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Abstract—Power systems employ reserves to ensure there is
adequate generation and storage to meet demand. With the
increased use of volatile and uncertain sources of electricity such
as solar and wind, the need for reserves is becoming more critical
to ensure reliable supply of electricity. Due to the high cost of
reserves, methods are required to determine minimal reserves
needed. This work proposes a probabilistic data-driven method
to determine the minimum reserve size (both power and energy)
to satisfy a specified reliability requirement for a bulk power
grid. The proposed method is applied to data from two balancing
authorities (BPA and CAISO), and the results are compared with
those from an alternate deterministic method and to those from
the current reserve sizing methods employed by BPA and CAISO.
The reserve requirements do not seem to be predicted by simple
indicators of volatility, such as installed capacity of wind and
solar, which has implications for grid planning in a renewable
rich future.

I. INTRODUCTION

Volatile renewable energy sources (VRES) such as solar and
wind are becoming a significant part of the power generation
mix. Since VRESs are non-dispatchable and intermittent,
the net-load, which is the difference between demand and
generation from VRES, must be met by controllable resources.
Traditionally, power systems have maintained reserves to cope
with unforeseen changes in generation and demand. These
reserves are provided by controllable generation or storage.
With the increasing penetration of VRES, larger reserves are
needed to maintain the same level of reliability. Since reserves
are expensive irrespective of whether they are supplied by
traditional generators or energy storage systems, there is a
need for determining the minimal amount of reserves required
to meet a certain level of reliability [1].

There is extensive literature on reserve sizing. The review
[2] concluded that there was no tool “...that specifically dealt
with sizing and locating energy storage under any optimality
criterion that would be useful for infrastructure development”.
Four years later, the authors in [3] conclude that “...thus far,
contributions to the theoretical analysis of storage sizing had
been limited”. In a review of methods for energy storage
system (ESS) siting and sizing from 2016 [4], results show that
only two works, [5] and [6], utilize analytical methods with-
out complex mathematical optimization tools to size energy
storage with reliability constraints. Of these two references,
the first presents a general methodology to determine the size
of a backup storage unit for “a hospital, process plant, or
a military base” [5]. The method in the second reference
is demonstrated on a micro-grid [6]. Moreover, many other
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analytical sizing methods focus on specific use cases, such as
on micro-grids [7, 8], on wind power and wind forecasting
[9, 10], on photovoltaics [3, 11], or on small communities
[12]. Methods for sizing reserves at this small scale usually
do not consider reliability requirements.

In this work, we propose a method to determine the
minimum reserve capacity requirement (power and energy)
to satisfy a certain reliability measure. The loss of load
probability (LOLP) is used as the reliability measure since
“methods based on LOLP are...often applied to resource ade-
quacy assessments” [13]. The method uses time series data of
demand and renewable generation to fit a probabilistic model
of the fast-varying component of the net-load that slowly
ramping conventional generator may not be able to meet. The
reserve needed to meet the specified LOLP requirement is then
obtained from the probabilistic model.

While LOLP considers the probability of not meeting
(power) demand, it does not consider the impact of unmet
energy demand when a shortfall occurs. Severity of the unmet
energy demand is quantified through the energy index of
reliability (EIR). We quantify the EIR achieved when reserve
sizing is performed for a target LOLP. Since both LOLP and
EIR are existing bulk-system planning metrics, the proposed
sizing methodology provides a helpful assessment of resource
adequacy for bulk system reserve sizing.

Reserve needs in the context of bulk power systems are
usually quantified in terms of power (Watt) alone, presumably
since reserves are provided by traditional generators such as
thermal and hydro. Thus, their energy (Watt-hour) capacity can
be considered effectively infinite. In the future, if part of the
reserve is supplied by batteries, energy will need to be part of
reserve considerations. The proposed method computes both
the power and energy capacity needed to meet a certain LOLP.

