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Estimation From Relative Measurements: Electrical
Analogy and Large Graphs
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Abstract—We examine the problem of estimating vector-valued
variables from noisy measurements of the difference between cer-
tain pairs of them. This problem, which is naturally posed in terms
of a measurement graph, arises in applications such as sensor net-
work localization, time synchronization, and motion consensus. We
obtain a characterization on the minimum possible covariance of
the estimation error when an arbitrarily large number of measure-
ments are available. This covariance is shown to be equal to a ma-
trix-valued effective resistance in an infinite electrical network. Co-
variance in large finite graphs converges to this effective resistance
as the size of the graphs increases. This convergence result pro-
vides the formal justification for regarding large finite graphs as
infinite graphs, which can be exploited to determine scaling laws
for the estimation error in large finite graphs. Furthermore, these
results indicate that in large networks, estimation algorithms that
use small subsets of all the available measurements can still obtain
accurate estimates.

Index Terms—Distributed estimation, electrical networks, infi-
nite dimensional systems, parameter estimation, sensor networks.

I. INTRODUCTION

WE consider the estimation of vector-valued variables
based on noisy measurements of the difference between

certain pairs of such variables. In particular, denoting the
variables of interest by where ,
we consider problems for which noisy “relative measurements”
of the form

(1)

are available, where denotes measurement noise. The
ordered pairs of indices for which we have relative
measurements form a set that is a (typically strict) subset of
the set of all pairs of indices. Just with relative mea-
surements, the s can be determined only up to an additive
constant. To avoid this ambiguity, we assume that a particular
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variable (say ) is used as the reference with known. The
problem of interest is to estimate the node variables from all the
available measurements. This estimation problem is relevant
to several sensor and multi-agent network applications, such
as localization with noisy distance and angle measurement
[1]–[3], time-synchronization [2], [4], [5], and motion-coor-
dination [6]; see [6] and [7] for an overview. The estimation
problem we study is an instance of a general class of parameter
estimation problems in sensor networks called self-calibration
[3], [8]. Among the applications aforementioned, localization
in sensor networks has probably attracted the most attention in
recent times. The reader is advised, however, that localization
from range-only measurements, such as those considered in
[9] and [10], do not fall into the problem category investigated
in this paper. The measurement equations(1) can be expressed
in terms of a directed graph with an edge from
node to if the measurement is available. The graph
is called the measurement graph, and each vector ,
is called the th node variable.

The main result of this paper relates to infinite sets of avail-
able measurements, which is used to model the limiting case
for a very large number of measurements. When the number of
measurements is infinite, we show that for every positive con-
stant , it is possible to construct an unbiased estimate for
a node variable that uses only a finite subset of the avail-
able measurements but whose estimation error variance is only

above the minimum possible estimation error variance that
could be obtained by considering the whole infinite set of mea-
surements. The main assumption needed is that the graph must
have a finite maximum node degree, i.e., that there is a max-
imum number of relative measurements involving each node
variable. An implication of this result is that for estimation prob-
lems based on relative measurements, after a certain point, con-
sidering more measurements will only marginally improve the
quality of the estimate. On the positive side, this simplifies the
construction of estimation algorithms in large-scale networks
because it justifies considering a relatively small subset of mea-
surements. Distributed algorithms to estimate the node variables
from relative measurements have been examined in [2] and [7]
in which nodes with embedded processing and communication
capability estimates their variables by local computation and
communication. Although the algorithms in [2] and [7] were
developed for finite graphs, in a large graph these algorithms
may take a long time to provide accurate estimates, since the
information about all the available measurements are fused iter-
atively to determine the estimates. The results of this paper sug-
gest that it may be possible to devise algorithms such that they
obtain estimates quite fast, while sacrificing little accuracy.
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Another contribution of this paper is that the results estab-
lished here help determine how the estimation error grows as
the network size increases. It is often easier to establish asymp-
totic results on the minimum error variance for infinite graphs
than for large finite graphs, since boundary effects are usually
weaker in infinite graphs than in finite graphs. Scaling laws
for the minimum estimation error in infinite graphs are inves-
tigated in [11]. The main convergence result of this paper pro-
vides the formal justification for regarding infinite graphs as
suitable proxies for very large but finite graphs. It was assumed
in [11] that estimation error covariances in infinite graphs are
well defined. We show in this paper that this assumption is in-
deed valid, if certain properties are satisfied (those stated in The-
orem 1). Therefore, the results in this paper also establish the
conditions under which approximation of large finite graphs by
infinite graphs is valid.

The key technical tool used to prove the results discussed
above is the analogy between the measurement network and an
electrical network. When the node variables are scalars and the
measurement graph is finite, the variance of the estimation error
for a node variable is numerically equal to the effective re-
sistance between the node and the reference node of an elec-
trical network obtained from the measurement graph by placing
at each edge a resistor whose resistance is equal
to the variance of the measurement error . This electrical
analogy was noted by [4] for the time-synchronization problem.

In this paper, we show that an electrical analogy still holds for
vector-valued node variables, provided that we consider gener-
alized electrical networks in which currents, voltages, and re-
sistors are matrix-valued, but still satisfy appropriately adapted
forms of Kirchhoff’s and Ohm’s laws. In this case, the electrical
network is obtained by placing at each edge a resistor
whose (matrix-valued) resistance is equal to the covariance ma-
trix of the measurement noise . We further show that, when
the measurement graph is infinite, as one considers increasingly
large but finite subsets of the measurements, the covariance ma-
trix of the estimation error of a node variable converges to
the (matrix-valued) effective resistance between node and the
reference node of an infinite generalized electrical network
obtained from the infinite measurement graph.

