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Abstract—We consider a decentralized bidirectional control of a
platoon of IV identical vehicles moving in a straight line. The con-
trol objective is for each vehicle to maintain a constant velocity and
inter-vehicular separation using only the local information from
itself and its two nearest neighbors. Each vehicle is modeled as a
double integrator. To aid the analysis, we use continuous approxi-
mation to derive a partial differential equation (PDE) approxima-
tion of the discrete platoon dynamics. The PDE model is used to
explain the progressive loss of closed-loop stability with increasing
number of vehicles, and to devise ways to combat this loss of sta-
bility.

If every vehicle uses the same controller, we show that the least
stable closed-loop eigenvalue approaches zero as O(1/N?) in the
limit of a large number (IN) of vehicles. We then show how to
ameliorate this loss of stability by small amounts of “mistuning”,
i.e., changing the controller gains from their nominal values. We
prove that with arbitrary small amounts of mistuning, the asymp-
totic behavior of the least stable closed loop eigenvalue can be im-
proved to O(1/N). All the conclusions drawn from analysis of
the PDE model are corroborated via numerical calculations of the
state-space platoon model.

Index Terms—Partial differential equation (PDE).

I. INTRODUCTION

E consider the problem of controlling a 1-D platoon
W of N identical vehicles where the individual vehicles
move at a constant pre-specified velocity V; with an inter-ve-
hicular spacing of A. Fig. 1(a) illustrates the situation schemat-
ically. This problem is relevant to automated highway systems
(AHS) because a controlled vehicular platoon with a constant
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but small inter-vehicular distance can help improve the capacity
(measured in vehicles/lane/hour, as in [1]) of a highway [2].
Due to this, the platoon control problem has been extensively
studied [1], [3]-[7]. The dynamic and control issues in the pla-
toon problem are also relevant to a general class of formation
control problems including aerial vehicles, satellites etc. [8], [9].

Several approaches to the platoon control problem have been
considered in the literature. These approaches fall into two
broad categories depending on the information architecture
available to the control algorithm(s): centralized and decen-
tralized. We call an architecture decentralized if the control
action at any individual vehicle is computed based upon mea-
surements obtained by on-board sensors and possibly wireless
communication with a limited number of its neighbors. We call
all other architectures centralized. Decentralized architectures
investigated in the literature include the predecessor-following
[1], [10], [11] and the bidirectional schemes [7], [12]-[15]. In
the predecessor-following architecture, the control action at
an individual vehicle depends only on the spacing error with
the predecessor, i.e., the vehicle immediately ahead of it. In
the bidirectional architecture, the control action depends upon
relative position measurements from both the predecessor and
the follower. On the other hand, in a centralized architecture
measurements from all the vehicles may have to be continually
transmitted to a central controller or to all the vehicles. The
optimal LQR designs of [4], [6] typically lead to centralized
architectures. Predecessor and Leader follower control schemes
(see [16], [17] and references therein), which require global
information from the first vehicle in the platoon are also exam-
ples of the centralized architecture. The high communication
overhead in a centralized architecture makes it less attractive
for platoons with a large number of vehicles. Additionally,
with any centralized scheme, the closed loop system becomes
sensitive to communication delays that are unavoidable with
wireless communication [18].

The focus of this paper is on a decentralized bidirectional con-
trol architecture: the control action at an individual vehicle de-
pends upon its own velocity and the relative position errors be-
tween itself and its predecessor and its follower vehicles. The
decentralized bidirectional control architecture is advantageous
because, apart from its simplicity and modularity, it does not re-
quire continual inter-vehicular communication. Measurements
needed for the control can be obtained by on-board sensors
alone. Each vehicle is modeled as a double integrator. A double
integrator model is common in the platoon control literature
since the velocity dependent drag and other non-linear terms

0018-9286/$26.00 © 2009 IEEE
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Fig. 1. Platoon with N vehicles moving in one dimension. (a) A platoon with
fictitious lead and follow vehicles. (b) Same platoon in y coordinates.

can usually be eliminated by feedback linearization [1], [10].
The control objective is to maintain a constant inter-vehicular
spacing.

In spite of the advantages over centralized control, there
are a number of challenges in the decentralized control of a
platoon, especially when the number of vehicles, N, is large.
First, the least stable closed-loop eigenvalue approaches zero
as the number of vehicles increases [19]. Among decentral-
ized schemes, one particularly important special case is the
so-called symmetric bidirectional control, where all vehicles
use identical controllers that are furthermore symmetric with
respect to the predecessor and the follower position errors. In
this case, the least stable closed loop eigenvalue approaches 0
as O(1/N?) with a symmetric bidirectional control and this
behavior is independent of the choice of controller gains [19].
This progressive loss of closed-loop damping causes the closed
loop performance of the platoon to become arbitrarily sluggish
as the number of vehicles increases. It is interesting to note that
the O(1/N?) decay of the least stable eigenvalue occurs with
the centralized LQR control as well [6].

The second challenge with decentralized control is that the
sensitivity of the closed loop to external disturbances increases
with increasing N. With predecessor following control, distur-
bances acting on the vehicles cause large inter-vehicular spacing
errors [1], [3], [20] The seminal work of [20] on string insta-
bility was partly inspired by this issue. It was shown in [7]
that sensitivity to disturbances with predecessor following con-
trol is independent of the choice of the controller. Similar con-
troller-independent sensitivity to disturbances is also exhibited
by the symmetric bidirectional architecture [7], [13], [21]. In
[22], it was shown that symmetric architectures have similarly
poor sensitivity even when every vehicle uses information from
more than two neighbors, as long as the number of neighbors is
no more than O(N?/3).

Third, there is a lack of design methods for decentralized ar-
chitectures. For N vehicles, in general, N distinct controllers
need to be designed, for which few control design methods exist.
This has led to the examination of only the symmetric control
among bidirectional architectures [7], [13], [22]. Some sym-
metry aided simplifications are possible for analysis and design
in this case.
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In summary, while issues such as stability and sensitivity to
disturbances become critical as the platoon size increases, a lack
of analysis and control design tools in decentralized settings
makes it difficult to address these issues.

In this paper, we present a novel analysis and design method
for a decentralized bidirectional control architecture that ame-
liorates the progressive loss of closed loop stability with in-
creasing number of vehicles. There are three contributions of
this work that are summarized below.

First, we derive a partial differential equation (PDE) based
continuous approximation of the (spatially) discrete platoon dy-
namics. Just as a PDE can be discretized using a finite difference
approximation, we carry out a reverse procedure: spatial differ-
ence terms in the discrete model are approximated by spatial
derivatives. The resulting PDE yields the original set of ordi-
nary differential equations upon discretization.