While many sizing methods – especially those for micro-
grids – determine optimal sizing by minimizing an objective
that incorporates the cost of reserves and the cost of not meet-
ing demand due to inadequate reserves, we do not follow such
an approach. The reason is to avoid sensitivity to parameters
that such an optimization method suffers from. For instance,
the cost of unmet demand is typically measured through the
so-called value of lost load (VOLL), whose estimates vary
by an order of magnitude [14, 15]. Similarly, the cost of
reserve depends on highly time varying fuel prices (if thermal
generators are used to provide reserves) or cost of rapidly
evolving energy storage technologies.

Two case studies are presented for reserve sizing with the
proposed method by applying it to data from Bonneville Power
Administration (BPA) and California Independent System Op-
erator (CAISO). The results are compared to those obtained
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by the deterministic method proposed in [16], and to that
obtained by the methods currently used by these two balancing
authorities. The requirements for power reserves and energy
reserves do not have strong correlation, which may have an
implication if an energy storage system is used to provide part
of the reserves. It is also observed that the reserve requirements
do not always have strong correlations with simple indicators
of volatility, such as installed capacity of renewables. Had
there been such a relation, it could have been used to easily
predict reserve requirements for the future.

The rest of the paper is structured as follows: We first
outline the contribution of the paper to the existing literature
in Section I-A. Section II describes the proposed method,
sometimes illustrating the various components of the method
by using data from BPA. Section III provides two cases
studies through application of the method to BPA and CAISO.
Section IV discusses how to apply the method to estimate
future reserve needs. Section V concludes the paper with a
discussion.

A. Comparison With Prior Work

There are few existing works which seek to determine
reserve requirements using existing power system metrics
and reliability guarantees useful for bulk system planning. In
[1], the additional reserves needed when wind generation is
added to the balancing area are sized based on a Gaussian
assumption. We do not make a Gaussian assumption, and
size reserves for the entire balancing area with no additional
assumptions on existing operating reserve adequacy. In [17],
authors subdivide reserve sizing results into slow and fast
response reserves with a note that fast reserves may be under-
sized using their method. The methodology in [18] employs a
cost function with constraints for LOLP and focuses solely
on energy storage, whereas our method can be adapted to
many types of reserve options. Other similar works include
[19] and [20] which are hybrid unit commitment solutions
to the reserve sizing problem. Their pitfalls are the multiple
sources of uncertainty which impact problem constraints. The
method described in [21] uses a Dynamic Bayesian Belief
Network with added probabilistic criterion to size reserve
needs. However, this artificial intelligence-based technique is
computationally intensive and needs adequate time for model
training.

Our method also has certain similarities with the determin-
istic method proposed by Makarov et al. [16] since we use
frequency domain analysis to separate the components of the
net-load based on time scale. The method of [16] does not
provide a reliability measure and is limited to the worst-case
extreme event observed in the data. In contrast, our method
uses a parametric model to predict low probability events that
have not been observed in the data, and thus is useful in
planning for a high level of reliability.

This paper makes two main contributions over the existing
literature on reliability-based reserve sizing methods. The first
and the most significant is that it enables reserve sizing (for
both power and energy) for LOLP values far smaller than what
is directly observed in the data, which is made possible by

fitting a probabilistic power-law model to data. The second
contribution is an outcome of the case studies on future
reserves needs for two balancing authorities (Section III). This
study shows that simple measures such as installed renewable
generation capacity are poor predictors for future reserve
needs.

A preliminary version of this work was published in [22].
The contributions of this paper over prior art (listed in the
previous paragraph) also hold over the preliminary version. In
addition, this paper examines the effect of generator ramping
capability in the reserve requirement (Section III), which was
not in [22].

II. METHODOLOGY

A. Method Overview

The reserves needed for a certain level of reliability depend
on the fast-varying part of the net-load, the latter being
load minus VRESs. The slow-varying part of the net-load
is supplied by controllable generators such as thermal power
plants. We start with definitions of these quantities.

