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Abstract— We consider a decentralized bidirectional control
of a platoon of N identical vehicles moving in a straight
line. Such problems are known to suffer from poor stability
margin and sensitivity to disturbance as the number of vehicles
gets large. In this paper, we present a novel control design
methodology for optimization of the stability margin using
distributed control. The methodology employs a variational
formulation for minimization of the least stable eigenvalue
of a partial differential equation (PDE) approximation of the
platoon dynamics. We show that the eigenvalue optimization
based control has better closed-loop stability margin and
sensitivity to disturbance than a symmetric architecture where
the same control law is used by each vehicle. All the conclusions
drawn from analysis of the PDE model are corroborated via
numerical calculations of the discrete platoon model.

I. INTRODUCTION

We consider the problem of control law design for dis-

tributed control of a one-dimensional platoon of N identical

vehicles. The control objective is that every vehicle move at

a constant pre-specified velocity Vd with an inter-vehicular

spacing of ∆. The control action at an individual vehicle

depends upon its own velocity and the relative position errors

between itself and its predecessor and its follower vehicles

(see Figure 1(a)).

Decentralized control of large vehicular platoons suffers

from several challenges. First, the least stable closed-loop

eigenvalue approaches zero as the number of vehicles, N ,

increases [1], [2]. This progressive loss of closed-loop damp-

ing causes the closed loop performance of the platoon to

become arbitrarily sluggish as the number of vehicles gets

large. Second, with decentralized control the sensitivity of

the closed loop system to external disturbances increases

with N [3], [4]. Third, there is a lack of design methods

for decentralized architectures. For N vehicles, in general,

N distinct controllers need to be designed, for which few

control design methods exist. This has led to the examination

of only the symmetric control among bidirectional architec-

tures [4], [5], [6]. Some symmetry aided simplifications are

possible for analysis and design in this case.

In this paper, we present an eigenvalue optimization based

method that is targeted at these problems in the control

of vehicular platoons. The method builds upon our earlier

work [7], [2] where we presented a partial differential equa-

tion (PDE) approximation of the vehicular platoon problem.

Using the PDE model, we showed that a small perturbation

(asymmetry) in the controller gains from their nominal

(symmetric) value can improve the closed-loop damping. In

particular, the least stable eigenvalue approaches 0 as O( 1
N

)
with mistuning, whereas it approaches 0 as O( 1

N2 ) in the

symmetric bidirectional case. The analysis was carried out
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Fig. 1. A platoon with N vehicles moving in one dimension.

using a perturbation method for vanishingly small amounts

of mistuning.

The success of the “small mistuning” approach in achiev-

ing large stability margin improvement naturally raises the

following question: how to maximize the stability margin

by designing the mistuning gains when potentially large

deviations from the nominal symmetric gains are allowed

(subject to some realistic constraints on the gains)? This

paper attempts to address this question. The proposed method

draws on eigenvalue optimization literature from PDEs that

has a long history going back to Joseph Keller’s seminal

paper on solution to the Lagrange problem [8].

In this paper, we obtain rigorous O( 1
N

) estimate on the

least stable eigenvalue as N → ∞. The approximations

implicit in the perturbation calculation are not present here

and the conclusion that mistuning leads to an order of

magnitude improvement of stability margin is exact. We also

show that the distributed control gains (mistuning profile)

obtained using optimization is consistent with the results

of the perturbation calculation (that appeared in [7], [2]) in

the limit that the mistuning size ǫ → 0. These results are

also verified using numerical calculations with the spatially

discrete platoon model. The numerical computations also

show that the method leads to a design that not only has an

improved stability margin – as measured by the least stable

eigenvalue – but also a lower sensitivity to disturbances

(compared to the symmetric bidirectional case).

