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Abstract—In this paper, we study the problem of estimating
vector-valued variables from noisy “relative” measurements,
which arises in sensor network applications. The problem can be
posed in terms of a graph, whose nodes correspond to variables
and edges to noisy measurements of the difference between two
variables. The optimal (minimum variance) linear unbiased es-
timate of the node variables, with an arbitrary variable as the
reference, is considered. This paper investigates how the variance
of the estimation error of a node variable grows with the distance
of the node to the reference node. A classification of graphs,
namely, dense or sparse in �� � � � � �, is established that
determines this growth rate. In particular, if a graph is dense
in 1-D, 2-D, or 3-D, a node variable’s estimation error is upper
bounded by a linear, logarithmic, or bounded function of distance
from the reference. Corresponding lower bounds are obtained
if the graph is sparse in 1-D, 2-D, and 3-D. These results show
that naive measures of graph density, such as node degree, are
inadequate predictors of the estimation error. Being true for the
optimal linear unbiased estimate, these scaling laws determine al-
gorithm-independent limits on the estimation accuracy achievable
in large graphs.

Index Terms—Covariance, effective resistance, estimation,
graph density, graph theory, scaling law, sensor network.

I. INTRODUCTION

S EVERAL applications in sensor and actuator networks
lead to estimation problems where a number of variables

are to be estimated from noisy measurements of the difference
between certain pairs of them. Consider the problem of local-
ization, where a sensor does not know its position in a global
coordinate system, but can measure its position relative to a
set of nearby nodes. These measurements can be obtained, for
example, from range and angle data but are typically subjected
to large noise (see Fig. 1). In particular, two nearby sensors
and located in a plane at positions and , respectively,
have access to the measurement
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where denotes measurement error. The problem of interest
is to use the ’s to estimate the positions of all the nodes in a
common coordinate system whose origin is fixed arbitrarily at
one of the nodes.

Similar estimation problems arise in time synchronization
[1]–[3] and motion consensus in sensor-actuator networks [4];
see [4] and [5] for an overview of these applications. Motivated
by these applications, we study the problem of estimating vector
valued variables from noisy measurements of the difference be-
tween them. In particular, denoting the variables of interest by

where , we consider problems for
which noisy relative measurements of the form (1) are available.
The ordered pairs of indices for which we have relative
measurements form a set that is a (typically strict) subset of the
set of all pairs of indices. Just with relative measurements,
the ’s can be determined only up to an additive constant. To
avoid this ambiguity, we assume that a particular variable (say

) is used as the reference, which is therefore assumed known.
The problem of interest is to estimate the remaining node vari-
ables from all the available measurements.

The measurement (1) can be naturally associated with a di-
rected graph with an edge from node to if the
measurement is available. The graph is called the mea-
surement graph, and each vector , , is called the th
node variable. The measurement noise is assumed
zero mean and spatially uncorrelated, i.e., and

if .
In this paper, we investigate how the structure of the graph

affects the quality of the optimal linear unbiased estimate of
, measured in terms of the covariance of the estimation error

. The optimal linear unbiased
estimate refers to the one obtained with the classical best linear
unbiased estimator (BLUE), which achieves the minimum vari-
ance among all linear unbiased estimators [7]. We examine the
growth of the BLUE error variance of a node as a function of
its distance to the reference node.

We are interested in the growth of error with distance in large
graphs, for which infinite graphs (with a countably infinite
number of nodes and edges) serve as proxies. This paper is
focused on infinite graphs because the absence of boundary
conditions in infinite graphs allows for more complete and
simpler results. Using infinite graphs as proxies for large finite
graphs is theoretically justified by the fact that the BLUE error
variance of a node variable in a large but finite subgraph
of an infinite graph is arbitrarily close to the BLUE estimation
error in the infinite graph, as long as the finite graph is suffi-
ciently large. This convergence result was established in [8].