Time is assumed discrete: k = 0, 1, . . . , with a sampling
period ∆t between time ticks. The net-load D̃k is

D̃k := Dk −Gr
k (1)

where Dk, Gr
k are the demand and renewable generation at

time k, respectively. All three quantities have the unit of power
(Watt). We decompose the net-load into two components, D̃LP

k

and D̃HP
k , such that

D̃k = D̃LP
k + D̃HP

k . (2)

The low-pass, or slow-varying, component D̃LP
k is assumed to

perfectly track controllable power generation Gc
k, hence,

Gc
k = D̃LP

k . (3)

This slowly varying component of the net-load is subject to
an appropriate choice of generator cutoff frequency. The cutoff
frequency, which we denote by ωc, is the highest frequency
of a sinusoid that can be tracked by controllable generators.
This frequency is determined by the ramp rate constraints of
all the controllable generators. The remainder of the net-load,
the fast-varying component D̃HP

k , must be provided by the
reserves. In this work, D̃HP

k is extracted using a high-pass
filter with cutoff frequency ωc.

As an aside, the deterministic method in [16] initially
divides D̃k into four ranges: slow-cycling, intra-day, intra-
hour, and real-time using a Fourier analysis of the net-load.
However, their results state that slow-cycling and intra-day
components are assumed to be handled by existing generators,
and reserves will compensate for the intra-hour and real-time
frequency components of the net-load. Our approach is similar
to their conclusion in that we use two frequency bins instead
of four.

Let P req
k be the power that the reserve is required to

deliver at k. The quantity P req
k can be positive or negative;

positive means the reserve is discharging (delivering power)
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and negative means it is charging (consuming power) at time
k. In an ideal scenario with adequate reserve, we will have

P req
k = D̃HP

k , ∀k, (4)

in which case the isolated power system will achieve demand
supply balance at all times, since the total power supply, which
is the sum of controllable generation, renewable generation,
and power delivered/consumed by the reserve is equal to the
total power demand:

Gk = Gr
k +Gc

k + P req
k

= (Dk − D̃k) + D̃LP
k + D̃HP

k , from (1), (3), (4)

= (Dk − D̃k) + D̃k = Dk, from (2).

Similarly, the required energy reserve at time k, denoted by
Ereq

k is the integral of the required power delivery by the
reserve:

Ereq
k =

k∑
j=−∞

P req
j ∆t = ∆t

k∑
j=−∞

D̃HP
j . (5)

In a non-ideal scenario with inadequate reserves, the equalities
(4) and (5) will not hold: the left hand sides will be decided by
the installed capacity of the reserves which may fall short of
the right-hand sides at certain times. Determining the reserve
requirement to meet a certain reliability level is to ensure that
(i) the probability of the shortfall is smaller than a given
threshold, and (ii) the magnitude of the shortfall, when it
occurs, is smaller than a threshold.

A probabilistic threshold α can be defined using the Loss
of Load Probability (LOLP), also known as Loss of Load Ex-
pectation (LOLE) [23]. Used in traditional resource adequacy
planning for bulk power systems, the LOLP is the probability
of generation falling short of demand. A smaller value of α
means the probability of failing to meet demand is lower, but
high reserves will be needed to ensure a low α. A larger α
will have the opposite effect.

Suppose the reserves come from an ESS with power
capacity CP (MW) and energy capacity CE (MWh). One
can then argue that the minimum values of the numbers
CP and CE that achieve P(maxk |P req

k | < CP ) ≥ 1 − α
and P(maxk |Ereq

k | < CE) ≥ 1 − α, where P(·) denotes
probability, is the smallest reserve size needed to meet a LOLP
requirement of at least 1−α. Evaluation of the probabilities is
quite challenging since they depend on the statistics of D̃HP

k ,
which is likely to be a complicated non-stationary stochastic
process. Obtaining a model of such a process to compute the
relevant probabilities may be intractable.