Two, we use the PDE model to derive a controller indepen-
dent conclusion on stability with symmetric bi-directional archi-
tecture. In particular, the behavior of the least stable eigenvalue
of the discrete platoon dynamics is predicted by analyzing the
eigenvalues of the PDE. We show that the least stable closed-
loop eigenvalue approaches zero as O(1/N?2). This prediction
is confirmed by numerical evaluation of eigenvalues for both the
PDE and the discrete platoon model. The real part of the least
stable eigenvalue of the closed loop is taken as a measure of sta-
bility margin.

The third and the main contribution of the paper is a mis-
tuning-based control design that leads to significant improve-
ment in the closed loop stability margin over the symmetric
case. The biggest advantage of using a PDE-based analysis is
that the PDE reveals, better than the state-space model does, the
mechanism of loss of stability and suggests a mistuning-based
approach to ameliorate it. In particular, analysis of the PDE
shows that forward-backward asymmetry in the control gains
is beneficial. The asymmetry refers to the assignment of con-
troller gains such that a vehicle utilizes information from the
preceding and following vehicles differently. Our main results,
Corollary 2 and Corollary 3, give control gains that achieve
the best improvement in closed-loop stability by exploiting
this asymmetry. In particular, we show that an arbitrarily small
perturbation (asymmetry) in the controller gains from their
values in the symmetric bidirectional case can result in the least
stable eigenvalue approaching 0 only as O(1/N) (as opposed
to O(1/N?) in the symmetric bidirectional case). Numerical
computations of eigenvalues of the state-space model of the
platoon is used to confirm these predictions. Mistuning based
approaches have been used for stability augmentation in many
applications; see [23]-[26] for some recent references. Our
paper is the first to consider such approaches in the context of
decentralized control design.

Although the PDE model is derived under the assumption of
large N, in practice the predictions of the PDE model match
those of the state-space model accurately even for small values
of N. Similarly, the benefits of mistuning are significant even
for small values of N (see Section VI).

In addition to the stability margin improvements, the mis-
tuning design reduces the closed loop’s sensitivity to external
disturbances as well. In bidirectional architectures, the H_,
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norm of the transfer function from the external disturbances
to the spacing errors is used as a measure of sensitivity to
disturbances [7]. Numerical computation of the H., norm of
this transfer function shows that mistuning design also reduces
sensitivity to disturbances significantly (see Section VI-D).

We briefly note that there is an extensive literature on mod-
eling traffic dynamics using PDEs; see the seminal paper of
Lighthill and Whitham [27] for an early reference, the paper
of Helbing [28] and references therein for a survey of major
approaches, and the papers of [29] and [30] for control-ori-
ented modeling. In spite of apparent similarities, our approach
is quite different from the existing approaches. PDE models of
traffic dynamics typically start with continuity and momentum
equations [28]. Moreover, one requires a model of human be-
havior to determine an appropriate form of the external force
in the momentum equation. This difficulty frequently leads to
the introduction of terms in the PDE that are determined by fit-
ting data; see [28, Section III-D] for a thorough discussion of
such approximations used in various continuum traffic models.
In contrast, we approximate the closed loop dynamic equations
by continuous functions of space (and time) that are inspired by
finite-difference discretization of PDEs. Ad hoc approximations
of human behavior is not needed. Moreover, the original dy-
namics can be recovered by discretizing the derived PDE, which
provides further evidence of consistency between the (spatially)
discrete and continuous models.

We also note that macroscopic models of traffic flow models
have been used for designing control laws for a complete auto-
mated highway system (AHS) with lane changing, merging, etc.
in addition to a platoon in one lane (see [30], [31] and references
therein). The PDE model derived in the paper is not applicable
to a complete AHS, but only to a single platoon.

The rest of the paper is organized as follows: Section II states
the platoon problem in formal terms by describing a state-space
model of the closed loop platoon dynamics; Section III then de-
scribes the derivation of the PDE model from the state space
model. In Section IV the PDE is analyzed to explain the loss
of stability with NV, and Section V describes how to ameliorate
such loss of stability by mistuning. Section V-C reports simula-
tion results that show the benefit of mistuning in time-domain.
In Section VI, we comment on various aspects of the proposed
mistuning design.

II. CLOSED LooP DYNAMICS WITH BIDIRECTIONAL CONTROL

Consider a platoon of N identical vehicles moving in a
straight line as shown schematically in Fig. 1(a). Let Z;(¢) and
Vi(t) := Z;(t) denote the position and the velocity, respec-
tively, of the i'" vehicle for i = 1,2,..., N. Each vehicle is
modeled as a double integrator

Zi = U; ey

where U; is the control (engine torque) applied on the *" ve-
hicle. Such a model arises after the velocity dependent drag and
other non-linear terms have been eliminated by using feedback
linearization [1], [10].

The control objective is to maintain a constant inter-vehicular
distance A and a constant velocity V; for every vehicle. Every
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TABLE I
TWO SCENARIOS
Scenario Length L Leader Follower
I (N+1A | % =0 | On41 =0

11 NA U9 =0 -

vehicle is assumed to know the desired spacing A and the de-
sired velocity V. The control architecture is required to be de-
centralized, so that every vehicle uses locally available measure-
ments. We assume that the error between the position (as well as
velocity) of a vehicle and its desired value is small, so that anal-
ysis of the platoon dynamics with a linear vehicle model and a
linear control law is justified.

In this paper, we assume a bi-directional control architecture
for individual vehicles in the platoon (except the first and the
last vehicles). For the first and the last vehicles, we consider
two types of control architectures (termed as scenarios I and II)
as tabulated in Table I. In scenario I, we introduce (after [5],
[6]) a fictitious lead vehicle and a fictitious follow vehicle, in-
dexed as 0 and NV + 1 respectively. Their behavior is specified
by imposing a constant velocity trajectories as Zy(t) = Vyt and
Zn+1 = Vgt — (N 4+ 1)A. In scenario II, only a fictitious lead
vehicle withindex 7 = 0 with Zo(t) = V¢ is introduced. For the
last vehicle in the platoon in scenario II, there is no follower ve-
hicle and it uses information only from its predecessor to main-
tain a constant gap.

Consistent with the decentralized bidirectional linear control
architecture, the control U; for the it" vehicle is assumed to
depend only on 1) its velocity error V; — V;, and 2) the relative
position errors between itself and its immediate neighbors. That
is

U, = k,gf)(Zq:—l —7Zi—A)— kﬁb)(Zi —Zig1—=A)=b;(V; = Vy)

@)
where kf) , b; are positive constants. The first two terms are used
to compensate for any deviation away from nominal position
with the predecessor (front) and the follower (back) vehicles
respectively. The superscripts (/) and () correspond to front
and back, respectively. The third term is used to obtain a zero
steady-state error in velocity. In principle, relative velocity er-
rors between neighboring vehicles can also be incorporated into
the control, but we do not examine this situation here. Since Vy
and A are known to every vehicle, the relative errors used in
the control law, including the velocity error, can be obtained in
practice by on-board devices such as radars, GPS, and speed
Sensors.