0018-9448/$26.00 © 2009 IEEE
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Fig. 1. Relative position measurement in a Cartesian reference frame using
range and angle measurements. A local compass at each sensor is needed to
measure bearing with respect to a common North. Noisy measurements of the
range � and angle � between a pair of sensors � and �, which are denoted
by �� and �� , are converted to noisy measurements of relative position in the
��� plane as � � ��� ��� �� � �� ��� �� 	 , with 
	 � ������
�
	,
where 
 � � � �� is the random error in the angle measurement (see [6] for
more details). The same procedure is performed for every pair of sensors that can
measure their relative range and angle. The task then is to estimate the positions
of all the nodes with respect to an arbitrary node in the network from the relative
position measurements.

Fig. 2. Drawing of a graph in 2-D Euclidean space, and the corresponding
denseness and sparseness parameters. Since the minimal distance between any
two nodes is �, the minimum node distance is � � �. Since the longest edge is
between � and � , the maximum connected range is � �

�
��. The diameter

of the largest ball that can fit inside the drawing without enclosing any node is �,
so the maximum uncovered diameter is thus � � �. The minimal ratio between
the Euclidean and graphical distance of a pair of nodes is achieved by the pair

 � � , hence the asymptotic distance ratio is � � � �
 � � 
�� �
 � � 
 �
���.

When the measurement graph is a tree, there is a single path
between the th node and the reference node and one can show
that the covariance matrix of the estimation error is the sum
of the covariance matrices associated with this path. Thus, for
trees, the variance of the BLUE estimation error of grows
linearly with the distance from node to the reference node.
It turns out that for graphs “denser” than trees, with multiple
paths between pairs of nodes, the variance of the optimal linear
unbiased estimation error can grow slower than linearly with
distance.

In this paper, we introduce a novel notion of denseness for
graphs that is needed to characterize how the estimation error
grows with distance. In classical graph-theoretic terminology, a

graph with vertices is called dense if its average node degree
is of order , and is called sparse if its average node degree is
a constant independent of [9]. We recall that the degree of a
node is the number of edges incident on it (an edge is said
to be incident on the nodes and ). Other notions of denseness
include geodenseness introduced by [10], which requires uni-
form node density (nodes per unit area) but does not consider the
role of edges. Accuracy of localization from distance-only mea-
surements have been extensively studied in the sensor networks
literature, typically by evaluating the Cramér–Rao lower bound
(see [5] and references therein). In many of these studies, graph
density (as measured by node degree or node density) is recog-
nized to affect estimation accuracy [12], [13], [15]. However,
we will see through examples in Remark 2 that for the estima-
tion problem considered in this paper, such notions of denseness
are not sufficient to characterize how the estimation error grows
with distance.

A key contribution of this paper is the development of suit-
able notions of graph denseness and sparseness that are useful
in determining BLUE error scaling laws. These notions exploit
the relationship between the measurement graph and a lattice.
We recall that the -dimensional square lattice is defined as
a graph with a node in every point in with integer coordi-
nates and an edge between every pair of nodes at an Euclidean
distance of 1 (see Fig. 4 for examples). The error scaling laws
for a lattice measurement graph can be determined analytically
by exploiting symmetry. It turns out that when the graph is not
a lattice, it can still be compared to a lattice. Intuitively, if after
some bounded perturbation in its node and edge set, the graph
looks approximately like a -dimensional lattice, then the graph
inherits the denseness properties of the lattice. In that case, the
error covariance for the lattice can still be used to bound the
error covariance in the original graph.

Our classification of dense and sparse graphs in
, characterizes BLUE error scaling laws. For dense

graphs, they provide upper bounds on the growth rate of the
error, while for sparse graphs, they provide lower bounds. The
precise growth rates depend on which dimension the graph is
dense or sparse in. When a graph is dense in 1-D, 2-D, or 3-D,
respectively, the error covariance of a node is upper bounded
by a linear, logarithmic, or bounded function, respectively,
of its distance from the reference. On the other hand, when a
graph is sparse in 1-D, 2-D, or 3-D, the error covariance of a
node is lower bounded by a linear, logarithmic, and bounded
function, respectively, of its distance from the reference. Our
sparse graphs are also known as “graphs that can be drawn in a
civilized manner” according to the terminology introduced by
[16] in connection with random walks.