We therefore perform a time aggregation so the resulting
process can be modeled as stationary and ergodic. The neces-
sary probabilities can then be estimated from time series data.
To facilitate this development, two intermediate stochastic
processes are introduced. The daily required reserve power
and daily required reserve energy are defined as

P dreq
i := max

k∈K(i)
|P req

k | Edreq
i := max

k∈K(i)
|Ereq

k | (6)

where K(i) is the set of time indices corresponding to the i-th
day. In other words, (P dreq

i , Edreq
i ) is the minimum reserve
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Fig. 1. Example of (top) P req
k and (bottom) daily required reserve power

capacity P dreq
i . (Data: BPA, 2016)

capacity that can fulfill the requirements on the i-th day.
Let us introduce two random variables, P dreq, Edreq, as the
power and energy needed to be delivered by the reserve on an
arbitrary day. The values (P dreq

i , Edreq
i ) for i = 1, 2, . . . are

to be treated as independent realizations of these two random
variables.

Aggregation over a day is performed since sample paths of
the process P req

k are highly non-stationary due to the intra-day
periodicity inherent in demand and renewable generation. Such
trends get suppressed when aggregated, making a stationary
model more justifiable for the process P dreq

i . Evidence is
shown in Figure 1. It becomes easier to estimate probabili-
ties from samples (P dreq

i , Edreq
i ) if the underlying stochastic

processes can be modeled as stationary.
If the installed capacity of the reserve is (CP , CE), then the

LOLP achieved is P(P dreq ≥ CP ∪ Edreq ≥ CE). We now
define the minimum reserve capacity (Pres, Eres) for a given
probabilistic threshold α as

Pres := min
CP

{CP |Pr(P dreq ≤ CP ) ≥ 1− α} (7)

Eres := min
CE

{CE |Pr(Edreq ≤ CE) ≥ 1− α}. (8)

The proposed sizing method simply consists of fitting a prob-
abilistic model to data so that the right hand side of the
equations above can be computed.

Reserves sized based on the probability of generation plus
storage falling short of demand alone has the weakness that the
magnitude of the shortfall is not considered. The magnitude of
shortfall can be quantified using the energy index of reliability
(EIR) [24]. To define EIR, we need to define two quantities.
The first is the expected energy demand, which is the average



4

energy demand over a specific time period:

ED :=
1

ndays

ndays∑
i=1

Edreq
i (9)

where ndays is the number of days. The second is the Expected
Energy Not Served [24], which is the average energy shortfall
over the same time period:

ENS :=
1

ndays

ndays∑
i=1

(Edreq
i − Eres)1(Edreq

i >Eres)
(10)

where 1(x>y) = 1 if x > y and 0 if x ≤ y. The energy index
of reliability EIR is then defined as

EIR = 1− ENS

ED
. (11)

A value of EIR closer to 1 means higher reliability. In
contrast to LOLP which only quantifies the risk of reserve
capacity (both W and Wh) being too small, EIR quantifies the
consequence of the shortfall in energy supply that occurs as a
result of inadequate reserves.

The process of computing all the necessary quantities from
power system time series data of demand and renewable
generation are summarized below; details of the steps are
provided in the next sections.

1) By filtering the net-load data, samples of D̃HP
k are

obtained. Power spectrum analysis of controllable gen-
eration is used to determine the cutoff frequency ωc of
the filter.

2) By using (4), (5), and (6), samples of the two random
variables P dreq, Edreq are obtained. A year’s worth of
time series data leads to 365 samples. Probability density
functions (pdf) of P dreq and Edreq are estimated from
these samples.

3) Reserve capacities are then determined with estimated
pdfs by using (7)-(8).

Data from BPA is used to illustrate the steps above in the
subsequent sections.