The control law (2) represents state feedback with local
(nearest neighbor) information. Analysis of this controller
structure is relevant even if there are additional dynamic el-
ements in the controller. There are several reasons for this.
First, a dynamic controller cannot have a zero at the origin. It
will result in a pole-zero cancellation causing the steady-state
errors to grow without bound as N increases [13]. Second, a
dynamic controller cannot have an integrator either. For if it
does, the closed-loop platoon dynamics become unstable for a
sufficiently large values of N [13]. As a result, any allowable
dynamic compensator must essentially act as a static gain at low
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frequencies. The results of [13] indicate that the principal chal-

lenge in controlling large platoons arises due to the presence of

a double integrator with its unbounded gain at low frequencies.

Hence, the limitation and its amelioration discussed here with

the local state feedback structure of (8) is also relevant to the

case where additional dynamic elements appear in the control.
To facilitate analysis, we consider a coordinate change

Zi(t) = Vyt+ L V-V,
UL:2W<()++)7 v; = 2T Ld

3

where L denotes the desired platoon length, which equals (N +
1)A in scenario I and N A in scenario II. Fig. 1(b) depicts the
schematic of the platoon in the new coordinates. The scaling
ensures that yo(t) = 27, y;(t) € [0,27], and yn41(¢) = 0
(yn(t) = 0) in scenario I (IT). Here, we have implicitly assumed
that deviations of the vehicle positions and velocities from their
desired values are small.

In the scaled coordinate, the dynamics of the ¢
described by

th yehicle are

Ui = Ui “)
where u; := 2wU; /L. The desired spacing and velocities are

§ = A v _Va—Va _
" L)2n’ ¢ L/2r

)

and the desired position of the i*" vehicle is

yd(t) = 2m — ib. (6)

‘th

The position and velocity errors for the ** vehicle are given by

3i(t) = vi(t) — y(t), ¥ = v; — va = v;, and

Y; = Vi @)

We note that 99 = vx4+1 = 0 for the fictitious lead and follow
vehicles. In the scaled coordinates, the decentralized bidirec-
tional control law (2) is equivalent to the following:

U; = k,(,f)(yi—l —y; —6) — k',E")(yz- — Yig1 — 0) — b0,
= kEf)(Qi_l —0i) — kl@(ﬂi — Yig1) — bi¥;. ®)

It follows from (4) and (8) that the closed loop dynamics of the
i*® vehicle in the §-coordinate is

i+ g = kD @icr = 5) = K@ = Gigr). )

To describe the closed-loop dynamics of the whole platoon, we

define
=092, gn]", vi=[on. 0w

For scenario I with fictitious lead and follow vehicles, the con-

trol law (8) yields the following closed loop dynamics:

y| _ 0 I y
3= kot —kon ] [3]

.

~~

AL-F

2103

’ ’

kD), B = diag(by, by, ..., by), and

1 -1 0
0o 1 -1

where K. I(f ) =

diag(k) kD kD), KW
diag(kgb)7 kéb)7 .

1 -1
0 1

For scenario II with a fictitious lead vehicle and no follow ve-
hicle, the closed loop dynamics are

y] _ 0 I
v| T | kP MT - kP M, -B

Ap

<

] (11)

where KI(If) = KI(f), Kl(f)
and

= diag(k"” kS, B L 0),

’

Our goal is to understand the behavior of the closed loop sta-
bility margin with increasing N and to devise ways to improve
it by appropriately choosing the controller gains. While in prin-
ciple this can be done by analyzing the eigenvalues of the matrix
A _F (scenario I) and of Ay (scenario II), we take an alter-
nate route. For large values of N, we approximate the dynamics
of the discrete platoon by a partial differential equation (PDE)
which is used for analysis and control design.

III. PDE MODEL OF PLATOON CLOSED LOOP DYNAMICS

In this section, we develop a continuous PDE approximation
of the (spatially) discrete platoon dynamics. The PDE is derived
with respect to a scaled spatial coordinate = € [0, 27]. We recall
that in Section II, the scaled location of the i*" vehicle (denoted
as ;) was defined with respect to such a coordinate system. In
effect, the two symbols = and y correspond to the same coor-
dinate representation but are used here to distinguish the con-
tinuous and discrete formulations. As in the discrete case, the

platoon always occupies a length of 27 irrespective of N.

A. PDE Derivation
The starting point is a continuous approximation
v(x,t) :=v;(¢)

=0;(1).

atrz =vy;
(from (7))

Similarly, b(z), k() (z), k() (z) are used to denote continuous
approximations of discrete gains b;, kgf ), k,gb) respectively. We
will construct a PDE approximation of discrete dynamics in
terms of these continuous approximations. To do so, it is conve-
nient to first differentiate (9) with respect to time,

Bi 4 bty = kD (521 — ;) — KO (6 — Dig1). (12)
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We recast this equation

bi + biv; = —k{ PG +

B 4

( )1 ) _ 1)
~5 (7 =KD s

where

E = kP 4 k@ k5 =k k. a3)

It follows that:
(Vic1—Diy1)

. .1 1
{’i‘i'bif’i:ikg ) +§k§,+)(f’i—1—2f}i+f1i+1)

(01041 1 () 0im1— 20+ 041
= LB g0 B Z R i
£0 26 2p0 60
where
1 N
== 14
poi=g =5 (14)

po has the physical interpretation of the mean density (vehicles
per unit length). Now, we make a finite-difference approxima-
tion of derivatives

Vi—1 — Vi1 0
— = [av(:v,t)}
Vi—1 — 20; + Viq1 9?
TR [ﬁ“@”’“}
T=Yi

where we recall that v(z,t) is a continuous approximation of
the vehicle velocities (v;(t) = v(y;,t) etc). Denoting k(”sxg
and k(7)(x) as continuous approximations of k,§+) and k;~
respectively, the discrete model is written as

T=Yi

T=Y;

_L []g()(x)%v(w, t)] T [k(ﬂ(x)aa—;v(x, t)}

2
=y, 2p4

Hence, we arrive at the partial differential equation (PDE) as a
model of the discrete platoon dynamics

(g—; + b(x );) v(z,t) = (piok(_)(x)%
92

+3 2k<+>( )5 2>v(x7t). (15)

In the remainder of this paper, we assume that k() (z) > 0.
Using (13), the continuous counterparts of the front and the back
gains are given by

KD (z) = (k(+)(x) 4 k(_)(x))

(FD(@) - k(@) (16)

N =N =

E®)(z) =

so that the gain values kz(') can be obtained as kgf ) = k(£ ) (i)
and k,gb) = k®(y;). It can be readily verified that one re-
covers the system of ordinary differential equations ((12) for

T=y;.
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1 = 1,..., N) by discretizing the PDE (15) using a finite dif-
ference scheme on the interval [0, 27r] with a discretization &
between discrete points.