For certain infinite measurement graphs, such as -D square
lattices, the effective resistances can be explicitly computed. Be-
cause of the electrical analogy and the convergence result estab-
lished in this paper, one can determine the smallest estimation
error variance that could be obtained by considering the whole
(infinite) set of measurements in such graphs. In practice, mea-
surement graphs may not be lattices, but it is generally possible
to embed them in lattices or find lattices that can be embedded
in measurement graphs [11], [12]. It turns out that estimation
error variances are monotonic with respect to the partial order
defined by graph embedding, which is a consequence of our ex-
tension of the so-called Rayleigh’s Monotonicity Law [12] to
generalized electrical networks. As a consequence, we can con-
struct upper and lower bounds on the estimation error variances
in these measurement graphs from the results available for lat-
tices. A preliminary study on establishing scaling laws for the
estimation error variance in large graphs using embedding in
lattices was undertaken in [11].

Numerical studies on subgraphs of the 2-D lattice show that
information from a relatively small finite subgraph of the in-
finite measurement graph is sufficient to provide an estimate
whose variance is quite close to the minimum variance that is
achievable by using all the measurements. Increasing the size
of the subgraph, i.e., increasing the number of measurements
processed beyond a certain point does not yield a commensu-
rate return in the decrease in variance. In particular, when con-
structing the estimate of a particular node s variable, if all mea-
surements involving nodes lying within a distance of twice the
distance between and the reference are used, the difference
between the resulting estimation error variance of and the
minimum possible variance is less than 10%. For an arbitrary
infinite graph, similar trends are expected as long as the graph
is close to a lattice in an appropriate sense. The question of what
is a meaningful measure for a graph to be close to a lattice for
the estimation problem has been addressed in [11].

The rest of the paper is organized as follows. Section II sum-
marizes the main result of the paper. Section III introduces gen-
eralized electrical networks. Section IV establishes the analogy
between the estimation and electrical network problems for fi-
nite measurement graphs and uses this to prove the main result.
Section V describes scaling laws for the minimum possible es-
timation error in lattices and a numerical study on the conver-
gence of the estimation error covariances in finite subgraphs as
the subgraphs are increased in size. The paper concludes with a
summary in Section VI.

II. MAIN RESULT

Consider a set of vector-valued variables ,
, where the set is either finite, or infinite but count-

able. These variables are to be estimated based on noisy relative
measurements of the form

(2)

where denotes a zero-mean measurement noise and is the
set of pairs for which relative measurements are available.
The covariance matrix of the error is denoted by

, where denotes expectation and denotes
transpose. The measurement error covariance matrices are as-
sumed to be positive definite and finite. The measurement errors
on different edges are uncorrelated, i.e., for two edges ,

unless . We assume that the value of a par-
ticular reference variable is known and without loss of gen-
erality we take .

The accuracy of a node variable’s estimate, measured in terms
of the covariance of the estimation error, depends on the graph

as well as the measurement error covariances. The estimation
problem is therefore formulated in terms of a network
where is a function that assigns to each edge

the error covariance matrix of the measurement
error associated with the edge . The symbol denotes
the set of symmetric positive definite matrices.

We are interested in problems for which the set of variables
and available measurements is very large. We model this sit-
uation by making the number of variables and measurements
countably infinite. The measurement graph is therefore an
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Fig. 1. A nested sequence of measurement graphs that “tend to” the 2-D square
lattice.

infinite graph. In such problems, the question arises if it is
possible to construct an estimate of an arbitrary node variable

by using only a finite subset of measurements such that
its error covariance is arbitrarily close to the minimum error
covariance achievable by using all the infinite number of mea-
surements. To pose this question, we focus on an arbitrary node

—hereafter called the node of interest—and examine
the estimates of using larger and larger “subgraphs” as
described next. First we recall certain graph theoretic termi-
nology. A undirected path between a pair of nodes and
in a graph is a finite, alternating sequence of nodes and edges

such that every edge is incident
on its two adjacent nodes in the sequence, and no node or edge
is repeated. An edge is said to be incident on the nodes
and . A directed graph is said to be weakly connected if there
is an undirected path between every pair of nodes. For two
graphs , , the notation
means and . We now consider a sequence of
finite measurement subgraphs that satisfies
the following assumption.

Assumption 1 (Nested Sequence): The sequence of finite
graphs has the following properties:

1. The sequence is nested in the sense that

2. The sequence converges to the graph in the sense that
every node and edge in appears in one of the for
some finite .

3. Each finite graph , is weakly connected.

In constructing such a nested sequence of finite graphs, every
graph should contain the reference node and the node of
interest . Fig. 1 shows the first few elements of such a nested
graph sequence that will eventually converge to the 2-D square
lattice (the formal definition of a lattice will be provided in
Section V-A). One could regard each finite subgraph as
describing a finite subset of available measurements that could
be processed up to some time to construct an estimate
of . As time increases, more measurements can be processed,
and, therefore, at some time , the subgraph
contains more measurements than . In this context, we are
interested in studying if there is a point after which there is
little gain in processing more measurements, as this will not im-
prove the estimate of significantly. Essentially, we are asking
whether or not the sequence of estimates produced using the
nested sequence of subgraphs converges.