B. Step I: Obtaining D̃HP
k From Available Time Series Data

Since bulk power systems employ many conventional gen-
erators, each with a distinct characteristic, the cutoff frequency
ωc is an aggregate quantity that cannot be identified from any
generator’s characteristics. In our analysis, we estimate the
cutoff frequency ωc from a Fourier analysis of conventional
generation data Gc

k, in particular power spectral density (PSD).
The frequency where amplitude becomes significantly small
is selected as ωc. As an illustration, Figure 2 shows the
PSD of conventional generation estimated from a year’s worth
of 5-minute sampled data of thermal generation from BPA.
From this dataset, a nominal cutoff frequency is chosen to be
3×10−5 Hz, or roughly 1

9 hours . This is equivalent to assuming
that conventional generators will not be asked to change
their setpoints much more quickly than once every 9 hours.
Later we will study the effect of having faster generators.
A second order, high-pass Butterworth filter with the above
cutoff frequency is then used to determine D̃HP

k and thus
P req
k . The quantity Ereq

k is computed from (5).

Frequency
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Fig. 2. Power spectral density (PSD) of conventional generation used to
estimate conventional generation cutoff frequency ωc. (Data: BPA 2016)
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Fig. 3. (top) Comparison of daily required reserve power capacity P dreq

fit with a kernel density estimator (KDE), with two distinct kernels. (bottom)
Same data in log-scale: the data-poor regions show the effect of the choice
of kernel. Data: BPA (2016).

C. Step II: Estimating pdfs

A combination of non-parametric model fitting - using a
kernel density estimator (KDE) - and a parametric model
for the tail of the distribution that is sample poor is used.
Figure 3 (top) shows two non-parametric density estimates for
BPA data. The two pdfs are estimated with two distinct and
commonly used kernels, Gaussian (that has an infinite support)
and Epanechnikov (that has a finite support). For values in
which there are enough samples, i.e., the density itself is large,
the two pdf estimates match.

However, they differ significantly where there is not enough
data, i.e., rare events. Thus, a non-parametric pdf obtained
from data is not adequate for predicting rare events due to
the lack of observations about such events. Beyond values
observed sufficiently in the data, any probability computed
with the estimated pdf is determined more by the shape of
the kernel used rather than by the (unknown) pdf. Figure 3
(bottom) provides evidence in support of this claim. This is



5

most clearly seen in the tail region, with extremely large values
of power capacity that were not observed in the data.

The tail region is crucial because LOLP targets may fall in
this range. For instance, North American Electric Reliability
Corporation (NERC) suggests a LOLP of 0.1 days/year, which
translates to α = 0.00027 [23, pg. 9]. However, since the
empirical probabilities are estimated from operational data in
an operational power system, the number of data points in the
tail region of the net-load that conventional generator will be
unable to serve is necessarily small. In fact for BPA in 2016,
the smallest probability we can reliably evaluate from the KDE
of the pdf corresponds to α = 0.0043 since that point is still
within the observed data range.

To go beyond the range allowed by observed data, we need
to fit a parametric model of the pdfs to the observations. Em-
pirical pdfs estimated from multiple years of data consistently
showed non-symmetric behavior (Figure 3 is one example).
Standard parametric models do not fit the entire range of
data. We therefore choose power laws in the form of (12)
as parametric models of the pdfs to fit the tail region:

fPdreq (x) = c(x)d fEdreq (y) = c(y)d, x, y ∈ Ω (12)

where c, d are unknown constants and fPdreq , fEdreq are cu-
mulative distribution functions based on their respective KDE.
The tail region is chosen as Ω(x) = {x|1 − FX(x) ≤ 0.1}.
The pdf estimate used in the rest of the paper consists of a
KDE estimate with a Gaussian kernel up to the tail region,
and the power law estimate in the tail region.

An assessment of the log-log plot of the complementary
cdf versus the daily required reserve capacities showed linear
behavior in the tail region. This suggested a power-law was a
good fit for the right tail of the pdf. With a parametric fit to the
pdf of the daily reserve needs, one can extrapolate the required
capacities to satisfy very small LOLP. The quality of the
resulting power law fits can be assessed from the comparison
in Figure 4.

III. RESULTS

To illustrate how the proposed method in Section II can
be applied to an existing power system, we provide two case
studies by applying the method to data from Bonneville Power
Administration (BPA) and California Independent System Op-
erator (CAISO). The data is sampled at 5-minute intervals in
both cases.