The rest of the paper is organized as follows: Section II

describes the discrete and continuous models of the platoon

problem. Section III presents a review of the stability analysis

in [2], [7]. The eigenvalue optimization is discussed in

Section IV with numerical results in Section V.
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II. DISCRETE AND CONTINUOUS MODELS WITH

BIDIRECTIONAL CONTROL

A. Closed-loop platoon dynamics (discrete model)

Consider a platoon of N identical vehicles moving in a

straight line as shown schematically in Figure 1(a). Let Zi(t)
and Vi(t) := Żi(t) denote the position and the velocity,

respectively, of the ith vehicle for i = 1, 2, . . . , N . Each

vehicle is modeled as a double integrator:

Z̈i = Ui + Wi, (1)

where Ui is the control (engine torque) applied on the ith

vehicle, and Wi is the disturbance acting on the ith vehicle.

Following [1], we introduce a fictitious lead vehicle and a

fictitious follow vehicle, indexed as 0 and N +1 respectively.

Their behavior is specified by imposing a constant velocity

trajectories as Z0(t) = Vd t and ZN+1 = Vd t − (N + 1)∆.

For the decentralized bidirectional linear control architec-

ture, the control Ui for the ith vehicle is given by

Ui = k
(f)
i (Zi−1 − Zi − ∆) − k

(b)
i (Zi − Zi+1 − ∆)

− bi(Vi − Vd). (2)

where k
(·)
i , bi are positive constants. The superscripts (f) and

(b) correspond to front and back, respectively.

To facilitate analysis, we consider a coordinate change

yi = 2π(
Zi(t) − Vdt + L

L
), vi = 2π

Vi − Vd

L
, (3)

where L = (N +1)∆ denotes the desired platoon length (see

Figure 1(b)). The scaling ensures that y0(t) ≡ 2π, yi(t) ∈
[0, 2π], and yN+1(t) ≡ 0.

B. Continuous model of closed loop platoon dynamics

The PDE is derived with respect to a scaled spatial

coordinate x ∈ [0, 2π]. The starting point is a continuous

approximation:

v(x, t) := vi(t) at x = yi.

Similarly, b(x), k(f)(x), k(b)(x) are used to denote contin-

uous approximations of discrete gains bi, k
(f)
i , k

(b)
i respec-

tively. The PDE model, derived in [2], [7], describes the

evolution of spatio-temporal velocity perturbation v(x, t)
along the platoon:

(

∂2

∂t2
+ b(x)

∂

∂t

)

v =
1

ρ0
(k(f)(x) − k(b)(x))

∂v

∂x

+
1

2ρ2
0

(k(f)(x) + k(b)(x))
∂2v

∂x2
(4)

where ρ0
.
= N

2π
. It is shown in [2] that for any fixed value

of N , a suitable finite-difference approximation of the PDE

yields the dynamics of the discrete model.

Because of the fictitious lead and follow vehicles, the

appropriate boundary condition is of the Dirichlet type:

v(0, t) = v(2π, t) = 0. ∀t ∈ [0,∞). (5)

III. STABILITY ANALYSIS AND CONTROL DESIGN

The PDE is useful because it succinctly describes the

spatial aspects of dynamics for the closed-loop vehicular

platoon. In [2], [7], the PDE is used for stability analysis

and the mistuning-based control design. These results are

briefly reviewed next:

A. Stability analysis

With a symmetric bidirectional control, all the control

gains are constant: k(f)(x) = k(b)(x) ≡ k0 and b(x) ≡ b0.

The PDE (4) simplifies to
(

∂2

∂t2
+ b0

∂

∂t
− a2

0

∂2

∂x2

)

v = 0, (6)

a damped wave equation with wave speed a0 :=
√

k0

ρ0

.

The eigenvalues are easily computed by taking the Laplace

transform and we have the following result:

Lemma 1 (Corollary 1 in [2]): Consider the eigenvalue

problem for the PDE (6) with Dirichlet boundary condi-

tion (5). The least stable eigenvalue, denoted by s+
1 , satisfies

s+
1 = −π2k0

b0

12

N2
+ O(

1

N4
),

in the limit as N → ∞. �

The Lemma shows that the stability margin of a large platoon

deteriorates as O( 1
N2 ), when the number of vehicles is large.

The conclusion is independent of any constant values of the

controller gains k0 and b0.