Given a finite subset of measurements characterized by one
of the graphs , it is straightforward to compute the best

linear unbiased (BLU) estimate that minimizes the estima-
tion error variance among all linear unbiased estimators. This
estimate is a linear combination of the measurements
specified by a set of appropriately chosen coefficient matrices.
In particular, the BLU estimate is given by

(3)

where the function specifies the coeffi-
cients of the measurements. Note that in the equation above, and
in the sequel, for a function with the edge set as the domain,
we use to denote the value of the function at an edge .
We call the function the BLU estimator for based on
the finite graph . Every estimator can be viewed as
an element of the real linear vector space consisting of all
edge-functions of the form for which

(4)

where denotes trace, and each denotes the error covari-
ance matrix for the measurement associated with the edge

. It is straightforward to show that is a Hilbert space with
the associated inner product ,

. We say that an edge-function in has finite
support if it has only a finite number of nonzero entries. Since
all the sets in (3) are finite, every estimator is a fi-
nite-support edge-function in .

For infinite graphs, the summation in (4) is actually a series.
However, the series is absolutely convergent due to the positive
definiteness of the ’s, hence the order of the summation is
immaterial and, therefore, the expression in (4) is well defined.

We now state the main result of the paper, which establishes
the convergence of BLU estimators as . To state this
result we recall that the degree of a node is defined as the number
of edges that are incident on the node.

Theorem 1 (BLU Convergence): Consider a network
for which the measurement graph has a finite maximum node
degree, and for which the error covariance function is uni-
formly bounded in the sense that there exist constant matrices

such that

where means that is negative semidefinite. For
every node , where is the reference node, if
is a nested sequence of finite graphs that satisfies Assumption
1 with and belonging to every graph in the sequence, the
following statements hold.

1) The sequence of BLU estimates converges in the
mean-square sense.

2) The sequence of BLU estimators for converges
to some .

3) The sequence of BLU estimation error co-variance
matrices
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converges to a symmetric positive definite matrix .
Moreover, these BLU covariances converge monotonically
in the sense that

Theorem 1 shows that under the bounded degree assumption,
by using only a finite number of measurements among the in-
finitely many potentially available, we can construct estimates
whose error variance is arbitrarily close to the minimum pos-
sible variance that could be achieved by using all the available
measurements. In addition, the estimates themselves converge
and the “limiting” estimator is square-summable in the sense
of(4).

Although Theorem 1 states that the BLU covariances in the
finite graphs converges to a limiting covariance , it does
not specify what the limit is. However, the proof of this re-
sult actually provides a construction to obtain from the
network by showing that it is numerically equal to a
matrix-valued generalized effective resistance in a generalized
electrical network. This analogy with an electrical network is
the key technical tool to prove Theorem 1 . It also provides ad-
ditional intuition into the problem. Section III describes gener-
alized electrical networks and presents the associated technical
results needed to prove Theorem 1 .

III. GENERALIZED ELECTRICAL NETWORKS

A generalized electrical network consists of a graph
(finite or infinite) together with a function

that assigns to each edge a symmetric positive
definite matrix called the generalized resistance of the edge.
A generalized flow from node to node with
intensity is an edge-function such
that

otherwise

(5)

We say that a flow is a generalized current when there is a
node-function for which

(6)

The node-function is called a generalized potential associ-
ated with the current . Equation (5) should be viewed as a
generalized version of Kirchhoff’s current law and can be in-
terpreted as: the net flow out of each node other than and
is equal to zero, whereas the net flow out of is equal to the
net flow into and both are equal to the flow intensity . Equa-
tion (6) provides in a combined manner, a generalized version
of Kirchhoff’s loop law, which states that the net potential drop
along a circuit must be zero, and Ohm’s law, which states that
the potential drop across an edge must be equal to the product of
its resistance and the current flowing through it. A circuit is an
undirected path that start and end at the same node. For ,

generalized electrical networks are the usual electrical networks
with scalar currents, potentials, and resistors.

The following property for the generalized electrical net-
works is implicitly assumed throughout this section.

Assumption 2 (Generalized Electrical Network): The gen-
eralized electrical network is constructed from a graph

that is weakly connected with a finite maximum node de-
gree, and from an edge-resistance function that is uniformly
bounded, i.e., there exist constant symmetric positive-definite
matrices , such that , .

The energy dissipated by an edge-function in the network
is defined by

(7)

It is straightforward to verify that the set of edge-functions with
finite dissipated energy constitutes a Hilbert space with
inner product , . For
infinite networks, the summation in (7) is an absolutely conver-
gent series and the order of summation is irrelevant. Flows of
finite support always belong to .

A. Existence and Uniqueness of Generalized Current

Existence and uniqueness of scalar currents in infinite net-
works has been examined in [13], [14]. It was shown by Flanders
that, unlike in finite networks, in an infinite electrical network
the current is not uniquely determined by Kirchhoff’s laws and
Ohm’s law [13]. He showed, however, that uniqueness of cur-
rent in an infinite network can be established if two additional
conditions are imposed: the current has a finite dissipated energy
and it is the limit of flows with finite support. For this reason, in
examining the uniqueness of generalized currents in infinite net-
works we restrict ourselves to generalized flows that are limits
of finite support flows and that have finite dissipated energy. For
finite networks these conditions hold trivially.

The following theorem establishes existence, uniqueness,
and linearity of generalized currents and potential differences
in generalized electric networks. The proof of this result is
provided in Appendix I.

Theorem 2 (Generalized Current): For every pair of nodes
and intensity , among all flows that have

finite dissipated energy and are limits of finite support flows,
there exists a unique current from to with intensity . In
addition:

1) the current is the flow that minimizes the energy dissipa-
tion, among all flows from node to node with intensity
, that are limits of finite support flows;

2) the current and the potential difference (for every
) are linear functions of the intensity . The po-

tential is unique only up to an additive constant.

