-hand side of
the second equation.

Remark 2: The filter F is a design choice and plays a
key role. From the hypothesis of Theorem 3, we see that the
feasibility of Algorithm depends on a proper design of F . A
poorly designed F can make η(ω) < 0 at some ω, in which
its spectral factorization into H is not possible. In that case,
Algorithm 2 is not implementable.

The use of the positive filter P (s) during mechanism
design is helpful in ensuring smoothness of Φ̃. We suspect
the Paley-Wiener conditions are satisfied if F is designed so
that η is positive.

Apart from feasibility of streaming implementation, de-
sign of F determines the degree of correlation between the
released time domain data d̃ and the sensitive time domain
data d. This can be seen from Figure 4a: if the filter F has
low gain at some frequency, the gap η between the PSDs of
sensitive demand (i.e., Φdd) and filtered demand (i.e., ΦF )
will be large at that frequency. Recall that this gap is filled
by the noise ck, since the PSD of ck is |H|2 = η. Thus, the
released data will have a high noise (ck) compared to the
signal (sensitive data dk) at that frequency. The released data
d̃ will thus have a smaller correlation with the sensitive data
d. Analytics performed with the released data d̃ will be less
accurate than those done with the sensitive data d, and the
loss of accuracy will increase as the gain of F is reduced. In
contrast, as the gain of F approaches 1, the loss of accuracy
approaches 0 but then the streaming implementation may be
infeasible because of negative values of η(ω). �

V. NUMERICAL EVALUATION OF SPDP AND
COMPARISON WITH TRDP

The SpDP mechanism was already described in Sec-
tion III; so here we only present the results of the streaming
implementation of that mechanism. The numerical results in
this section are for privacy parameters δ = 0.001, ε = log 2
(for both TrDP and SpDP). For SpDP, the parameters C and
β were chosen as 1 and 0.2 1

Hz , respectively.
In the differential privacy literature, the adjacency pa-

rameter B is a design choice and relatively few guidelines
exist on how to choose it. It also depends on the choice of
norm used to define distance. Since time domain Trajectory-
level Differential Privacyand Spectral Differential Privacy
use vastly different norms, the choice of B must differ in
these two distinct privacy paradigms.

Many distinct estimates of the PSD of a particular resi-
dence’s demand are performed using time domain data of
varying length N , from one-month (N = 30 × 24 × 60),
going up to a year (N = 365 × 24 × 60). The maximum
distance (the H-norm) between these distinct PSD estimates
turns out to be 1450 kW2/Hz; see Figure 2. We choose 1/100
of this distance as the adjacency parameter for SpDP, i.e.,
BSpDP = 14.5 kW2/Hz.



The streaming implementation in Algorithm 2 was per-
formed using one-month long consumer demand data from
a single home in Pecan Street [10]. Figure 5a shows the
sensitive time-domain data and the data privatized with the
streaming implementation of SpDP.

To compare with TrDP, we consider two distinct data
durations: A month and a year. For the first, the distances
between pairs of time series of demand data, each series
corresponding to one-month (i.e., N = 30 × 24 × 60) are
computed. The maximum distance between these month-long
datasets turns out to be 281 kW; see Figure 2. We choose
1/100 of this distance as the adjacency parameter for TrDP,
i.e., B(1)

TrDP = 2.81 kW. Repeating the process for a year
(N = 365 × 24 × 60), the maximum distance is seen to be
714 kW; see Figure 2. The B value is again chosen as 1/100
of this maximum distance, leading to B(2)

TrDP = 7.14 kW.
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Fig. 5: A 24-hour snapshot comparison of sensitive data
and privatized results from (a) SpDP, which are the same
no matter the time duration considered, (b) TrDP, providing
privacy for month-long data, and (c) TrDP, providing privacy
for year-long data. Data used is individual consumer demand
from [10].