B. Mistuning based control design

A mistuning based control design was proposed in [2], [7]

to improve the stability margin. The idea was to increase the

modulus of the least stable eigenvalue by introducing small

perturbations in forward and backward control gains:

k(f)(x) = k0 + ǫk(f,pert)(x),

k(b)(x) = k0 + ǫk(b,pert)(x), (7)

where ǫ > 0 is a small parameter signifying the amount

of mistuning and k(f,pert)(x), k(b,pert)(x) ∈ L2([0, 2π])
describe perturbation from the nominal value k0. Define

ks(x) := k(f,pert)(x) + k(b,pert)(x),

km(x) := k(f,pert)(x) − k(b,pert)(x).

The mistuned version of the PDE (4) is then given by

∂2v

∂t2
+ b0

∂v

∂t
= L(ǫ)v, (8)

where

L(ǫ)v := a2
0

∂2v

∂x2
+ ǫ

[

km(x)

ρ0

∂v

∂x
+

ks(x)

2ρ2
0

∂2v

∂x2

]

. (9)

The objective of mistuning based control design is to ob-

tain the mistuning profiles ks(x) and km(x) that minimize

the least stable eigenvalue. For this problem, we have the

following asymptotic result:

Corollary 1 (Corollary 2 in [7]): Consider the problem

of minimizing the least-stable eigenvalue of the PDE (8)

WeCIn5.6

3021



with Dirichlet boundary condition (5) by choosing a function

km(x) ∈ L2([0, 2π]) such that
∫ 2π

0
|km(x)|2dx = 1. In the

limit as ǫ → 0, the optimal mistuning profile is given by

k∗
m(x) = − 1√

π
sin(x). With this profile, the least stable

eigenvalue is

s+
1 (ǫ) = − ǫ

√
π

2b0

1

N
+ O(ǫ2) + O(

1

N2
)

in the limit as ǫ → 0 and N → ∞. �

The corollary shows that the asymptotic properties of

the closed-loop stability margin can be improved even with

an arbitrarily small perturbation. With mistuning the least

stable eigenvalue approaches zero only as O( 1
N

) as opposed

to O( 1
N2 ) without mistuning.

The reader is referred to [7], [2] for the details.

IV. EIGENVALUE OPTIMIZATION BASED CONTROL

DESIGN

The perturbation based analysis and the resulting control

design procedure works well in practice (see numerical

results both in this paper and in [7], [2]). However, one can

provide guarantees only in the limit of small ǫ. Moreover, the

spatial profiles predicted by these calculations are optimal

only for vanishingly small values of ǫ. This motivates the

topic of this paper - to develop an approach to optimize the

least stable eigenvalue directly.

In this section we seek to determine the optimal mistuning

profiles for km(x) and ks(x) given some ǫ > 0. On taking

a Laplace transform of the PDE (8) with respect to the time

variable, one easily obtains the characteristic equation for the

least stable eigenvalue

s2 + b0s = λ1, (10)

where λ1 is the principal (with largest real part) eigenvalue

of the elliptic operator L(ǫ) (defined in (9)). By a standard

argument in Strum-Louiville (S-L) theory, λ1 is real with a

positive eigenfunction [9]. As a result of (10), the problem

of minimizing the least stable eigenvalue of the PDE (8)

is equivalent to minimizing λ1, the principal (with largest

real part) eigenvalue of L(ǫ) by choosing the functions

km(s), ks(x) ∈ L2. Using the characteristic equation, it also

follows that

s+
1 =

λ1

b0
(11)

in the limit as N → ∞. In the following, we thus focus

on minimizing λ1 by choosing the functions km(s), ks(x) ∈
L2([0, 2π]). The least stable eigenvalue can then be obtained

by solving (10) or simply using the asymptotic formula (11).