It was previously known that in a scalar electrical network,
the current minimizes energy dissipation. This result is known
as Thomson’s Minimum Energy Principle [12], [14]. Theorem 2
shows that generalized currents also obey Thomson’s Principle
in both finite and infinite networks.
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B. Generalized Effective Resistance

It was shown in the previous section that the potential dif-
ference associated with a current of intensity

flowing from to is a linear function of . It turns out
that this linear map can be expressed through the matrix multi-
plication by a matrix, which is stated next. The proof of
this result is provided in Appendix I.

Lemma 1: Let be a generalized electric network satis-
fying Assumption 2 . The linear mapping between and
can be defined by multiplication by a matrix, which we
call the generalized effective resistance between and

In the sequel, we will refer to generalized effective resistance
simply as effective resistance. In view of Lemma 1, the effective
resistance between two nodes is the potential difference between
them when a current with intensity , the identity matrix,
is injected at one node and extracted at the other, which is anal-
ogous to the definition of effective resistance in scalar networks
[12]. Moreover, the effective resistance is a symmetric posi-
tive-definite matrix. To show this, we will need the following
technical result (also proved in Appendix I), which will have
additional usefulness in the sequel.

Lemma 2: Let be the unique current in the network
with intensity from to , and let be a flow

with intensity from to that can be expressed as a
limit of finite support flows. Then

where is a generalized potential associated with the current
. Moreover, the series in the left-hand side (LHS) converges

absolutely, meaning that each one of the series that constitute
the matrix-valued LHS converges absolutely.

To prove positive-definiteness of effective resistances, set
in Lemma 2, where both and have intensity , to obtain

(8)

where the second equality follows from the definition of effec-
tive resistance in Lemma 1. Since all the generalized edge-re-
sistances are symmetric and positive-definite, we conclude
that the LHS must be symmetric and positive-definite, which
confirms that effective resistances are indeed symmetric posi-
tive-definite.

C. Rayleigh’s Monotonicity Law

The next result relates the effective resistances of two dis-
tinct networks related by an appropriate partial order. A sim-
ilar result for finite scalar networks, called Rayleigh’s Mono-
tonicity Law [12], states that if the edge-resistances in a scalar
electrical network are increased (perhaps even made infinity,
i.e., an open circuit), then the effective resistance between every
pair of nodes in the network can only increase. For a long time,
Rayleigh’s Monotonicity Law was considered so evidently true

that no proof was deemed necessary. Nevertheless, [12] pro-
vided a proof, which we now extend to generalized electrical
networks.

Theorem 3 (Generalized Rayleigh’s Monotonicity Law):
Consider two generalized electrical networks and

for which and for every . For
every pair of nodes , of ,

where and are the effective resistances between and
in the networks and , respectively.
Proof of Theorem 3: Let and

be the currents from to in the networks and ,
respectively, both with intensity . Defining

to be the following “extension” of the current to the
graph

we conclude that satisfies the conservation law (5) for the net-
work and is therefore a flow for this network (although
not necessarily a current). Since according to Theorem 2 the cur-
rent is the flow of minimum dissipated energy for the network

, we conclude that

where the equality is a consequence of the definition of and
the last inequality follows from the fact that , .
From this, Lemma 2, and the definition of effective resistance,
we conclude that

for every , from which the result follows.

D. Approximating Infinite Network Currents

The next theorem shows that currents and effective resis-
tances in an infinite network can be approximated with arbitrary
accuracy by those in a sufficiently large but finite subnetwork. A
similar result for the usual scalar electrical networks was estab-
lished by Flanders [13], [14]. The proof of the theorem, which
is inspired by [13], is provided in Appendix I.

Theorem 4 (Finite Approximation): Let be a network
satisfying Assumption 2, a nested sequence of finite
graphs satisfying Assumption 1, and , two arbitrary nodes
that appear in every graph . For a given intensity ,
let and denote the currents from node to node in the
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infinite network and in the finite network , re-
spectively. Then

where convergence is in the -norm. In addition, denoting by
and the effective resistances between nodes and

in the networks and , respectively, we have

This result will be instrumental in showing that the BLU esti-
mator error covariances in large finite networks converge to the
effective resistance in the limiting infinite network.

IV. ELECTRICAL ANALOGY AND PROOF OF THEOREM 1

We start by establishing the electrical analogy for finite net-
works. The proof of Theorem 1 is then provided, which uses
these results.

A. BLU Estimation in Finite Networks

The analogy between BLU estimation in a finite measurement
network and the corresponding electrical network is stated in the
next theorem.

Theorem 5 (Finite Electrical Analogy): Let be a mea-
surement network with a finite weakly connected graph

and an edge-covariance function , with
node as the reference node. For every node , the
following statements hold.

1) The BLU estimator of in the finite measurement net-
work is equal to the current with identity intensity

in the generalized electrical network from to .
2) The covariance of the BLU estimation error

is equal to the effective resistance between the node
and the reference node .

To prove this theorem, we need the next lemma which shows
that in a finite network, an unbiased estimator must be a flow.
The proof of the lemma is provided in [15].

Lemma 3 (Unbiased Estimator): In a finite measurement net-
work with a reference node , an edge function is a
linear unbiased estimator of a node variable if and only if
is a flow of intensity from node to the reference node . In
this case, the covariance of the error in the estimate is given
by

Note that we have used above to distinguish the estimate
from the BLU estimate of the node variable . The next
result provides a necessary and sufficient condition for the ex-
istence of linear unbiased estimators in finite networks, whose
proof is provided in [15].