The BLUE error scaling laws derived in this paper provide an
algorithm-independent limit to the estimation accuracy achiev-
able in large networks, since no linear unbiased estimation algo-
rithm can achieve higher accuracy than the BLUE estimator. For
example, when a graph is sparse in 1-D, the BLUE estimation
error covariance grows at least linearly with the distance from
the reference. Therefore, the estimation accuracy will be neces-
sarily poor in large 1-D sparse graphs. On the other hand, when
a graph is dense in 3-D, the BLUE estimation error of every
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node variable remains below a constant, even for nodes that are
arbitrarily far away from the reference. So accurate estimation
is possible in very large 3-D dense graphs.

The results in this paper are useful for the design and deploy-
ment of ad hoc and sensor networks. Since we now know what
structural properties are beneficial for accurate estimation, we
can strive to achieve those structures when deploying a network.
Specifically, we should try to achieve a dense-in- structure,
with as large as possible, for high accuracy estimation. Since
the scaling laws are true for the optimal linear unbiased esti-
mator, they can also help designers determine if design require-
ments are achievable. For example, if the requirement is that
the estimation accuracy should not decrease with size, no matter
how large a network is, the network must be dense in
for such a requirement to be satisfied.

Our results also expose certain misconceptions that exist in
the sensor network literature about the relationship between
graph structure and estimation error. In Section II-B, we provide
examples that expose the inadequacy of the usual measures of
graph denseness, such as node degree, in determining scaling
laws of the estimation error.

In practice, more than one reference node (commonly re-
ferred to as anchors) may be used. We only consider the case
of a single reference node since scaling laws with a single refer-
ence provide information on how many reference nodes may
be needed. For example, since the estimation error in a 3-D
dense graph is bounded by a constant, one reference node may
be enough for such a graph.

While we do not discuss the computation of the optimal linear
unbiased estimates in this paper, we have developed distributed
algorithms to compute these estimates with arbitrary precision
(see [11]–[15] and references therein). These algorithms are dis-
tributed in the sense that every node computes its own estimate
and the information needed to carry out this computation is ob-
tained by communication with its neighbors.

A preliminary version of some of the results in this paper was
presented in [17]. However, stricter assumptions to establish the
upper bounds on error growth rates were used in [17]. Moreover,
only sufficient conditions were obtained in [17] for some of the
error scaling laws to hold; whereas here we derive necessary and
sufficient conditions.

Organization

The rest of this paper is organized as follows. Section II de-
scribes the problem and summarizes the main results of the
paper. Section III describes key properties of dense and sparse
graphs. Section IV briefly describes the analogy between BLUE
and generalized electrical networks from [8] that is needed to
prove the main results. Section V contains the proof of the main
result of the paper. Section VI deals with the question of how to
check if a graph possesses the denseness/sparseness properties.
The paper ends with a few final conclusions and directions for
future research in Section VII.

II. PROBLEM STATEMENT AND MAIN RESULTS

Recall that we are interested in estimating vector-valued vari-
ables , from noisy relative mea-
surements of the form

(2)

where denotes a zero-mean measurement noise and is the
set of ordered pairs for which relative measurements are
available. The node set is either finite, or infinite, but count-
able. We assume that the value of a particular reference variable

is known and without loss of generality we take . The
node set and the edge set together define a directed mea-
surement graph .

The accuracy of a node variable’s estimate, measured in terms
of the covariance of the estimation error, depends on the graph

as well as the measurement errors. The covariance matrix of
the error in the measurement is denoted by , i.e.,

. We assume that the measurement errors on
different edges are uncorrelated, i.e., for every pair of distinct
edges . The estimation problem is now
formulated in terms of a network where is
a function that assigns to each edge the covariance
matrix of the measurement error associated with the edge

in the measurement graph . The symbol denotes the
set of symmetric positive–definite matrices.

As discussed in Section I, our results are stated for infinite net-
works. The following conditions are needed to make sure that
the estimation problem is well posed and that the estimates sat-
isfy appropriate convergence properties to be discussed shortly.

Assumption 1 (Measurement Network): The measurement
network satisfies the following properties.

1) The graph is weakly connected, i.e., it is possible to go
from every node to every other node traversing the graph
edges without regard to edge direction.