The boundary conditions for the PDE (15) depend upon the
dynamics of the first and the last vehicles in the platoon. For
scenario I with a constant velocity fictitious lead and follow ve-
hicles, the appropriate boundary conditions are of the Dirichlet
type on both ends:

v(0,t) = v(27w,t) =0, Vte|[0,00). (17
For scenario II with the only a fictitious lead vehicle, the appro-
priate boundary conditions are of Neumann—Dirichlet type

ov
ox 7

We refer the reader to [32] for a discussion on well-posedness
of the solutions to (15), where it is shown that a solution exists
in a weak sense when k(t), k(=) dk(H) /dz € L>°([0, 2x]).

Equation (15) describes spatio-temporal evolution of small
velocity perturbations in a platoon. It is worthwhile to note that
the PDE model is a hyperbolic equation. Without the two first
order terms (i.e., for b(z) = k(=) (z) = 0), the PDE is a standard
wave equation with spatially inhomogeneous values of wave
speed. The term (1/pg)k(~)(x)(9v/dx) is an advection term,
and b(x)(Jv/0t) is a damping term. The hyperbolic nature of
the PDE model means that a perturbation originating, say, in
the middle of a long platoon will propagate both upstream and
downstream with finite speed. The two first order terms serve to
modify aspects of this propagation. The damping term causes
a perturbation to damp out in time. The advection term serves
to create possible asymmetries in upstream versus downstream
propagation.

0,t) = v(2r,t) = 0. Vte [0,00). (18)

B. Eigenvalue Comparison

For preliminary comparison of the PDE obtained above with
the state-space model of the closed loop platoon dynamics, we
consider the simplest case where the position control gains are

constant for every vehicle, i.e., k) (z) = k®(z) = ko and
b(x) = bg. In such a case k(=) (z) = 0, k) () = 2k and the
PDE (15) simplifies to
9? 9 ko 07
il 2T Y, = 1
(8t2 Thg ~ 2 aﬂ)’“ 0 (19)

which is a damped wave equation with a wave speed of /%o / po.
The wave equation is consistent with the physical intuition that
a symmetric bidirectional control architecture causes a distur-
bance to propagate equally in both directions.

Fig. 2 compares the closed loop eigenvalues of a discrete
platoon with NV = 25 vehicles and the PDE (19). The eigen-
values of the platoon are obtained by numerically evaluating the
eigenvalues of the matrices Ay and Ay, (defined in (10) and
(11)). The eigenvalues of the PDE are computed numerically
after using a Galerkin method with Fourier basis [33]. The figure
shows that the two sets of eigenvalues are in excellent match. In
particular, the least stable eigenvalues are well-captured by the
PDE. Additional comparison appears in the following sections,
where we present the results for analysis and control design.
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Fig. 2. Comparison of closed loop eigenvalues of the platoon dynamics and
the eigenvalues of the corresponding PDE (19) for the two different scenarios:
(a) platoon with fictitious lead and follow vehicles, and correspondingly the
PDE (19) with Dirichlet boundary conditions, (b) platoon with fictitious lead
vehicle, and correspondingly the PDE (19) with Neumann-Dirichlet boundary
conditions. For ease of comparison, only a few of the eigenvalues are shown.
Both plots are for V' = 25 vehicles; the controller parameters are kgf ) =
B = 1andb; = 0.5 fori = 1,2,..., N, and for the PDE k(1) (x)
k®)(x) = 1 and b(x) = 0.5. (a) Scenario I (Dirichlet-Dirichlet); (b) Scenario
II (Neumann-Dirichlet).
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IV. ANALYSIS OF THE SYMMETRIC BIDIRECTIONAL CASE

This section is concerned with asymptotic formulas for sta-
bility margin (least stable eigenvalue) for the symmetric bidirec-
tional architecture with symmetric and constant control gains:
ED) () = kO (z) = ko and b(z) = bo. The analysis is carried
out with the aid of the associated PDE model

2 2
(22 i) oo

ot? ot 9z 20

where = € [0, 27] and

k

2 0

ap = — 21
° g

is the wave speed. The closed-loop eigenvalues of the PDE re-

quire consideration of the eigenvalue problem

d2
T = xn(x)

= (22)

where 7) is an eigenfunction that satisfies appropriate boundary
conditions: (17) for scenario I and (18) for scenario II. The
eigensolutions to the eigenvalue problem (23) for the two sce-
narios are given in Table II. The eigenfunctions in either sce-
nario provide a basis of L2([0, 27]).

After taking a Laplace transform, the eigenvalues of the PDE
model (20) are obtained as roots of the characteristic equation

s2 4+ bos — a%)\ =0 (23)

where ) satisfies (22). Using Table II, these roots are easily eval-
uated. For instance, the I*" eigenvalue of the PDE (20) with
Dirichlet boundary conditions is given by

o _ byt

2 92792
bg — agl
51

2

(24)
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TABLE II
EIGEN-SOLUTIONS FOR THE LAPLACIAN OPERATOR
WITH TWO DIFFERENT BOUNDARY CONDITIONS

boundary condition eigenvalue )\, Zizg(e;:l)fu netion l
1(0) = n(2m) =0 - o
(Dirichlet - Dirichlet) - sin( %) 1=1,2,...
52(0) = n(2m) =0
x niem) (21-1)2 (2l-1)z .
(Neumann - Dirichlet) -1 cos(~—5—) | 1=1,2
TABLE III
THE TREND OF THE LESS STABLE EIGENVALUE sf FOR THE PDE (20)
boundary condition ler for l << I, le
. - 2ko 12 1 bo N
Dirichlet-Dirichlet — TU ~z T O(W) 2ﬂ‘:/k_0
2
Neumann-Dirichlet | — ”417’?)” ]i% + O(ﬁ) 22‘1/%
wherel = 1,2, .. .. Thereal part of the eigenvalue depends upon

the discriminant D(l, N) := (b3 — a2l?), where the wave speed
ao depends both on control gain ky and number of vehicles N
(see (21)). For a fixed control gain, there are two cases to con-
sider:

1) If D(I, N) < 0, the roots sljE are complex with the real part

given by —(by/2);

2) If D(I, N) > 0, the roots s7" are real with s, +s; = —bo.
In the former case, the damping is determined by the velocity
feedback term bo(0/0t), while in the latter case one eigenvalue
(s7) gains damping at the expense of the other (s;) which
looses damping. When sljE are real, the eigenvalue sl+ is closer
to the origin than s; ; so we call s; the I'" less-stable eigen-
value. The following lemma gives the asymptotic formula for
this eigenvalue in the limit of large V.

Lemma 1: Consider the eigenvalue problem for the linear
PDE (20) with boundary conditions (17) and (18), corre-
sponding to scenarios I and II respectively. The [*" less-stable
eigenvalue s approaches 0 as O(1/N?) in the limit as
N — oo. The asymptotic formulas appear in Table III. O

Proof of Lemma 1: We first consider scenario I with
Dirichlet boundary conditions (17). Using (24) and (21)

272\ 1/2
QS?Z—boib(]( —%)

bO

27T2k0 12 1

for a21?/b% < 1. The asymptotic formula holds for wave num-
bers
bo boN
Il — = =:1.
ag 2mVko
and in particular for each [ as N — oo. The proof for the sce-
nario II with Neumann-Dirichlet boundary conditions (18) fol-
lows similarly. u
The stability margin of the platoon can be measured by the
real part of si", the least stable eigenvalue.