Lemma 4: For a finite measurement graph with
a reference node , there exists an unbiased estimator for

every node variable , if and only if is weakly
connected.

The previous result explains the need for the assumption of
weak connectivity. We are now ready to prove Theorem 5.

Proof of Theorem 5: From the Unbiased Estimator Lemma
3 and the definition of energy dissipation (7), we see that in a
finite network with reference node , the BLU estimator

of node variable is given by

Comparing with the electrical network problem, we conclude
from Theorem 2 that the BLU estimator of is the current
of intensity from to in the generalized electrical network

, which proves the first statement.
Since , it follows from Unbiased Estimator Lemma 3

that the covariance of s BLU estimation error is given by

where the second inequality follows from (8), which proves the
second statement.

B. Computation of the Blue in Finite Networks

In this section we provide explicit formulas for computing the
BLU estimates and the covariances, and remark on distributed
computation of the estimates for sensor-network applications.
Consider a finite measurement graph with

nodes and edges. Without loss of generality, let
and the reference node be indexed by 1 and the nodes

with unknown node variables indexed 2 through . To express
the relationship between the variables and the measurements in
a compact form, we use the definition of the incidence matrix of
a graph from [16]. The incidence matrix of a directed graph

consisting of nodes and edges is an matrix,
with one row per node and one column per edge. It is defined
by , where is if the edge is incident on the
node and directed away from it, if is incident on

but directed toward it, and if is not incident on .
We define the generalized incidence matrix as

(9)

where denotes the Kronecker product. Fig. 2 shows
an example of a generalized incidence matrix. Let

the vector of all the unknown
node variables. By stacking together all of the measurements
into a single vector and all the

measurement errors into a vector ,
we can express all of the measurement (1) in the compact form

(10)

where is the basis incidence matrix of , defined as the sub-
matrix of the incidence matrix obtained after removing the
row corresponding to the reference node . In general, a basis
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Fig. 2. A measurement graph G with node 1 as the reference node, its generalized incidence matrixA, and the generalized basis incidence matrixA constructed
with respect to the reference node. The (block) row and (block) column indices of A correspond to node and edge indices, respectively.

incidence matrix of a directed graph is obtained by removing
any row of the incidence matrix [16]. We call the matrix de-
fined in (10) the generalized basis incidence matrix of . We
further construct as
the block diagonal square matrix of all the measurement error
covariances. Fig. 2 shows an example of a generalized basis in-
cidence matrix. The next result provides explicit formulas for
computing the BLU estimates and error covariances in finite
graphs.

Theorem 6: Consider a finite measurement network
satisfying Assumption 2 with a graph . Let the ref-
erence node be indexed by 1, and the vectors , , and the
matrices be constructed as described above. Then, the
BLU estimate of is given by

(11)

and the error covariance by

Proof of Theorem 6: A basis incidence matrix constructed by
removing an arbitrary row from the incidence matrix of a graph
has full row rank if and only the graph is weakly connected
[16]. It follows from Assumption 2 that the generalized basis
incidence matrix of the measurement graph also has full
row rank. Assumption 2 also ensures that ; hence
is positive-definite. The statements then follow from standard
results in least squares estimation applied to the measurement
model (10) (see, e.g., [17]).

It follows from the theorem above that the BLU covariances,
and therefore the generalized effective resistances, can be
determined by computing the inverse of . In the special case
when and , turns out to be the Dirichlet
Laplacian matrix of the graph with the reference node node
as the boundary [18]. For this reason, we call in (11) the
generalized Dirichlet Laplacian matrix of the finite network

. Due to the structure of the matrix , the equation
is amenable to parallel iterative methods for solving

linear equations. Such techniques are used in [7] to devise
distributed algorithms to compute the BLU estimate , in
which every node computes its own variable’s estimate and the
information needed to carry out the computation is obtained by
communicating with its neighboring nodes.

C. Proof of the Main Result

Theorem 1 can now be proved using the tools developed so
far.

Proof of Theorem 1:

We will prove the statements of the theorem in reverse order.
Since the sequence of BLU covariances is the same as

the sequence of effective resistances (Finite Electrical
Analogy Theorem 5), and the sequence converges to the
effective resistance in the infinite network (Finite Approx-
imation Theorem 4 ), we have

Moreover, by the construction of the nested sequence ,
if , then , and so by the Generalized
Rayleigh’s Monotonicity Law (Theorem 3)

from which the third statement of the theorem follows.
Moreover, the BLU estimator of in the finite network

is equal to the current in the generalized electrical
network (Finite Electrical Analogy Theorem 5), and
the currents converge to the unique current in the electrical
network (Finite Approximation Theorem 4). Therefore

where the convergence is in the -norm. This proves the
second statement. By definition of the BLU estimator, we get

(12)

where the second equality follows from unbiasedness, since oth-
erwise the expectation of the LHS would not be equal to . Let

, so that from Assumption 1, . It follows from
the uncorrelatedness of the s and (12) that

where we have used the convention that if
. This leads to
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where is the -norm. Since ,
as . Therefore

(13)
We recall that a sequence of random variables converges
in the mean square sense if and only if ([19, proposition 6.3])

Therefore, the sequence of random vectors converge entry-
wise in the mean square sense. This proves the first statement
and completes the proof of Theorem 1.

Remark 1 (Role of Edge Directions): Effective resistances
are independent of the directions of the edges in the graph. Re-
versing the direction of an edge simply reverses the sign of
the current on that edge. It follows from (8) that the effective
resistance between any two nodes is unaffected by the edge-di-
rections. Therefore, all results in this paper that use the graph
partial order defined in Assumption 1 also hold when
is understood to mean that the graph can be embedded in the
graph , which means that (1) the nodes of can be mapped in-
jectively into the nodes of ; and (2) for every edge
in , there is a corresponding edge in that is incident on the
nodes and , where and correspond to and , respec-
tively, but edge directions need not be preserved.