2) The graph has a finite maximum node degree.1

3) The edge-covariance function is uniformly bounded, i.e.,
there exist constant symmetric positive definite matrices

such that .

In the above, for two matrices
means is positive definite (semidefinite). We write

if .
We also assume throughout this paper that measurement

graphs do not have parallel edges. A number of edges are
said to be parallel if all of them are incident on the same pair
of nodes. The condition of not having parallel edges is not
restrictive since parallel measurements can be combined into
a single measurement with an appropriate covariance, while
preserving the BLUE error covariances (see Remark 3).

Given a finite measurement network , where
contains the nodes and , it is straightforward to

compute the BLUE estimate of the unknown
node variable in the network , as described
in [8], and the covariance matrix of the estimation error

exists as long as
is weakly connected [8]. Due to the optimality of the

1The degree of a node is the number of edges that is incident on the node. An
edge ��� �� is said to be incident on the nodes � and �.
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BLUE, is the minimum possible estimation error
covariance that is achievable by any linear unbiased estimator
using all the measurements in the graph .

When the measurement graph is infinite, the BLUE error co-
variance for a node variable is defined as

(3)

where the infimum is taken over all finite subgraphs of
that contain the nodes and . We define a matrix to be the
infimum of the matrix set , and denote it by

(4)

if for every matrix , and for every positive real
, there exists a matrix such that . Under

Assumption 1, it was shown in [8] that the infimum in (3) always
exists. In this case, (3) means that the BLUE covariance is
the lowest error covariance that can be achieved by using all the
available measurements.

In the sequel, we determine how the BLUE covariance
grows as a function of the distance of node to the reference ,
and how this scaling law depends on the structure of the mea-
surement graph . To this effect we start by providing a classi-
fication of graphs that is needed to characterize the error scaling
laws.

A. Graph Denseness and Sparseness

We start by introducing graph drawings, which will later
allow us to define dense and sparse graphs.

1) Graph Drawings: The drawing of a graph
in a -dimensional Euclidean space is obtained by mapping the
nodes into points in by a drawing function .
A drawing is also called a representation [18] or an embedding
[9]. For a particular drawing , given two nodes the
Euclidean distance between and induced by the drawing

is defined by

where denoted the usual Euclidean norm in . It is impor-
tant to emphasize that the definition of drawing allows edges
to intersect and therefore every graph has a drawing in every
Euclidean space. In fact, every graph has an infinite number
of drawings in every Euclidean space. However, a particular
drawing is useful only if it clarifies the relationship between the
graph and the Euclidean space in which it is drawn. In what
follows, given two nodes and denotes the graph-
ical distance between and , i.e., the number of edges in the
shortest path between and . The graphical distance is eval-
uated without regards to edge directions, which are immaterial
in determining BLUE error covariances (see Remark 4).

For a particular drawing and induced Euclidean distance
of a graph , four parameters are needed to charac-
terize graph denseness and sparseness. The minimum node dis-
tance, denoted by , is defined as the minimum Euclidean dis-
tance between the drawing of two nodes

The maximum connected range, denoted by , is defined as the
Euclidean length of the drawing of the longest edge

The maximum uncovered diameter, denoted by , is defined as
the diameter of the largest open ball that can be placed in
such that it does not enclose the drawing of any node

where the existential quantification spans over the balls in
with diameter and centered at arbitrary points. Finally, the

asymptotic distance ratio, denoted by , is defined as

and

Essentially provides a lower bound for the ratio between the
Euclidean and the graphical distance for nodes that are far apart.
The asymptotic distance ratio can be thought of as an inverse of
the stretch for geometric graphs, which is a well-studied concept
for finite graphs [19].

The two parameters and defined above are especially
useful to compare graphical and Euclidean distances, as stated
in the following result.

Lemma 1 (Euclidean Versus Graphical Distances): The fol-
lowing two statements are equivalent.