(25)



2106

10° , . .
PDE (20), D-D
s platoon, L-F
1071 ——eq. (26) 3
&
ey i e PDE (20), N-D,
1072 ) i ¢ platoon, L i
o AR ) == ey, {(2T) :
~— - | |
Q O
Qf 1073 :
101 :
Y)\\
5 N
= N
107° ¢ %
10 20 50 100 200 500 1000
N

Fig. 3. Comparison of the least stable eigenvalue of the closed loop platoon
dynamics and that predicted by Corollary 1 with symmetric bidirectional con-
trol. There are three plots each for scenarios I and II (corresponding legends
are boxed together), and those three should be compared with one another. In
the plot legends, “D-D” stands for “Dirichlet-Dirichlet”, “N-D” for “Neumann-
Dirichlet”, “L-F” for fictitious leader-follower, and “L” for fictitious leader. The
plot for “PDE (20), D-D” should be compared with “platoon, L-F” since they
both correspond to scenario I. Similarly, “PDE (20), N-D” and “platoon, L”
correspond to scenario II. Note that the predictions (26) and (27) are valid for
1 < I, (defined in (25)), which in this case means for N > 12.

Corollary 1: Consider the eigenvalue problem for the linear
PDE (20) with boundary conditions (17) and (18), corre-
sponding to scenarios I and II respectively. The least stable
eigenvalue, denoted by sf, satisfies

+ 7T2]€0 1 1 .. ..
sf=— b el +0 Ni (Dirichlet —Dirichlet) (26)
2ko 1 1
g;r - _ 7F4b00 o 40 <m> (Neumann —Dirichlet) (27)
as N — oo. O

The result shows that the least stable eigenvalue of the closed
loop platoon decays as 1/N? with symmetric bidirectional con-
trol.

We now present numerical computations that corroborates
this PDE-based analysis. Fig. 3 plots as a function of N the least
stable eigenvalue of the PDE and of the state-space model of the
platoon, as well as the prediction from the asymptotic formula.
The eigenvalues for the discrete platoon are obtained by numer-
ically evaluating the eigenvalues of the matrices Ay, _p and Ap,
(see (10) and (11)) with constant control gains kl(f) = k‘gb) =
ko = land b; = by = 0.5 fori = 1,..., N. The comparison
shows that the PDE analysis accurately predicts the eigenvalue
of the state-space model of the platoon dynamics.

Fig. 4(a) graphically illustrates the destabilization by de-
picting the movement of eigenvalues sljE as NN increases. For
sufficiently small values of N, the discriminant D(1, N) is
negative and the eigenvalue 31i are complex. The real part of
the eigenvalue depends only on the value of by. At a critical
value of N = N, := m/2kg/bg, the discriminant becomes
zero, s; = s and the eigenvalues collide on the real axis.
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Fig. 4. Schematic explaining the loss of stability as /V increases and how mis-
tuning ameliorates this loss. (a) Eigenvalues move toward zero with increasing
N. (b) Mistuning “exchanges” stability between s, and s;" .

For values of N > N, and in particular as N — oo, the
eigenvalue sf asymptotes to O while staying real, and s;
asymptotes to —b. Their cumulative damping, as reflected in
the sum 51+ + s; = —bo, is conserved. In other words, si" is
destabilized at the expense of s; .

Remark 1: The preceding analysis shows that the loss of sta-
bility experienced with a symmetric bidirectional architecture is
controller independent. The least stable eigenvalue approaches
0 as O(1/N?) irrespective of the values of the gains k¢ and by,
as long as they are fixed constants independent of N. Corollary
1 also implies that for the least stable eigenvalue to be uniformly
bounded away from 0, one has to increase the control gain kg as
N?2.1In [6], the same conclusion was reached for the least stable
eigenvalue with LQR control of a platoon on a circle. LQR con-
trol typically leads to a centralized architecture, whereas sym-
metric bidirectional control is decentralized. It is interesting to
note that the least stable eigenvalue behaves similarly in these
distinct architectures. O

V. REDUCING LOSS OF STABILITY BY MISTUNING

In this section, we examine the problem of designing the con-
trol gain functions k() (), k(*)(z) so as to ameliorate the loss
of stability margin with increasing N that was seen in the pre-
vious sections when k()(z) = k(® = k. Specifically, we
consider the eigenvalue problem for the PDE (15) where the
control gains are changed slightly (mistuned) from their values
in the symmetric bidirectional case in order to minimize the
least-stable eigenvalue s} . With symmetric bidirectional con-
trol, one obtains an O(1/N?) estimate for the least stable eigen-
value because the coefficient of 9?/9dz? term in PDE (15) is
O(1/N?) and the coefficient of 9/9x term is 0. Any asym-
metry between the forward and the backward gains will lead
to non-zero k() (z) and a presence of O(1/N) term as coef-
ficient of 9/0z. By a judicious choice of asymmetry, there is
thus a potential to improve the stability margin from O(1/N?)
to O(1/N).

We begin by considering the forward and backward position
feedback gain profiles

k(f)(x) =ko + ek(f,purt)(x)
kO () = ko + ek®PuD ()
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where € > 0 is a small parameter signifying the amount of mis-
tuning and k(5240 (1), k(&P (1) are functions defined over
the interval [0, 27| that capture perturbation from the nominal
value kq. Define

(f,purt) (JZ) + k_(b,purt) (."B)

=k
= KU () — Ot ()

so that from (16)

E) (@) = 2ko + eko(z), k) (2) = ek (z).

The mistuned version of the PDE (15) is then given by

a_%+b @
oz ot

5 0%
= af——
0 92

b 90
po Ox

ks 0%v

+ e —
‘ 2p3 Ox?

(28)

We study the problem of improving the stability margin by judi-
cious choice of k,,(x) and ks(z). The results of our investiga-
tion, carried out in the following sections, provide a systematic
framework for designing control gains in the platoon by intro-
ducing small changes to the symmetric design.

A. Mistuning-Based Design for Scenario 1

The control objective is to design mistuning profiles k,, ()
and k() to minimize the least stable eigenvalue s . To achieve
this, we first obtain an explicit asymptotic formula for the eigen-
values when a small amount of asymmetry is introduced in the
control gains (i.e., when ¢ is small). For scenario I, the result is
presented in the following theorem. The proof appears in Ap-
pendix I-A.