It follows from the electrical analogy that, although a mea-
surement graph is directed because of the need to distinguish
between a measurement of and that of , the
BLU error covariance is independent of the edge directions.

V. BLUE COVARIANCE IN LATTICES

In this section, we look at certain special classes of infinite
graphs, namely, lattices, for which the effective resistance be-
tween two nodes can be analytically derived. Since we can ex-
actly compute the effective resistance, we know the minimum
possible variance achievable in these graphs. A numerical study
is also presented for lattices to examine the rate at which the
BLU estimator variances in a nested sequence of finite sub-
graphs converge to the minimum possible value as the subgraphs
increase in size.

A. Effective Resistance in Lattices

The -D square lattice is defined as a graph with a node in
every point in with integer coordinates and an edge between
every pair of nodes at an Euclidean distance equal to one. Edge
directions are arbitrary since they play no role in the effective
resistance, and therefore in the estimation error covariances (see
Remark 1). We construct a generalized electrical network by
assigning a constant matrix-resistance to every edge of .

The following lemma establishes the effective resistance of
a -D square lattice. The graphical distance between
two nodes and in a graph is the minimum number of edges
one has to traverse in order to go from to , without necessarily
respecting the edge orientations. The graphical distance in the
lattice is denoted by .

Lemma 5: Consider the electrical network with the
same generalized resistance at every edge of the

-D square lattice. The generalized effective resistance
between two nodes and in the electrical network
satisfies

1) ;
2) ;
3) .

The usual asymptotic notation is used with matrix
valued functions in the following way. For two functions

and , the notation
means there exists a constant and two matrices
that are independent of such that for
all .

Note that the Generalized Current Theorem 2 guarantees that
effective resistances in infinite lattice networks are well defined.
The results in Lemma 5 are established by extending known re-
sults on the scalar effective resistance in the -D square Lattice
to the generalized case.

The next result, whose proof is provided in [15], is needed for
the proof of Lemma 5.

Lemma 6: For a given graph with finite maximum node
degree, let denote the scalar effective resistance between
two nodes and in an a scalar electrical network that has
1-Ohm resistors on every edge of the graph . Let be a
generalized electrical network constructed from the same graph

by assigning a generalized resistance to every edge
of . Then

Scaling laws for the effective resistances in scalar lattice net-
works are stated in the next result, which follows from the re-
sults established in [20] and [21].

Lemma 7: Consider the electrical network with the
same scalar resistance 1-Ohm at every edge of the -D square
lattice. The scalar effective resistance between two nodes

and in the electrical network satisfies
1) ;
2) ;
3) .

Lemma 5 now follows from Lemma 7 and Lemma 6.

B. Convergence Rate

Theorem 1 shows that the BLU estimator error variance in a
sequence of nested finite subgraphs of an infinite measurement
graph converges to a limiting variance that is numerically equal
to an effective resistance, regardless of how the sequence
is constructed. However, the rate at which the covariances
converge to the effective resistance in the infinite graph will
depend on how the sequence is constructed vis-a-vis
the nodes and . One natural way to construct the graph

is to take to contain all nodes that
are at a graphical distance smaller than from the shortest
path connecting and , where is a positive and increasing
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Fig. 3. (a)–(c) The first three members of a sequence of nested subgraphsZ
of the 2-D lattice Z . (d) The plot of variances � in the sequence of mea-

surement networks Z ; 1 as a function of n. The variance in the nested
finite subgraphs monotonically decrease toward the limiting value as the sub-
graphs increase in size. (e) Trend of the ratio of variance in the finite subnet-
works Z ; 1 to the minimum possible variance in (Z ; 1), as a function of

�(n) for three different node pairs u; o, when the node set V is chosen so
as to encompass all nodes within a radius of �(n)d from the shortest path
connecting u and o.

function. The distance of a node from a path denotes the min-
imum graphical distance between the node and any node on the
path. If there are multiple shortest paths, we take the union of
the sets obtained for each shortest path. is then chosen as
the set of edges that are incident on the nodes in . This
construction satisfies Assumption 1.

Fig. 3(a)–(c) shows the first three members of a sequence of
nested subgraphs of the 2-D lattice , constructed ac-

cording to the procedure outlined above, with . For
simplicity, we consider the case of scalar variables and mea-
surements, and every measurement error is assumed to have a
variance 1. Covariances for vector-valued variables could be ob-
tained using Lemma 6. Fig. 3(d) shows the plot of the variances

of node in the measurement network as a func-
tion of . The limiting value of the variance is the effective resis-
tance between and in the infinite lattice . In an infinite 2-D
lattice with unit resistance on every edge, the effective resistance
between two nodes with relative and coordinates is given
by , where

[21]. For the example in Fig. 3(a)–(c), , ,
so the limiting variance for node is ,
which is shown by a dotted line in the Fig. 3(d). As expected,
the variances monotonically decrease and approach the
asymptotic value as increases.