A. Case Study I: Bonneville Power Administration (BPA)

As mentioned in Section II-B, the cutoff frequency ωc

was determined to be 1
9 hours . Figure 5 shows the reserve

requirements of power and energy computed from the pro-
posed method for NERC’s recommended α = 0.00027. We
also compute the power reserve requirements using two other
methods: the deterministic method of Makarov et al. [16], and
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Fig. 4. Power law results for (top) P dreq and (bottom) Edreq along with
KDEs show that this parametric model can be used to find reserve needs
beyond the range of observable data. (Data: BPA, 2016)

BPA’s current reserve sizing method1. The reserve sizes ob-
tained by [16]’s method, 1.62 GW, and by BPA’s own method,
0.8 GW, correspond to α = 0.0043 (1.5 days/year) and 0.0893
(32 days/year), respectively. One can back-calculate the LOLP
corresponding to a given reserve size using the cumulative
distribution function of P dreq , which is computed from the pdf
shown in Figure 3. The LOLP obtained by each of the three
methods can now be compared, which is shown in Figure 5.

The reserve requirements calculated by the deterministic
method in [16] are much lower than that obtained by the
proposed method with α = 0.00027, since the former is based
purely on observed data. Extreme events that correspond to
α = 0.00027 are not observed in this dataset. The explanation
for the reserve requirements from BPA’s method is similar.

Figure 5 shows how required reserves vary with α. Not
surprisingly, reserve needs are reduced as α is increases since
a higher α corresponds to lower reliability. Figure 6 shows how
α relates to EIR. The relationship between EIR and α is similar
to that between α and reserve capacity needs, indicating that
reserve planning based on LOLP alone is adequate (at least in
this case study); low probability of not meeting power demand
leads to a small energy demand shortfall. Also, the results

1According to [25], BPA has adopted NERC standard BAL-002-WECC-
2a as their current reserve sizing strategy. It requires “...the greater of either
three percent of hourly integrated load plus three percent of hourly integrated
generation or the loss of the most severe single contingency (MSSC)...” to be
carried as reserves. In terms of this paper’s definitions, this can be thought of
as the sum of 3.0% of Dk and 3.0% of Gk . The maximum of the average
reserve need each hour over a yearlong interval is assigned as the reserve
requirement, Pres. Applying this method to BPA’s data, the reserve need for
2016 turns out to be 796 MW. BPA’s current reserve sizing strategy does
not specify needs in terms of energy capacity. Thus, we could not make
comparisons for the energy reserve requirements.
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Fig. 5. Observing reserve requirements versus α shows reserve needs decrease
as α increases. (Data: BPA, 2016)
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frequency ωc show a drop at 1

1hour
that may indicate generators capable of

ramping up and down faster have little benefit. (Data: BPA, 2016)

show that EIR decreases almost linearly with α.

Figure 7 shows how varying the cutoff frequency ωc af-
fects reserve requirements. Increasing ωc means more of the
higher frequency part of the net-load is met by conventional
generators, i.e., presence of faster ramping generators. As
expected, increasing the cutoff frequency decreases reserve
needs. Interestingly, there is a sharp drop around 1

1hours ,
and then a leveling off for frequencies higher than that. This
indicates the largest benefit of fast ramping generators are
likely to come from generators capable of ramping up or down
at an hourly time scale. Faster, or intra-hourly ramping, seems
to have diminishing return.

TABLE I
CAISO RESERVE NEEDS (2016)

Deterministic Method
(α = 0.0028)

NERC Suggestion
(α = 0.00027)

CAISO’s Method
(α = 0.0081)

Pres 2.51 GW 6.5 GW 2.31 GW

Eres 1.50 GWh 5.51 GWh not defined

B. Case Study II: California Independent System Operator
(CAISO)

The proposed method was also applied to CAISO data from
2016. The nominal cutoff frequency ωc was decided to be
roughly 1

5 hours by the method described in II-B. This is slower
than what was obtained for BPA, which is consistent with the
higher fraction of fast hydro generators in BPA compared to
the slow nuclear and gas generators in CAISO. We omit the
intermediate results in this case study.