Theorem 1: Consider the eigenvalue problem for the mis-
tuned PDE (28) with Dirichlet boundary condition (17) corre-
sponding to scenario 1. The [*" eigenvalue pair is given by the
asymptotic formula

l 1
si(e) = 62b0N () sin(lz)dz + O(¢*) + O (m>
0
I 2
s; (€) by — T Em(z) sin(lz)dz + O(e?)

that is valid for each [ in the limitas e — Oand N — oco. [

It is apparent from the Theorem above that to minimize
the least stable eigenvalue sf, one needs to choose only k,,
carefully; k, has only O(1/N?) effect. Therefore we choose
ks(z) = 0, or, equivalently, k(fPurt)(z) = —gOPurt)(g),
which leads to k,,(z) = 27" (z). The most beneficial
control gains are now can be readily obtained from Theorem 1,
which is summarized in the next corollary.

Corollary 2 (Mistuning Profile for Scenario I): Con-
sider the problem of minimizing the least-stable eigenvalue
of the PDE (28) with Dirichlet boundary condition (17)
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by choosing k(f»urt)(z) € L°°([0,2x]) with norm-con-
straint |[KFPUrt) (2)]|p~ = max,een kST () = 1
and kGPurt) () = —E(FPert)(g) In the limit as ¢ — 0,
the optimal mistuning profile is given by E(/Purt)(g) =
2(H(z — ) — (1/2)), where H(z) is the Heaviside function:
H(z) = 1forz > 0and H(z) = 0 for x < 0. With this profile,
the least stable eigenvalue is given by the asymptotic formula

4e
ST(E) = _bO—N

in the limit as ¢ — 0 and N — o0. O

The result shows that even with an arbitrarily small amount of
mistuning €, one can improve the closed-loop platoon damping
by a large amount, especially for large values of N. The least-
stable eigenvalue 57~ asymptotes to 0 as O(1/N) in the mistuned
case as opposed to O(1/N?) in the symmetric case.

Fig. 5(a) shows the gains for the individual vehicles (that are
obtained from sampling the functions k() () and k(*) (z)), sug-
gested by Corollary 2 for a 20 vehicle platoon, with £y = 1 and
e =0.1

EY) =1402(H(r —i6) —0.5), and
EY =1-02(H(r - i6) - 0.5)

where § is the desired inter-vehicular spacing in the scaled y
coordinates, and is defined in (5). A confirmation of the predic-
tions of Corollary 2 is presented in Fig. 6. Numerically obtained
mistuned and nominal eigenvalues for both the PDE and the pla-
toon state-space model are shown in the figure, with mistuned
gains chosen as shown in Fig. 5(a). The figure shows that

1) the platoon eigenvalues match the PDE eigenvalues accu-
rately over a range of IV;

2) the mistuned eigenvalues show large improvement over the
nominal case even though the controller gains differ from
their nominal values only by +10%. The improvement is
particularly noticeable for large values of NV, while being
significant even for small values of N.

For comparison, the figure also depicts the asymptotic eigen-
value formula given in Corollary 2.

Fig. 4(b) graphically illustrates the mechanism by which mis-
tuning affects the movement of eigenvalues sli as N increases.
By properly choosing the mistuning patterns k,, (z) and ks(x),
damping can be “exchanged” between the eigenvalues sf and
57 so that the less stable eigenvalue s;” “gains” stability at the
expense of the more stable eigenvalue s; . The net amount of
damping is preserved, since s +s] = —bj (as seen from The-
orem 1).

B. Mistuning-Based Design for Scenario II

For scenario II, asymptotic formula for the eigenvalue (coun-
terpart of Theorem 1) is summarized in the following theorem.
The proof is entirely analogous to the proof of Theorem 1, and
is therefore omitted.

Theorem 2: Consider the eigenvalue problem for the mis-
tuned PDE (28) with Neumann-Dirichlet boundary condition
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Fig.5. Mistuned front and back gains 1:,5 ) and kg ®) of the vehicles ina platoon
with kg = 1 and € = 0.1. Figure (a) shows the gains chosen according to
Corollary 2 to be optimal for scenario I for small e: k{7 = ko(140.1(2H(7—
i0) = 1)),k = ko(1—0.1(2H (7 —16) — 1)), where H () is the Heaviside
function and ¢ is defined in (5). Figure (b) shows the optimal mistuned gains
for scenario II with the same parameters, which turns out to be (see Corollary
3) k) = 1.1ky and £ = 0.9k fori = 1,..., N.

(18) corresponding to scenario II. The It}

given by the asymptotic formula

eigenvalue pair is

27
l lx
5 (€)= — €4b0N km () sin (5) dz
0
9 1
+0(e“)+ 0 N
2
- l lx 9
s; (e) by + €4b0N km () sin 5 dz + O(€)
0

that is valid for each [ in the limitase — Oand N — oco. [
As with scenario I, here again we use the above result to de-
termine the most beneficial profile k,, (z) for small e:
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Fig. 6. Stability margin improvement by mistuning in Scenario 1. The figure
shows the least stable eigenvalue of the closed loop platoon (i.e., of A;_r in
(10)) and of the PDE (28) with Dirichlet boundary conditions, with and without
mistuning, for a range of values of V. Parameters for the nominal case are ko =
1 and by = 0.5, and the mistuning amplitude is € = 0.1. The mistuned control
gains are shown in Fig. 5(a). The legend “Corollary 2” refers to the prediction
by Corollary 2 for large V.
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Fig. 7. Stability margin improvement by mistuning in scenario II. The figure
shows the least stable eigenvalue of the closed loop platoon (i.e., of A, in (10))
and of the PDE (28) with Neumann-Dirichlet b.c., with and without mistuning,
for a range of values of IN. The parameters for the nominal case are kg = 1
and by = 0.5, and the mistuning amplitude is ¢ = 0.1. The mistuned control
gains that are used are shown in Fig. 5(b). The legend “Corollary 3” refers to
the prediction by Corollary 3 of mistuned PDE eigenvalues.

Corollary 3 (Mistuning Profile for Scenario 1I): Con-
sider the problem of minimizing the least-stable eigen-
value of the PDE (18) with Neumann—Dirichlet boundary
conditions (18) by choosing k/Purt)(z) € L>([0,2x])
with norm-constraint maxye[o,2x] EGpert) (1) = 1, and
E®rurt) () = —k(FPurt)(g), In the limit as € — 0, the optimal
Epurt) s given by k(FPurt)(z) = 1. With this profile, the
least-stable eigenvalue is given by the asymptotic formula

€
s (e) = T boN

in the limit as ¢ — 0 and N — oo. O



BAROOAH et al.: MISTUNING-BASED CONTROL DESIGN

Time
(@)

2109

0.4

0.3

0.2

0.1r

Zioa(t) — Zi(t) - A

af |

-0.2

0 5 10 15 20 25 30
Time
(b)

Fig. 8. Performance of symmetric bidirectional control in time-domain: time histories of the absolute and relative position errors of the vehicles in a platoon with
symmetric bidirectional control (scenario I). The control gains are kgf ) = kgb) = land b; = 0.5 forevery « = 1,...,20. (a) Absolute position errors; (b)

relative position errors.