For a given nested sequence , the convergence rate of
to will depend on the graphical distance between

nodes and . Taking this into account, we can construct the
sequence by choosing as the set of nodes that are
within a graphical distance of of the shortest path con-
necting and , where is a positive and increasing func-
tion. Numerical studies on the 2-D lattice indicate that with
this construction, the ratio depends only on the
value of and is independent of . Fig. 3(e) shows the ratio

as a function of for three different nodes
taken at distances of 2, 4, and 8, respectively, from . The figure
shows that the rate of convergence of to the limiting value

is not sensitive to the distance between and . In par-
ticular, with , the error between and is less than
10%. These studies show that in a 2-D lattice, a relatively small
subgraph is sufficient to obtain an estimate whose variance is
quite close to the minimum possible achievable by using all the
measurements. For an arbitrary measurement graph, as long as
the graph is “close to” a lattice in an appropriate sense, sim-
ilar trends are expected. For details on appropriate measures of
closeness to lattices, the reader is referred to [11].

VI. SUMMARY

The problem of estimating vector-valued node variables
from noisy relative measurements naturally arises in many
applications that have a graphical structure, such as localization
in sensor networks and motion consensus in swarms of mobile
agents. In this paper, we obtained a characterization on the
covariance of the minimum possible estimation error when an
arbitrarily large number of measurements is available. This
covariance was shown to be equal to a matrix-valued effective
resistance in an infinite electrical network. We also showed that
when the measurement graph has bounded node degree, the
error covariance of the estimate produced by using only a finite
subset of measurements converges to the error covariance of
the estimate that could be obtained by using all the available
measurements.

The convergence results established in this paper provide the
formal justification for treating large finite graphs as infinite
graphs, which can be used to obtain asymptotic bounds on the
estimation error. Preliminary work on determining such asymp-
totic error bounds for infinite graphs has been reported in [11].
Further work on establishing scaling laws using the tools devel-
oped in this paper is under way. Furthermore, the matrix-valued
effective resistance is also relevant in several other distributed
control problems [6]. The tools developed in the paper are there-
fore useful in answering scalability questions in certain dis-
tributed control problems as well.

Another implication of the convergence results established
in this paper is that for estimation problems based on relative
measurements, after a certain point, considering more mea-
surements will only marginally improve the quality of the
estimate. This observation may be of interest to designers of
distributed estimation algorithms, since it shows that accurate
estimation is possible by considering a relatively small subset
of measurements among all the available ones. Developing such
algorithms, and methods to choose the best possible subset of
measurements, are topics for future research.

Our problem formulation assumes zero-mean measurement
noise. If this is not the case, BLU estimators produce biased
estimates. In fact, it may happen that the bias increases as the
number of measurements increases, which could provide addi-
tional justification for using only a small subset of the avail-
able measurements. A detailed study of the impact of measure-
ment-noise bias remains a problem for future research.
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APPENDIX

PROOFS

We first introduce some terminology. Define a norm for all
node-functions as

(14)

where denotes the Frobenius norm of a matrix, and a linear
vector space as the space of all bounded node-functions with
respect to the above defined norm:

(15)

For an infinite network , we introduce the incidence op-
erator , which is defined by the transformation:

(16)

where is nonzero if and only if the edge is incident on the
node and when nonzero, if the edge is directed
towards and otherwise. The incidence operator
is simply an extension to infinite graphs of the generalized inci-
dence matrix defined in Section IV-A [see(9)] for finite graphs.
The series in(16) is absolutely convergent since it involves only
a finite number of terms due to the bounded degree of .

We call a node-function a divergence for the graph
if has finite support and . One can view a

divergence as an assignment of flow sources at a finite number
of nodes of the graph so that total flow into the graph is equal to
the total flow out of it.

An edge-function is called a flow in with diver-
gence if is a divergence in and satisfies

(17)

Equation (17) can be compactly represented as

(18)

An edge-function is called a circulation in if

(19)

In other words, a circulation is an element of that belongs
to , the null space of .

First we show that the linear operator defined
above is bounded. Since for each , , we
have

where is the set edges in that are incident on . It can
be shown from the relationship between the Frobenius norm
and the singular values of a matrix that for every edge ,
we have where is the

uniform lower bound on the smallest eigenvalue of , .
Existence of a positive is guaranteed by Assumption 2 .
Since the above is true for every , from (14) we get

where is the largest degree of the nodes of the graph ,
which is finite by Assumption 2. It follows that:

which shows that is bounded.
Now we are ready to prove the Generalized Current The-

orem 2.
Proof of Theorem 2: We first prove that among the flows

in that are limits of finite support flows, the flow with the
minimum dissipated energy exists and is unique, and that this
flow is a current. Then we show that there can be only one such
current.

For a flow of intensity that is injected at and extracted at
, the corresponding divergence is given by ,

and for all . Pick a path from to ,
and construct a flow of intensity from to along as
follows:

,
,
.

It is easy to see that is a finite support edge-function in
that satisfies the constraint equation . All flows satis-
fying this constraint lie in the linear variety , where

is the null space of . Since is a bounded linear op-
erator, its null space is closed. As a result, , which is the
space of all circulations, is a Hilbert space. Consider the sub-
space of that consists of all finite support circulations,
and denote it by (“ ” for finite support). Its closure

is a closed subspace of the Hilbert space . By
the Projection Theorem applied to linear varieties ([22, The-
orem 1 in section 3.10]), there exists a unique edge-function in

of minimum norm, which we call , and which
is orthogonal to .

Since , there exists a sequence of finite
support circulations such that , where the
convergence is in norm. Define , so that
by construction, each is a finite support flow of intensity
from to , and in . This establishes the existence
and uniqueness of the flow with minimum power dissipation that
is the limit of a sequence of finite support flows.