For problem of minimizing λ1 to be well-posed, an

additional constraint on km(x) and ks(x) is needed. In the

following, we impose the constraints

ks(x) ≡ 0 and ‖km‖L2 = 1. (12)

where ‖km‖2
L2 =

∫ 2π

0
km(x)2dx. The constraint ks(x) =

0 is assumed for the sake of simplicity of the presentation

and because it appears as part of the coefficient 1
N2 ks(x)

in (9). Any improvement due to ks(x) alone is O( 1
N2 ) while

km(x) can potentially deliver an O( 1
N

) shift in eigenvalue

location. This is also reflected in estimates obtained using

the perturbation methods (see Corollary 1).

Thus, the problem of minimizing the least stable eigen-

value of the PDE (8) is converted to the following optimiza-

tion problem:

min
{ks(x)≡0,‖km(x)‖

L2=1}
λ1. (13)

Even with km(x) alone, the optimization of a non self-

adjoint eigenvalue problem (as in our case) is challenging

with limited theory for guidance; see Section 16 of the review

paper [10] on the topic of eigenvalue optimization.

As a first step, we relax the optimization problem by

replacing the operator L(ǫ) by its self-adjoint (symmetric)

component:

Ls(ǫ)η = (
L + L∗

2
)η = a2

0

d2η

dx2
− ǫ

2ρ0
k′

m(x)η, (14)

where L∗ is the adjoint of L and k′
m(x) := dkm

dx
(x). Let λs

1

denote the principal eigenvalue of L∗:

a2
0

d2φ

dx2
− ǫ

2ρ0
k′

m(x)φ = λsφ (15)

with Dirichlet boundary conditions φ(0) = φ(2π) = 0. The

following lemma gives the relationship between λs
1 and λ1.

Lemma 2: Let λ1 denote the principal eigenvalue of the

operator L in (9) and λs
1 denote the principal eigenvalue of

the self-adjoint operator Ls in (14). Then,

λ1 ≤ λs
1. �

Proof of Lemma 2. Let λ1 be the principal eigenvalue and

φ(x) be the corresponding positive eigenfunction of the non

self-adjoint problem:

a2
0

d2φ

dx2
+ ǫ

km(x)

ρ0

∂φ

∂x
= λ1φ.

Multiplying by φ and integrating by parts, we obtain

−a2
0

∫ 2π

0

(

dφ

dx

)2

dx− ǫ

2ρ0

∫ 2π

0

k′
m(x)φ2dx = λ1

∫ 2π

0

φ2dx.

We have

λ1 ≤ max
φ>0

[

−a2
0

∫

(

dφ
dx

)2

dx − ǫ
2ρ0

∫

k′
m(x)φ2dx

]

∫

φ2dx
= λs

1,

where the last equality follows from the variational charac-

terization of the principal eigenvalue for a self-adjoint elliptic

problem [9].

Therefore, instead of the original eigenvalue optimization

problem (13), we pose and solve the following simpler

optimization problem:

min
{km(x):‖km‖

L2=1}
λs (16)
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where λs is the principal (largest) eigenvalue of Ls. Note that

we have dropped the subscript due to notational convenience.

Because of Lemma 2, we can bound (from above) the

solution of the original problem (13) in terms of solution

of the self-adjoint problem (16).

We obtain the solution of the self-adjoint eigenvalue opti-

mization problem (16) using a variational method originally

due to Keller [8], which is presented in the following Lemma:

Lemma 3: Consider the eigenvalue optimization prob-

lem (16). The optimal mistuning profile is

k∗
m(x) = −Cφ(x)φ′(x), (17)

where C is a constant and φ is the principal eigenfunction

of the nonlinear BVP

a2
0φ

′′ +
ǫC

2ρ0

[

φφ′′ + (φ′)2
]

φ = λsφ. (18)

with φ(0) = φ(2π) = 0; φ′(x)
.
= dφ

dx
(x) and φ′′(x)

.
=

d2φ
dx2 (x). �

Proof. Assume k∗
m(x) minimizes the largest eigenvalue and

is thus the solution. After Keller [8], we introduce a family

of functions km(x, δ) with k∗
m(x) = km(x, 0) to construct a

differential characterization of this optimal. For each δ, the

principal eigenvalue and the eigenfunction are given by λs(δ)
and φ(x, δ) respectively. Differentiating (15) with respect to