Table I shows the reserve needs determined by the proposed
method for the NERC suggestion (α = 0.00027). The third
column of the table also compares the reserve needs computed
according to CAISO’s current reserve sizing strategy defined in
[26]2. The result is a reserve requirement of 2.31 GW which
corresponds to α = 0.0081 (about 3 days/year). The power
reserve needs predicted by [16]’s deterministic method is 2.51
GW, which corresponds to α = 0.0028 (1 day/year), about 10
times larger than NERC’s suggested value of LOLP.

As in the case of BPA, it was observed that higher α (lower
reliability) and higher ωc (faster conventional generators) lead
to lower reserve requirement and lower EIR.

IV. PREDICTING FUTURE RESERVE NEEDS

In this section, we explore ways to use the previously de-
veloped method to predict future reserve requirements. During
planning for a bulk power system to, for instance, determine
the future reserve requirements, time series data for demand
and renewable generation is not available. In that case, one
can use time series forecasts in place of actual data. A second
option is to fit models of reserve requirements as a function
of quantities that are more easily predicted than time series
of demand and generation, such as installed capacities of
renewable generation. The implication of these two options
is discussed next.

A. With Time Series Forecasts
We use the method adopted by CAISO to generate 5-minute

resolution forecasts of demand and renewable generation [27].

2Here, spinning reserve is outlined in a slightly different manner than
[1]: “Spinning reserve is the on-line reserve capacity that is synchronized
to the grid system and ready to meet electric demand within 10 minutes of
a dispatch instruction by the ISO”. Therefore, we equate CAISO’s spinning
reserve definition to the reserves we size in this work. CAISO defines their
spinning reserves as equal to “... 5% of the demand to be met by generation
from hydroelectric (hydro) resources, plus 7% of the demand to be met by
generation from other resources, plus 100% of any interruptible imports, or
the single largest contingency (if the latter is greater)”. Ignoring interruptible
imports due to lack of clarification in the definition, we estimate the upper
bound of CAISO’s reserve strategy to be 5% of the total demand. With this,
the maximum of the 10-minute reserve allocations for 2016 is used to compare
with our method.
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TABLE II
CAISO 2018 FORECAST RESERVE NEEDS AT α = 0.005

Forecast data True Data Percent Difference
Power Capacity 2.04 GW 2.38 GW 15.4%

Energy Capacity 1.74 GWh 1.75 GWh 0.6%

TABLE III
BPA 2018 FORECAST RESERVE NEEDS AT α = 0.005

Forecast data True Data Percent Difference
Power Capacity 1.55 GW 1.72 GW 10.4%

Energy Capacity 1.28 GWh 1.15 GWh 29.7%

Hourly demand forecast method developed by California En-
ergy Commission (CEC) are used for the demand prediction.
Wind generation at time instant k of the subsequent year is
forecasted using

Gw,nextyear
k = Gw,lastyear

k

Cw,nextyear

Cw,lastyear
(13)

where Cw,nextyear is a prediction of the subsequent year’s
installed capacity. Forecasted solar generation computed in
the same manner is termed Gs,nextyear

k . The total forecast of
renewable generation is

Ĝr
k = Gw,nextyear

k +Gs,nextyear
k . (14)

This approach maintains load-wind, load-solar, and wind-solar
correlations from year to year. After computing these forecasts,
we interpolate to the needed time interval, and then apply the
proposed method.

The first column of Table II shows the results for CAISO in
2018 predicted with 2017 data, for α = 0.005. This value is
chosen because it is large enough that the power-law fit to the
pdf is unnecessary; the events corresponding to such an LOLP
are seen in the data. To assess sensitivity to forecast errors,
we also compute the reserve needs directly from 2018 data;
results are shown in the second column of Table II. We see
very good agreement between the estimates of energy capacity
requirements obtained from the true data and forecasted data.
There is however a large error in the power capacity.