The result shows that, as in scenario I, it is possible to im-
prove the closed-loop stability margin in scenario II with an ar-
bitrary small amount of mistuning e such that the least-stable
eigenvalue 57" asymptotes to 0 as O(1/N) in the mistuned case
as opposed to O(1/N?) in the symmetric case. The gains sug-
gested by Corollary 3, with k) = 1 and € = 0.1 are

ED =11, and £ =09

which are shown in Fig. 5(b). Numerically obtained least stable
eigenvalues for the PDE and the platoon state-space model for
scenario II are shown in Fig. 7 for a range of values of N.
It is clear from the figure that, as in scenario I, the mistuned
eigenvalues show an order of magnitude improvement over their
values in the symmetric bidirectional case with only £10% vari-
ation.

Remark 2 (Robustness to Small Changes From the Optimal
Gains): An advantage of the mistuning design is that mistuned
closed loop eigenvalues are robust to small local discrepancies
in the control gains from the optimal ones. This can be seen (for
scenario I) from the asymptotic eigenvalue formulas of Theorem
1, which shows that one would obtain a O(1/N) estimate for
any choice of k() such that f02ﬂ km(z)sin(z)dr # 0. A
similar argument holds for scenario II.

C. Simulations

We now present results of a few simulations that show the
time-domain improvements—manifested in faster decay of ini-
tial errors—with the mistuning-based design of control gains.
Simulations were carried out for a platoon of N = 20 vehicles
with scenario I, i.e., with fictitious lead and follow vehicles. The
desired gap was A = 1 and desired velocity was V; = 5. The
initial velocity of every vehicle was chosen as the desired ve-
locity and the initial position of the i*" vehicle was chosen as
Z;(0) = ¢A — 0.5 fori = {1,...,N}. As a result, the initial
relative position error and velocity error of every vehicle was
zero except for the first vehicle, whose relative position error
with respect to the fictitious lead vehicle was 0.5.

Fig. 8 shows the time-histories of the absolute and relative
position errors of the individual vehicles with a symmetric bidi-
rectional control, where the control gains were chosen as k,gf ) =
ki(b) = land b, = 0.5 fori = {1,...,20}. The absolute posi-
tion error of the i*" vehicle is Z; — Z¢ and the relative position
erroris Z;_1 — Z; — A.

Fig. 9 shows the time-histories of the absolute and relative po-
sition errors for the platoon with mistuned controller gains. The
mistuning gains used for the simulation are the ones shown in
Fig. 5(a) (chosen according to Corollary 2) so that maximum
and minimum gains over all vehicles is within +10% of the
nominal value. On comparing Figs. 8 and 9, we see that the er-
rors in the initial conditions are reduced faster in the mistuned
case compared to the nominal case. These observations are con-
sistent with the improvement in the closed-loop stability margin

with the mistuned design.

VI. DISCUSSION ON MISTUNING DESIGN

There are several remarks to be made regarding the mistuning
based design. We first comment on the implementation issues,
in particular, on the effect of small platoon size on the proposed
design, and on the information requirements for its implemen-
tation.

A. Large Versus Small N

The PDE model is developed for large N. However, detailed
numerical comparison between the PDE and the discrete state
space model shows that the PDE model provides quantitatively
correct predictions even for small values of N (see Figs. 3, 6 and
7). The PDE has an infinite number of eigenvalues as opposed
to a finite number for the discrete platoon. So, one can not ex-
pect an exact match. However, PDE eigenvalues exactly match
the least stable and other dominant eigenvalues of the discrete
platoon (see Figs. 2 and 10). In a similar vein, the benefits of
mistuning are also realized for small values of V. For example,
when the number of vehicles is 20, a mistuning of +=10% results
in an improvement in the stability margin—as measured by the
real part of the least stable eigenvalue—of 150% (from —0.0491
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Fig. 9. Performance of mistuned control in time-domain: time histories of the absolute and relative position errors of the vehicles in a platoon (scenario I) with
mistuned bidirectional control, cf. Fig. 8. The control gains used are those shown in Fig. 5(a). The legends refer to the vehicle indices. (a) Absolute position errors.

(b) Relative position errors.
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Fig. 10. Real parts of six eigenvalues (closest to 0) of the closed loop pla-
toon dynamics for Scenario I, and their comparison with the PDE eigenvalues
with Dirichlet-Dirichlet boundary conditions, with controller gains mistuned as
those shown in Fig. 5. As predicted by the S-L theory, the least stable eigenvalue
stays the least stable, although eigenvalues that are more stable merge with it as
N increases.

to —0.1281) in scenario I and an improvement of 400% (from
—0.012 to —0.05) in scenario II over the symmetric case.

B. Information Requirements

In order to implement the beneficial mistuned controller gains
designed above, every vehicle needs the following information
(in addition to what is needed to use a symmetric bidirectional
control): (1) the mistuning amplitude ¢, and (2) in scenario I,
whether it is in the front half of the platoon or not. This infor-
mation can be provided to the vehicles in advance. In scenario
II, only the value of € is needed.

It is possible that due to vehicles leaving and joining the pla-
toon, information on whether a vehicle belongs to the front half
of the platoon may become erroneous with time, especially for
the vehicles that are close to the middle. In scenario I, such error
may lead to a non-optimal gains used by the vehicles. However,

since the improvement in closed loop stability margin due to
mistuning is robust to small deviations in the gains from the
optimal ones (see Remark 2), errors in determining whether a
vehicle belongs to the front half of the platoon or not will not
greatly affect the improvement in stability margin. Note that in
scenario II this issue does not even arise.

C. Large Asymmetry

Although the mistuning profiles described in Corollaries 2
and 3 are optimal in the limit as ¢ — 0, one would like to
be able to use them with somewhat larger values of € to re-
alize the benefit of mistuning. To do so, one has to preclude
the possibility of “eigenvalue cross-over”, i.e., of the second
(s3) or some other marginally stable eigenvalue from becoming
the least stable eigenvalue in the presence of mistuning. It turns
out that such a cross-over is ruled out as a consequence of the
Strum—Liouville (S-L) theory for the elliptic boundary value
problems. The standard argument relies on the positivity of the
eigenfunction corresponding to s7; the reader is referred to [34]
for the details. Fig. 10 verifies this numerically by depicting the
six eigenvalues closest to O (for both the PDE and the discrete
platoon) as a function of N when mistuning is applied.

D. Sensitivity to Disturbance

Automated platoons suffer from high sensitivity to external
disturbances; which is referred to as ‘“string instability” or
“slinky-type effects” [1], [15], [20]. Here we provide numerical
evidence that mistuning also helps in reducing the sensitivity
to disturbances.