1) The asymptotic distance ratio is strictly positive.
2) There exist constants for which

(5)

Similarly, the following statements are equivalent.
1) The maximum connected range is finite.
2) There exist constants for which

The proof of this lemma is provided in the Appendix.
2) Dense and Sparse Graphs: We call the drawing of a graph

with finite maximum uncovered diameter and positive
asymptotic distance ratio a dense drawing. We say
that a graph is dense in if there exists a dense drawing of
the graph in . Graph drawings for which the minimum node
distance is positive and the maximum connected range
is finite are called civilized drawings [16]. A graph
is said to be sparse in if there exists a civilized drawing in

.
It follows from these definitions and Lemma 1 that if a graph

is dense in , then it has enough nodes and edges so that it is
possible to draw it in in such a way that its nodes cover
without leaving large holes (finite ), and yet a small Euclidean
distance between two nodes in the drawing guarantees a small
graphical distance between them [positive , which implies (5)].
On the other hand, if a graph is sparse in , then one can draw it
in so as to keep a certain minimum separation between nodes
(positive ) without making the edges arbitrarily long (finite ).
It also follows from the definitions that a graph must be infinite
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to be dense in any dimension, and a finite graph is sparse in
every dimension.

A graph can be both dense and sparse in the same dimension.
For example, the -dimensional lattice is both sparse and dense
in . However, there is no civilized drawing of the -dimen-
sional lattice in for any . Moreover, there is no dense
drawing of the -dimensional lattice in for every . This
means, for example, that the 3-D lattice in not sparse in 2-D and
is not dense in 4-D. In general, a graph being dense in a partic-
ular dimension puts a restriction on which dimensions it can be
sparse in. The next result, proved in Section VI, states this pre-
cisely.

Lemma 2: A graph that is dense in for some cannot
be sparse in for every .

Remark 1 (Historical Note): In the terminology of [16],
sparse graphs (as defined here) are said to be graphs “that can
be drawn in a civilized manner.” In this paper, we refer to such
graphs as sparse graphs since they are the antitheses of dense
graphs.

B. Error Scaling Laws

The concepts of dense and sparse graphs allow one to charac-
terize precisely how the BLUE error covariance grows with
the distance from the node to the reference . The next the-
orem, which establishes the BLUE error scaling laws for dense
and sparse graphs, is the main result of the paper. The proof of
the theorem is provided in Section V.

Before we present the theorem, we need to introduce some
notation. The asymptotic notations and are used
for matrix valued functions in the following way. For a ma-
trix-valued function and a scalar-valued func-
tion , the notation means that there
exist a positive constant and a constant matrix such
that for all . Similarly,
means there exist a positive constant and a constant matrix

such that for all . Recall that
is the set of all symmetric positive–definite matrices.

Theorem 1 (Error Scaling Laws): Consider a measurement
graph that satisfies Assumption 1, with a reference
node . The BLUE error covariance for a node
obeys the scaling laws shown in Table I.

A graph can be both sparse and dense in a particular dimen-
sion, in which case the asymptotic upper and lower bounds are
the same. For a graph that is both sparse and dense in , the
error covariance grows with distance in the same rate as it does
in the corresponding lattice .

Remark 2 (Counterexamples to Conventional Wisdom): As
noted in Section I, the average node degree of a graph or the
number of nodes and edges per unit area of a deployed network
are often used as measures of graph denseness. However, these
measures do not predict error scaling laws. The three graphs in
Fig. 3 offer an example of the inadequacy of node degree as a
measure of denseness. This figure shows a -fuzz of the 1-D

Fig. 3. Three measurement graphs that show vastly different scaling laws of
the estimation error, whereas each has the same node degree for every node.
Furthermore, they are all “sparse” according to traditional graph-theoretic ter-
minology (see the discussion on graph denseness in Section I).

lattice (see Section III for the formal definition of a fuzz), a tri-
angular lattice, and a 3-D lattice. It can be verified from the def-
initions in Section II-A2 that the -fuzz of the 1-D lattice is both
dense and sparse in , the triangular lattice is dense and sparse
in , and the 3-D lattice is dense and sparse in . Thus, it
follows from Theorem 1 that the BLU estimation error scales
linearly with distance in the -fuzz of the 1-D lattice, logarith-
mically with distance in the triangular lattice, and is uniformly
bounded with respect to distance in the 3-D lattice, even though
every node in each of these graphs has the same degree, namely
six.