Since is orthogonal to

(20)



BAROOAH AND HESPANHA: ESTIMATION FROM RELATIVE MEASUREMENTS 2191

for every . Declare the generalized potential drop
across an edge as to satisfy Ohm’s law. If the graph
has no loops, Kirchhoff’s loop law is trivially satisfied by these
generalized potential drops. If the graph has loops, pick a loop

and define a scalar edge-function as

if and ,
if and ,
if .

Now define a finite support circulation as , where
is an arbitrary matrix. We have

Since this is true for arbitrary , we must have

(21)

which in turn must be true for every loop , since the arguments
above can be repeated for every loop. Equation (21), therefore,
shows that the net potential drop along every loop is 0. In other
words, the generalized potential drops determined by in accor-
dance with Ohm’s law satisfies Kirchhoff’s loop law. Construc-
tion of a generalized node potential function is now trivial.
Therefore, is a generalized current.

To prove uniqueness of the current, let and be two currents
from to with intensity . Define an edge-function

as . We see that . From linearity
of the inner product

where the last equalities follows from (20), since by construc-
tion, both and are currents. Thus,

since for all edges . We, therefore, conclude that
, which proves that the current is unique.

To examine the uniqueness of potentials, suppose that and
are two potentials associated with the same current. Because

of Ohm’s Law, we conclude that

where . Since is connected, must be a constant,
but is otherwise arbitrary. This shows that the node potentials
are unique up to an additive constant.

If is a current with intensity and is a current with intensity
, both from to , it can be shown in a straightforward manner

that is also a current with intensity from to ,

from which the linearity from to follows. A similar linearity
proof also holds for the potential differences.

The corollary presented next is essentially a repetition of (20),
but is restated because of its usefulness in several subsequent
proofs.

Corollary 1: A flow is the generalized current in the net-
work if and only if

for every circulation .
Proof of Lemma 1: For the current with intensity flowing

from to , we define a divergence as

The flow constraint now becomes . The current is
the flow that satisfies this constraint and minimizes the energy
dissipation , as shown in Theorem 2 . For
every node , the flow constraint becomes

(22)

Recognizing that this is a matrix equation, we express it
as separate vector equations:

where the second subscript represents the th column of the
corresponding matrix. It is easy to see that, for every , the con-
straints on the th column of s depend only on the th column
of , and therefore on the th column of . As a result, the solu-
tion to this optimization problem is equivalent to solving sepa-
rate problems “minimize subject to ,”
for , where the edge function and the node func-
tion are now vector-valued: , ,
the spaces and are appropriately redefined, and the in-
cidence operator has the same definition as in (16) with re-
spect to the new spaces , . Because of column-wise inde-
pendence of the current on the intensities, the matrix current on
every edge is obtained by stacking the vector-valued currents
on that edge as columns. For every vector-valued current inten-
sity , , we obtain a corresponding vector-valued
potential difference . Again, the matrix-valued po-
tential difference resulting from the original problem
consists of the columns that are the vector-valued potential
difference resulting from the separate optimiza-
tion problems described above.

These separate optimization problems can be solved to de-
termine the vector-valued edge currents in the same manner that
the single optimization problem was solved in the proof of The-
orem 2 to determine the matrix valued edge currents. In fact,
only one of these problems needs to be solved. To understand
why, we first note that the linearity between the matrix valued
quantities and that was established in Theorem 2
will be retained between the corresponding vector-valued quan-
tities. Specifically, when a vector-valued current flows from

to with vector intensity , the vector-valued voltage drop
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will be a linear function of the vector intensity ,
which will be in general a matrix. Let be
this matrix. Then

(23)

From linearity, the same is true for every . Stacking
together the columns in (23), for , we get

, which proves that the linear mapping between
matrix intensity and matrix-valued potential drop is
the matrix .

Proof of Lemma 2: Pick a path from to , and construct
a flow of intensity from to along as follows:

,
,
.

The assumed properties of imply that . Let
be a sequence of finite support flows in that converge

to the flow , i.e., in . Define

The function is a circulation since it is the difference
between two flows of the same intensity between the same two
nodes. Moreover, is a sequence of finite-support circula-
tions that converge to in . Now, since is a finite support
circulation, from Corollary 1,
for every , and, therefore

Using linearity and continuity of the inner product, we therefore
conclude that

(24)

Since , denoting the th column of by and the
th column of by , we can show from (24) using straight-

forward algebraic manipulation that

and that the series converges absolutely for every and . Define
the matrix by . Since the series converges, for
every , we can choose large enough such that

where represents any matrix norm. We thus conclude that
since , the series converges absolutely

to a matrix. Since (24) holds for an arbitrary , it can be
shown in a straightforward manner that the series
must converge to . Therefore, we get the desired
result

Proof of Theorem 4: For every , we can find a finite-
support flow from to of intensity such that

(25)

which follows from the characterization of the current in The-
orem 2. Pick a finite subgraph of from
the nested sequence such that the support of lies in

(i.e., the edges on which is not zero are in ). Note
that by construction . Denoting by the current
in , it follows from Corollary 1 that for a circulation

whose support lies in :

Pick , which, being a difference of two finite
support flows from to with the same intensity, is a finite
support circulation. Furthermore, its support lies in since
both and have their support in . For this choice of

in the equation above, we get

from the Cauchy Schwarz inequality. Therefore

from (25). From the triangle inequality, we now get

which proves the statement that in .
To prove the convergence of the effective resistances, pick

an arbitrary and let and be the currents with
intensity from to in and , respectively.
Lemma 2 implies
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where the last equality uses the fact that is a flow in with
intensity (though not a current). Therefore

Since in , the left-hand side (LHS) goes to 0 as
. Since this is true for arbitrary , .
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