Table III shows the results when the same method was used
on BPA’s data. The prediction for power reserve requirement
is more accurate than at CAISO, though energy reserve
requirement predictions are less accurate. BPA’s forecasted
demand data was not available, and a simple forecasting
method from [27] was used to predict the load for 2018.
The load prediction assumed trends from 2016 to 2017 were
identical to those 2017 to 2018, which may not be the case for
BPA. This assumption is likely the cause of the higher error
in Table III than Table II.

B. Without Requiring Forecasts of Time Series Data

A simpler alternative to forecasting time series data is
based on correlations of reserve requirements in past years
determined from data to various likely predictors, such as

TABLE IV
CORRELATION COEFFICIENTS AT α = 0.005

BPA CAISO
Pres Eres Pres Eres

Peak Demand -0.3278 0.0486 -0.7143 -0.0030
Installed Capacity -0.8550 0.9664 0.9991 -0.7281

installed renewable generation capacity or peak demand. If
reserve needs are seen to be strongly correlated with such
variables, then one could fit a simple regression model that
predicts the reserve requirements from the values of these
variables. Since grid operators typically have better predictions
of variables such as installed renewable generation capacity
than of renewable generation time series, this approach could
provide a simple and straightforward method to predict reserve
requirements.

To assess this idea, we computed the reserve needs for
α = 0.005 using the proposed method for 2016, 2017,
and 2018 with data from those years. Table IV presents the
correlation coefficients between the reserve requirements in
a year and their two possible predictors, installed renewable
capacity and peak demand, during the same year. The installed
renewable capacity is highly correlated with power reserve
need for CAISO but is negatively correlated with energy
reserve needs. In BPA, the opposite trend occurs. Overall,
the trends in the correlations are not clear enough to predict
reserve needs using a regressor model.

V. CONCLUSION

We propose a probabilistic method to compute both power
and energy reserve requirements for a given LOLP from time
series data on demand and renewable generation. Traditionally,
reserve needs are specified in terms of power alone, assuming
that the power is provided by a controllable generation with a
limitless fuel supply, rendering the available energy infinite. If
future grids rely on batteries to provide a significant part of the
reserve, both power and energy requirements will need to be
considered. Although power and energy reserve requirements
are correlated in the two case studies presented here, one does
not follow from the other.

The method in this work uses a probability density func-
tion fitted to the fast-varying component of the net-load,
assuming that the slowly varying component is provided by
controllable generation. Power law models of the pdfs used
in the method allow planning for extreme events that have
not been observed in the data. As intermittent renewables
account for a larger share of total generation, extreme events
are likely to occur with higher probability than they do now.
Existing deterministic methods do not consider extreme events
in the net-load that are not observed in the data though they
are still possible and hence affect reliability. Methods that
consider these probabilities in a principled manner, such as
the proposed one, offer an advantage in planning for reliability
in such a scenario. Moreover, the reliability provided by
existing deterministic methods can be back calculated from
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the estimated pdf with the proposed method in terms of the
LOLP, providing a common ground for comparison.

The reserve requirements computed did not show strong
correlations to suspected predictors such as installed renewable
capacity uniformly. This indicates simplistic reserve planning
for the future based on such parameters, which are easier to
predict than time series of demand and generation, may not
provide adequate reliability. This presents an open problem:
how to plan reserves for the future using easy-to-predict
parameters for bulk power systems?

Applicability of the method described in this work spans
many reserve types, i.e. spinning, non-spinning, etc. This is
because the time response of reserve needs can be classified by
the inverse of generating fleet cutoff frequency ωc. Appropriate
allocation of reserves to each class, however, is a separate
problem that is not addressed in this work.

As well, in this work we have ignored transmission network
constraints, aggregating an entire balancing authority into one
node. Transmission network constraints will increase the size
of required reserves, so our results can be taken as a lower
bound. Extension of the sizing method to multi-area networks,
which must be done together with siting of reserves, is another
open problem.
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