We note that the notion of geodenseness introduced in [10] is
also not useful for characterizing error scaling laws since geo-
denseness considers node density alone without regard to the
edges.

III. DENSE AND SPARSE GRAPHS

This section establishes an embedding relationship between
dense and sparse graphs and lattices, which is needed to prove
Theorem 1. Roughly speaking, a graph can be embedded in
another graph if contains all the nodes and edges of , and
perhaps a few more. The usefulness of embedding in answering
the error scaling question is that when can be embedded in

, the BLUE error covariances in are larger than the corre-
sponding ones in (this statement will be made precise in The-
orem 5 of Section IV).

The -fuzz of a graph , introduced by Doyle and Snell [16],
is a graph with the same set of nodes as but with a larger set
of edges. Specifically, given a graph and a positive integer ,
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TABLE I
COVARIANCE � OF � ’s BLUE ESTIMATION ERROR FOR GRAPHS THAT ARE DENSE OR SPARSE IN . IN THE TABLE, � ��� �� DENOTES THE EUCLIDEAN

DISTANCE BETWEEN NODE � AND THE REFERENCE NODE � INDUCED BY A DRAWING � � � � THAT ESTABLISHES THE GRAPH’S DENSENESS

IN THE EUCLIDEAN SPACE , AND � ��� �� DENOTES THE EUCLIDEAN DISTANCE INDUCED BY A DRAWING � � � �

THAT ESTABLISHES THE GRAPH’S SPARSENESS

an -fuzz of , denoted by , is a graph that has an edge
between two nodes and whenever the graphical distance
between these nodes in is less than or equal to .

We say that a graph can be embedded in another
graph if , and, whenever there is an edge
between two nodes in , there is an edge between them in .
More precisely, can be embedded in if there exists an in-
jective map such that for every , either

or . In the sequel, we use
to denote that can be embedded in .

A. Relationship With Lattices and Euclidean Spaces

The next theorems (Theorem 2 and 3) show that sparse
graphs can be embedded in fuzzes of lattices, and fuzzes of
dense graphs can embed lattices. In these two theorems, we use

to denote the graphical distance in the lattice and
to denote the Euclidean distance in induced by the

drawing .

Theorem 2 (Sparse Embedding): A graph is
sparse in if and only if there exists a positive integer such
that . Moreover, if is a civilized drawing
of in , then there exists an embedding so that

(6)

where is the minimum node distance in the -drawing of .

In words, the theorem states that is sparse in if and only
if can be embedded in an -fuzz of a -dimensional lattice.
The significance of the additional condition (6) is that if the
Euclidean distance between a pair of nodes and in a civilized
drawing of the graph is large, the graphical distance in the lattice
between the nodes that correspond to and must also be large.

The first statement of Theorem 2 is essentially taken from
[16], where it was proved that if a graph can be drawn in a civ-
ilized manner in , then it can be embedded in an -fuzz of a

-lattice, where depends only on and . A careful examina-
tion of the proof in [16] reveals that it is not only sufficient but

also a necessary condition for embedding in lattice fuzzes. The
proof of this theorem is therefore omitted.

Theorem 3 (Dense Embedding): A graph is dense
in if and only if there exists finite, positive integers and
such that the following conditions are satisfied:

i) ;
ii) if is an embedding of into , then

such that .
Moreover, if is a dense drawing of in , then
the embedding function in ii) can be chosen so that ,
we can find satisfying

(7)

where is the maximum uncovered diameter of the -drawing
of .

In other words, the two conditions state that is dense in
if and only if i) the -dimensional lattice can be embedded in an

-fuzz of for some positive integer and ii) every node of
that is not the image of a node in is at a uniformly bounded
graphical distance from a node that is the image of a node in .
The significance of (7) is that not only we can find for every node
in a close-by node that has a preimage in the lattice, but also
these close-by nodes can be so chosen so that if the Euclidean
distance between a pair of nodes and in the drawing is small,
then the graphical distance in the lattice between the preimages
of their close-by nodes is small as well.

IV. ELECTRICAL ANALOGY

A crucial step in proving the main results of this paper is
the analogy introduced in [8] between the BLUE problem and
an abstract electrical network, where currents, potentials and
resistances are matrix valued.