TABLE I: Results Comparison for TrDP and SpDP

B
Standard
Deviation

Correlation
Coefficient SNR

SpDP 14.5 kW2

Hz
81 kW2

Hz
0.39 2.03

TrDP – 1 Month 2.81 kW 13 kW 0.15 0.17
TrDP – 12 Months 7.14 kW 33 kW 0.07 0.03

Time domain data privatized with TrDP is also shown in
Figure 5b for B = B

(1)
TrDP and 5c for B = B

(2)
TrDP . The first

can be thought of as providing privacy for month-long data
and the second for year-long data, both within the traditional
TrDP framework. Note that the sensitive demand data is the
same in all three figures. We can see from the figures, and
from result in Table I that signal to noise ratio (SNR) for
SpDP implementation is much better than the SNR for TrDP.
This difference is most prominent when TrDP is used to
provide year-long data privacy. Moreover, the SNR for SpDP
is not only better than that of TrDPbut is also independent
of the time duration over which data is collected or shared.
Thus, SpDP is likely to enable higher accuracy downstream
analytics with privatized data than TrDP, especially when
long duration data is involved. This is supported by the
improved correlation coefficients of SpDP between sensitive
and privatized data in Table I. Precise quantification of the
level of accuracy needed and its benefits will depend on the
type of analytics, and is outside the scope of this paper.

VI. CONCLUSIONS & FUTURE WORK

A new notion of differential privacy — Spectral Differ-
ential Privacy (SpDP) — was presented that is better suited
for providing privacy to long duration data than the existing
Trajectory-level Differential Privacy (TrDP). In SpDP the
power spectral density is considered as the sensitive data
to privatize. The main advantage is that the noise needed
to provide a certain level of privacy is independent of time
duration. In contrast, the noise needed for privacy in time
domain TrDP increases without bound as the time duration
increases. Numerical evaluations with a consumer’s electrical
demand data show that SpDP reduces the noise needed
significantly compared to TrDPfor equal levels of differential
privacy.

This paper only takes the first step in developing mech-
anisms and their streaming implementations for SpDP. The
Gaussian-like mechanism provided here is only one possi-
bility. We believe the noise added during streaming imple-
mentation can be further reduced by alternate mechanism
designs. Future development also needs to investigate the
impact of the WSS assumption on mechanism design. This
assumption may not hold for power demand signals due to
seasonal or other cyclic phenomenon. Additionally, future
work will include refinement of filters used in streaming
implementation to hide specific features of power demand,
assessment of the impact on downstream data analytics such
as billing, etc.
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VII. APPENDIX

A. Proof for Theorem 1

A Gaussian mechanism for general functions of a con-
tinuous variable was first presented in [17, Corollary 9].
Our spectral differential privacy framework differs because it
considers individual functions rather than functions derived
from a database, e.g., due to interpolating among points. Our
framework also differs because it considers a parameterized

adjacency relationship on the space of PSDs themselves,
rather than adjacency for a set of databases from which func-
tions are derived. Accordingly, our proof of Theorem 1 must
re-establish the Gaussian mechanism under the conditions
needed for spectral differential privacy.

We do so by showing that, for a fixed B > 0 and for all
PSDs Φ and Ξ such that AdjB(Φ,Ξ) = 1, all finitely sampled
releases of a privatized PSD are (ε, δ)-differentially private.
First, consider a set of n points (ω1, . . . , ωn), where ωi ∈
[0, π] for all i. Then, for K the kernel of H1[0, π], recall
that G has autocovariance function K. For point ω, ν ∈
[0, π], define

K(ω, ν) = cov
(
G(ω), G(ν)

)
.

Then, for some n ∈ N, we define the Gram matrix

M
(
ω1, . . . , ωn

)
=

 K(ω1, ω1) · · · K(ω1, ωn)
...

. . .
...

K(ωn, ω1) · · · K(ωn, ωn)

 .

By [17, Proposition 8], we know that, for all fixed n ∈ N,
and all adjacent Φ and Ξ,∥∥∥∥∥∥∥M−1/2

(
ω1, . . . , ωn

) Φ(ω1)− Ξ(ω1)
...

Φ(ωn)− Ξ(ωn)


∥∥∥∥∥∥∥

2

≤ ‖Φ− Ξ‖H

≤ B,

where ‖ · ‖2 denotes the Euclidean norm on Rn. De-
fine ∆(Φ,Ξ;ω1, . . . , ωn) to be the argument of the first norm
above. Then, in particular,

sup
Φ,Ξ s.t.

AdjB(Φ,Ξ)=1

sup
n<∞

sup
(ω1,...,ωn)∈[0,π]n

‖∆(Φ,Ξ;ω1, . . . , ωn)‖2≤B.

Then, the mechanism

Φ̃ = Φ +B
c(δ)

ε
G

provides (ε, δ)-differential privacy to any n-point sampling
of Φ with respect to a finite-dimensional σ-algebra adapted to
that dimension. Using the argument of Proposition 6 in [17],
we conclude that privacy holds in the space H1[0, π] with
respect to the σ-algebra Σ∞.