δ and evaluating at δ = 0 gives

a2
0

d2φδ

dx2
− ǫ

2ρ0
k′

m(x)φδ −
ǫ

2ρ0
(k′

m)δ(x)φ = λsφδ,

where (k′
m)δ(x) =

∂(k′

m
)(x)

∂δ
|δ=0 and φδ = ∂φ

∂δ
|δ=0. Multi-

plying by φ, integrating, and using (15) gives
∫ 2π

0

(k′
m)δ(x)φ2dx = 0 (19)

On differentiating the constraint (12), we obtain
∫ 2π

0

km(x)(km)δ(x)dx = 0. (20)

Since (km)δ(x) represents an arbitrary perturbation about the

optimal, the two equations (19)-(20) imply that the optimal

mistuning profile is given by

k∗
m(x) = −Cφ(x)

dφ

dx
(x), (21)

where C is some constant. It follows that for this optimal

mistuning profile

k′
m(x) = −C

2

d2(φ)2

dx2
.

Substituting this in (15), one obtains the nonlinear BVP (18).

As a result of the Lemma, control gains can be obtained

by solving the nonlinear BVP (18).

We consider the ǫ → 0 limit first. In this limit, the principal

eigenfunction (of (18)) is given by φ = sin(x
2 ). Using (17),

0 1.57 3.14 4.71 6.28

−0.5

−0.25

0

0.25

0.5

 

 

(− 1√
π

sinx)
ǫ = 0.1
ǫ = 0.35
ǫ = 0.88
ǫ = 1.77

k
∗ m

(x
)

x

Fig. 2. The optimal mistuning pattern k∗
m

(x) computed according to
the procedure laid out in section VI-A for three different values of ǫ. The
parameters are N = 50 and k0 = 1.

one immediately obtains the optimal mistuning pattern for

the limiting case ǫ → 0:

k∗
m(x) = −C sin(x),

where C = 1√
π

satisfies the norm constraint. This is

consistent with the optimal mistuning profile obtained using

the perturbation method (see Corollary 1). For small ǫ, this

also provides an estimate of the eigenvalue

λs = −a2
0

4
− ǫ

16πρ0
+ O(ǫ2),

which using (11) gives the estimate of Corollary 1.

For the general case, we solve the BVP (18). The details of

the calculation appear in the Appendix section VI-A where

we show that

√
−λs =

√
k0

2N

∫ 2π

0

[

1 +
ǫβN

4πk0
sin2 θ

2

]
1

2

dθ, (22)

where β is a positive constant that is independent of N , and

recall k0 is the nominal symmetric value of control gain.

Using the asymptotic formula in conjunction with the

bound in Lemma 2, one has the following corollary that pro-

vides a rigorous O( 1
N

) bound on the least stable eigenvalue

of the PDE (8).

Corollary 2: Let s+
1 denote the least stable eigenvalue of

the PDE (8) with Dirichlet boundary condition (5). With the

choice of mistuning profile given in Lemma 3, the least stable

eigenvalue is given by the asymptotic formula

s+
1 = − ǫβ

πb0N
+ O(

1

N2
), (23)

as N → ∞ for any fixed ǫ > 0; β is a constant that is

independent of N .

V. NUMERICAL RESULTS

Figure 2 depicts the optimum mistuning profiles for the

self-adjoint PDE for three different values of ǫ. Consistent

with the results obtained using the perturbation method, the

optimal mistuning profile is close to the sinusoidal pattern

for small values of ǫ.
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10 20 50 100 200

−10
−1

−10
−2

−10
−3

N

 

 

R
e(

(s
+ 1
)s

)

km = k∗
m

km = − 1√
π

sin x

Fig. 3. Real part of the least stable eigenvalue of the self-adjoint PDE (24)
with the optimal mistuning profile and sinusoidal profile. The parameters
are k0 = 1, b0 = 0.5, and ǫ ≈ 0.35. As predicted, the optimal mistuning
profile results in a smaller eigenvalue compared to that from a sinusoidal
one.