A generalized electrical network consists of a graph
(finite or infinite) together with a function

that assigns to each edge a symmetric positive–defi-
nite matrix called the generalized resistance of the edge.
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A generalized flow from node to node with
intensity is an edge-function such that

otherwise
(8)

A flow is said to have finite support if it is zero on all but a
finite number of edges. We say that a flow is a generalized
current when there exists a node-function for
which

(9)

The node-function is called a generalized potential associ-
ated with the current . Equation (8) should be viewed as a
generalized version of Kirchhoff’s current law and can be in-
terpreted as: the net flow out of each node other than and
is equal to zero, whereas the net flow out of is equal to the
net flow into and both are equal to the flow intensity . Equa-
tion (9) provides in a combined manner a generalized version
of Kirchhoff’s loop law, which states that the net potential drop
along a circuit must be zero, and Ohm’s law, which states that
the potential drop across an edge must be equal to the product of
its resistance and the current flowing through it. A circuit is an
undirected path that starts and ends at the same node. For ,
generalized electrical networks are the usual electrical networks
with scalar currents, potentials, and resistors.

A. Effective Resistance and BLUE Error Covariance

It was shown in [8] that when a current of intensity
flows from node to node , the resulting generalized current

is a linear function of the intensity and there exists a matrix
such that

(10)

We call the matrix the generalized effective resistance be-
tween and . In view of this definition, the effective resis-
tance between two nodes is the generalized potential difference
between them when a current with intensity equal to the iden-
tity matrix is injected at one node and extracted at the other,
which is analogous to the definition of effective resistance in
scalar networks [16]. Note that the effective resistance between
two arbitrary nodes in a generalized network is a symmetric pos-
itive–definite matrix as long as the network satisfies Assumption
1, whether the network is finite or infinite [8].

Generalized electrical networks are useful in studying the
BLUE error in large networks because of the following analogy
between the BLUE error covariance and the generalized effec-
tive resistance.

Theorem 4 (Electrical Analogy [8]): Consider a measure-
ment network satisfying Assumption 1 with
and a single reference node . Then, for every node

, the BLUE error covariance defined in (3) is a

symmetric positive–definite matrix equal to the generalized ef-
fective resistance between and in the generalized elec-
trical network

Remark 3: In an electrical network, parallel resistors can
be combined into one resistor by using the parallel resistance
formula so that the effective resistance between every pair of
nodes in the network remain unchanged. The same can be done
in generalized electrical networks [20]. The analogy between
BLUE covariance and effective resistance means that parallel
measurement edges with possibly distinct measurement error
covariances can be replaced by a single edge with an equiva-
lent error covariance, so that the BLUE error covariances of all
nodes remain unchanged. This explains why the assumption of
not having parallel edges made at the beginning is not restrictive
in any way.

B. Graph Embedding and Partial Ordering
of BLUE Covariances

Effective resistance in scalar electrical networks satisfies
Rayleigh’s monotonicity law, which states that the effective
resistance between any two nodes can only increase if the re-
sistance on any edge is increased, and vice versa [16]. The next
result (proved in [8]) states that the same is true for generalized
networks, whether finite or infinite.

Theorem 5 (Rayleigh’s Monotonicity Law [8]): Consider two
generalized electrical networks and with graphs

and , respectively, such that both net-
works satisfy Assumption 1. Assume that:

1) can be embedded in , i.e., ;
2) for every edge .

Then, for every pair of nodes of

where and are the effective resistance between and
in the networks and , respectively.

The usefulness of Rayleigh’s monotonicity law in answering
the error scaling question becomes apparent when combined
with the electrical analogy. It shows that when can be
embedded in , the BLUE error covariances in are lower
bounded by the error covariances in . Intuitively, since has
only a subset of the measurements in , the estimates in are
less accurate than those in .