When external disturbances are present, we model the dy-
namics of vehicle ¢ by ZZ = U; + W;, where W; is the external
disturbance acting on the vehicle. In the y coordinates, the ve-
hicle dynamics become @L = u;+w;, where w; := 2xW; /L. In
scenario I, the state space model of the entire platoon becomes

V=A_p+ m w, e=Cy (29)
-~

B
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Fig. 11. H., norm of the transfer function G, from disturbance w to spacing
error e in (29), with and without mistuning, for scenario I. The mistuned gains
used are shown in Fig. 5(a). Norms are computed using the Control Systems
Toolbox in MATLAB.

where 1/) = [SIT7\~IT]T, w = [w17w27 . 7U)N]T, and
T

e = [egf)7...,e§\’;)] is a vector of front spacing errors

e(f) = e —

i = Yi-1 Yi.

The H, norm of the transfer function G,. from the distur-
bance w to the inter-vehicle spacing errors e is a measure of
the closed loop’s sensitivity to external disturbances [7], [13].
Fig. 11 shows a plot of the H., norm of GG, as a function of
N, with and without mistuning. The mistuning profile used is
the same as the one used for the eigenvalue trends reported in
Fig. 6. It is clear from the figure that £10% mistuning results
in large reduction of the H., norm of G,.. Although this re-
duction is more pronounced for large [V, it is still significant for
small N. In particular, for N = 20, a 10% mistuning yields ap-
proximately 50% reduction in the H ., norm (from 6.69 to 3.38).

Apart from the H,, norm of Gy, there are other ways to
measure sensitivity to disturbances. In [21], the transfer func-
tion from disturbance acting on the lead vehicle to spacing error
on the 7' vehicle is analyzed. Detailed analysis of the effect of
mistuning on sensitivity to disturbances will be a subject of fu-
ture work.

VII. CONCLUSION

We developed a PDE model that describes the closed loop
dynamics of an IV-vehicle platoon with a decentralized bidirec-
tional control architecture. Analysis of the PDE model revealed
several important features of the problem. First, we showed that
when every vehicle uses the same controller with constant gain
that is independent of NV (the so-called symmetric bidirectional
architecture), the least stable eigenvalue of the closed loop de-
cays to 0 as O(1/N?). Second, and more significantly, analysis
of the PDE suggested a way to ameliorate the progressive loss
of stability with increasing NV, by introducing small amounts of
“mistuning”, i.e., by changing the controller gains from their
nominal symmetric values. We proved that with arbitrary small
amounts of mistuning, the decay of the least stable closed loop
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eigenvalue can be improved to O(1/N). Several comparisons
with the numerically computed eigenvalues of state-space
model of the platoon confirm the predictions of the PDE-based
analysis.

Although the PDE model is derived under the assumption that
the number of vehicles, NV, is large, in practice the PDE pro-
vides quantitatively correct predictions for the discrete platoon
dynamics even for relatively small values of N. The amount of
information that is needed to implement the mistuned control
gains (over that in the symmetric bidirectional architecture) is
quite small and need to be provided only once. Furthermore,
the stability improvement due to mistuning is robust to small
errors (between the actual gains used and the optimal mistuned
gains) that may occur in practice due to changes in the number
of vehicles in the platoon over time.

The advantage of the PDE formulation is reflected in the ease
with which the closed loop eigenvalues are obtained for two
different boundary conditions, with lead and follow vehicles
as well as with only a lead vehicle. Certain important aspects
of the problem, such as the beneficial nature of forward-back-
ward asymmetry in control gains, is revealed by the PDE while
they are difficult to see with the (spatially) discrete, state-space
model.

Numerical calculations show that the mistuning design also
reduces sensitivity to disturbances of the closed-loop platoon.
Analysis of the beneficial effect of mistuning in reducing sen-
sitivity to external disturbances is a subject of future research.
In the future, we also plan to examine PDE-based models for
modeling and analysis of fleet of vehicles as in 2 or 3 spatial
dimensions.

APPENDIX [
TECHNICAL RESULTS

A. Proof of Theorem 1

Proof of Theorem 1: The spatial inhomogeneity introduced
by the z-dependent coefficients k&, (z) and ks(x) destroy the
spatial invariance of the nominal PDE (20). Hence, the Fourier
basis—eigenfunctions of the Laplacian—no longer lead to a di-
agonalization of the mistuned PDE. The methods of Section IV
thus need to be suitably modified. In order to compute the eigen-
values for the mistuned PDE (28), we take a Laplace transform
of (28) and get

ks 827]
2p3 Ox?

ko On

po Ox

23277
~% 0z?

+ 2+ bosn = € 30)
where 7(z) is the Laplace transform (with respect to t) of
0(z, t). We are interested in eigenvalues of (30) with Dirichlet
boundary conditions, i.e., the values of s for which a solution
to the homogeneous PDE (30) exists with boundary conditions
7(0) = n(27) = 0. To obtain these eigenvalues, we use a per-
turbation method expressing the eigenfunction and eigenvalue
in a series form

n(z) = no(z)+em(z)+0(€%), s=ro+er1+0(e%). (31)
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We note that ery denotes the perturbation to the nominal eigen-
value 7o as a result of the mistuning. Substituting (31) in (30)
and doing an O(1) balance, we get

O(1):  —ad(n0)ea + 1900 + brome = 0 (32)

whose eigen-solution is given by

Ny = d; sin <%E> , ro= sli(())

where [ = 1,2, ..., d; is an arbitrary real constant, and sli(O) is
given by (24). Next

0?2 km On0 ke 02
2 2 _ hm s
O(e) : < W5 + (7“0 + boro)> m _po B + 202 9520

—(27"07“1 + bo?”l)’f]o =R
Substituting 7o = s:¥(0) on the left hand side leads to a reso-
nance condition for the right hand side term, denoted by R. In
particular for a solution 7; to exist, R must lie in the range space
of the linear operator

82
<—a3w + (rg + br0)> : (33)

For this self-adjoint operator, the range space is the complement
of its null space {sin(lz/2)}. This gives the resonance condition

(2}

where (-,-) denotes the standard inner product in L?(0,27).
This leads to an equation

27

/ k() sin(lz)dz

0

2m
? .o flx
_Fp%/ks(x) sin <5> dz. (34)

0

For values of 7o = s(0), where s(0) is given by (24), the
equation above leads to an expression for perturbation in the
two eigenvalues. We denote these perturbations as rfc. For rg =
s;7(0), we have from from Lemma 1 that by > |279| when
l <« l., which happens for every [ as N — oo (see (25)), so

that

27

l . 1
ri ~ m/km(x) sin(lz)dz + O <m) .
0

(35)
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Note that we have dropped the second integral on the right hand
side of (34) because 1/p2 = O(1/N?) for large N. For ro =
s;.(0), 2rg &= —2bg for | < [. and

2m
B l . 1
ry o~ —m/km(x) sin(lz)dz + O (m> . (30)
0
Note that
7“1+ +r; =0.

Putting the formulas for the perturbation to the eigenvalues (35)
and (36) in (31), we get

27
l
0 = O+ ey [ hno)sin(lo)ds + O(E)

0

27

L / o (2) sin(lz)dz + O(2)

Since 5;7(0) = O(1/N?) for | < l. (Lemma 1) and py =
N/2m, the result follows. [ |
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