Figure 3 depicts the trend of the least stable eigenvalue of

the self-adjoint PDE:

∂2v

∂t2
+ b0

∂v

∂t
= Ls(ǫ)v, (24)

for both sinusoidal and k∗
m(x) mistuning. The least stable

eigenvalue of (24) is denoted by (s+
1 )s. It is seen from the

figure that the optimal mistuning profile k∗
m(x) indeed results

in a smaller least stable eigenvalue than the sinusoidal one.

Figure 4 depicts the least stable eigenvalue of the self-

adjoint PDE with the optimal mistuning profile k∗
m and

that of the original non self-adjoint PDE (8) with the same

mistuning applied to it. The figure also plots the predictions

of Corollary 2 for large values of N , in particular, for

N > 50. As seen from the plot, the predicted eigenvalues of

the self-adjoint PDE match quite accurately the numerically

computed ones. In addition, as predicted by Lemma 2, the

least stable eigenvalue of the self-adjoint PDE upper bounds

that of the original non self-adjoint problem. This plot

provides numerical evidence of the rigorous O( 1
N

) bound

for the eigenvalues of the original PDE (8).

Numerically, the optimal mistuning profile obtained for

self-adjoint PDE was found to be sub-optimal for the non

self-adjoint PDE corresponding to the discrete platoon. In

particular, for the values of ǫ tested and shown in the figures,

the sinusoidal mistuning profile was seen to provide greater

damping for the platoon. This is seen from the plots in

Figure 5. The plot nevertheless shows distinct improvement

in stability margin resulting from mistuned control compared

to the symmetric bidirectional control.

In addition, Figure 5 presents numerical corroboration that

the predictions of the PDE model match the predictions of

the state-space model of the platoon dynamics accurately.

The least stable eigenvalue of the platoon model (the state

matrix for (1)-(2)) was computed by choosing the controller

gains according to the mistuning profile, with k0 = 1, b0 =

10 20 50 100 300 700
    −1

  −0.1

 −0.01

−0.001

N

 

 

R
e(

s+ 1
),

R
e(

s+ 1
)s

)

PDE (8)

PDE (24)

Cor. 2

Fig. 4. The least stable eigenvalue of the governing PDE (8) and of the self-
adjoint PDE (24) with km(x) = k∗

m
(x), and the predictions of Corollary 2

for the self-adjoint PDE for N > 50. The parameters are k0 = 1, b0 = 0.5,
and ǫ ≈ 0.35. Consistent with Lemma 2, the least stable eigenvalue of the
self-adjoint PDE upper bounds that of the original non self-adjoint problem.
Moreover, Corollary 2 predicts the least stable eigenvalue of the self-adjoint
PDE quite accurately for large N .

0.5, and ǫ ≈ 0.35. The gains for the sinusoidal mistuning

profile are obtained from sampling k(f)(x) = 1− 0.1 sin(x)
and k(b)(x) = 1 + 0.1 sin(x). For the optimal profile, the

gains are chosen by sampling kf (x) = 1 + ǫk∗
m(x)/2 and

k(f)(x) = 1 − ǫk∗
m(x)/2. In both cases, the gains differed

from the nominal gain k0 = 1 by ±10%. The figure shows

that the eigenvalues computed from the PDE (8) predict the

eigenvalues of the discrete platoon model accurately over a

range of values of N , for both types of mistuning profiles.

A. Sensitivity to Disturbance

In this section, we present results on the closed-loop’s

sensitivity to disturbances with mistuned controllers. Au-

tomated platoons suffer from high sensitivity to external

disturbances; this is referred to as “string instability” or

“slinky-type effects” [11], [3]. The H∞ norm of the transfer

function Gwe from the disturbance w = [W1, . . . , WN ]
to the inter-vehicle spacing error e = [e1, . . . , eN ], with

ei
.
= (Zi−1 − Zi − ∆) is a measure of the closed loop’s

sensitivity to external disturbances.

Figure 6 summarizes the H∞ norm of the transfer function

Gwe. The figure shows that mistuning helps in reducing

the sensitivity to disturbances. Both the sinusoidal mistuning

profile and the optimal profile (for the self-adjoint PDE) has

this beneficial effect. The optimal mistuning profile designed

for the self-adjoint PDE was seen to reduce the sensitivity

to disturbances more than the sinusoidal mistuning does.

Further analysis of the effect of mistuning on sensitivity to

disturbances is a subject of future work.

VI. APPENDIX

A. Solution of the nonlinear BVP

We begin by observing that the nonlinear BVP (18) admits

a symmetry whereby if φ(x) is an eigenfunction then so is
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−10
−1

−10
−2

−10
−3

N

 

 
R

e(
s+ 1

)

no mistuning (platoon)

km = k∗
m(platoon)

km = k∗
m(PDE)

km = “sine”(PDE)

km = “sine”(platoon)

Fig. 5. Least stable eigenvalues of the mistuned PDE (8) as well as
that of the discrete platoon with sinusoidal mistuning profile, and k∗

m

mistuning profile (optimal for the self-adjoint problem (24)). The legend
“(platoon)” means that the eigenvalues are those of the state matrix for (1)-
(2), whereas “(PDE)” means that the eigenvalues are of the governing
PDE (4). Also shown are the least stable eigenvalues of the closed loop
platoon without any mistuning (i.e., symmetric bidirectional control). “sine”
denotes km(x) = −

1√
π

sin(x). The parameters are k0 = 1, b0 = 0.5, and

ǫ = 0.35, which results in the mistuned gains differing from the nominal
(symmetric bidirectional) case by ±10%. The eigenvalues of the discrete
platoon match the eigenvalues of the discrete platoon accurately, but the
optimal profile designed for the self-adjoint problem does not perform as
well for the original non self-adjoint problem as the sinusoidal profile.

φ(2π−x). This implies that φ(x) = φ(2π−x), and at x = π

dφ

dx
(π) = 0. (25)

To obtain the solution, the ODE (18) is first simplified to

φ′

λs − ǫC
2ρ0

(φ′)2
dφ′ =

φ

a2
0 + ǫC

2ρ0

φ2
dφ,

that on integration gives

λs − ǫC

2ρ0
(φ′)2 =

D

a2
0 + ǫC

2ρ0

φ2
, (26)

where D is a constant of integration. Using (25), we get

D = λs
(

a2
0 + ǫC

2ρ0

y2
0

)

where y0 := φ(π). As a result, (26)

becomes
[

1 +
ǫC

2ρ0a2
0

φ2(x)

] [

1 − ǫC

2ρ0λs
(
dφ

dx
)2

]

=

[

1 +
ǫC

2ρ0a2
0

y2
0

]

,

where y0 = φ(π). After some manipulation, this equation

leads to the integral

a0√
−λs

∫ φ(x)

0

[

1 + ǫC
2ρ0a2

0

y2

y2
0 − y2

]

1

2

dy = x. (27)

The solution to this integral requires elliptic functions of the

second kind. In particular, we propose a coordinate change

φ = y0 sin(
θ

2
), θ ∈ [0, 2π]. (28)
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‖ ∞

Fig. 6. H∞ norm of the transfer function Gwe from disturbance w

to spacing error e for three cases: without mistuning, with sinusoidal
mistuning, and with k∗

m
mistuning. The H∞ norms are significantly lower

with mistuning than with none (i.e., symmetric bidirectional control), even
though the mistuning was only ±10% (ǫ = 0.35).

and define β := Cy2
0 . Using (27), θ is a solution to an

implicit elliptic integral equation

∫ θ

0

[

1 +
ǫβ

2ρ0a2
0

sin2 θ

2

]
1

2

dθ =
2
√
−λs

a0
x, (29)

where substituting θ = π and using (28), one obtains an

implicit relationship between β and λs:

√
−λs =

√
k0

2N

∫ 2π

0

[

1 +
ǫβN

4πk0
sin2 θ

2

]
1

2

dθ, (30)
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