Remark 4: Although the graph that defines the electrical
network is directed, the edge directions are irrelevant in
determining effective resistances. This is why Rayleigh’s mono-
tonicity law holds with graph embedding, which is insensitive
to edge directions. The electrical analogy also explains why
the edge directions are irrelevant in determining error covari-
ances.
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C. Triangle Inequality

Matrix-valued effective resistances satisfy a triangle in-
equality, which will be useful in proving the error scaling
laws in Section V. It is known that scalar effective resistance
obeys triangle inequality, and is therefore also referred to as
the “resistance distance” [21]. Although the result in [21] was
proved only for finite networks, it is not hard to extend it to in-
finite networks. The following simple extension of the triangle
inequality to generalized networks with constant resistances on
every edge was derived in [20].

Lemma 3 (Triangle Inequality): Let be a generalized
electrical network satisfying Assumption 1 with a constant re-
sistance on every edge of . Then, for every triple of
nodes in the network

D. Effective Resistances in Lattices and Fuzzes

Recall that given a graph and a positive integer , the -fuzz
of , denoted by , is a graph that has an edge between two
nodes and whenever the graphical distance between them in

is less than or equal to .
An -fuzz will clearly have lower effective resistance than the

original graph because of Rayleigh’s monotonicity law, but it is
lower only by a constant factor as stated in the following result,
which is a straightforward extension to the generalized case of a
result about scalar effective resistance established by Doyle and
Snell (see the Theorem on p. 103 as well as Exercise 2.4.9 in
[16]). The interested reader can find a proof in [20].

Lemma 4: Let be a generalized electrical network
satisfying Assumption 1 with a constant generalized resistance

on its every edge. Let be the electrical
network similarly constructed on , the -fuzz of . For
every pair of nodes and in

where is the effective resistance in the network
and is a positive constant that does not depend on
and .

The following lemma establishes effective resistances in -di-
mensional lattices and their fuzzes.

Lemma 5: For a given positive integer , consider the elec-
trical network with a constant generalized resistance

at every edge of the -fuzz of the -dimensional
square lattice . The generalized effective resistance be-

tween two nodes and in the electrical network
satisfies:

1) ;

2) ;

3) .

Proof of Lemma 5: The scalar effective resistance in 1-D,
2-D, and 3-D lattices follow linear, logarithmic, and bounded
growth rates, respectively [22], [23]. Using these results, it was

established in [8] that the matrix effective resistances in these
lattices have the same scaling laws (see [8, Lemma 5]). Thus,
1-D, 2-D, and 3-D lattices with matrix-valued resistances have
linear, logarithmic, and bounded scaling laws for the effective
resistance, which is the result with . The case
follows from the application of Lemma 4.

The slowing down of the growth of the effective resistance
as the dimension increases can be attributed to the fact that the
number of paths between each pair of nodes is larger in higher
dimensional lattices. The scaling laws for effective resistance
in lattices and their fuzzes also have intimate connections to the
change from recurrence to transience of random walks in lattices
as the dimension changes from to [16].

V. PROOF OF THEOREM 1

We now prove Theorem 1 by using the tools that have been
developed so far. The following terminology is needed for the
proofs. For functions and , the
notation means that and

. The notations and are described
in Section II.

Proof of Theorem 1: [Upper Bounds]: We start by estab-
lishing the upper bounds on the effective resistance for graphs
that are dense in . Throughout the proof of the upper bounds,
we will use , for any graph , to denote the effective
resistance between nodes and in the electrical network

with every edge of having a generalized resistance
of . From the electrical analogy theorem and monotonicity
law (Theorems 4 and 5), we get

To establish an upper bound on , we will now establish
an upper bound on the resistance . To this effect, sup-
pose that is a dense drawing of in . From dense embed-
ding Theorem 3, we conclude that there exists a positive integer

such that the -dimensional lattice can be embedded in
the -fuzz of . Moreover, Theorem 3 tells us that there ex-
ists , a positive constant , and an embedding

of into , such that

(11)

(12)

where is the maximum uncovered diameter of the -drawing
of . Note that . Consider the electrical net-
work formed by assigning to every edge of
a resistance of . From the triangle inequality for effective
resistances (Lemma 3)

(13)

For any two nodes , application of the triangle in-
equality Lemma 3 to successive nodes on the shortest path
joining and gives us



BAROOAH AND HESPANHA: ERROR SCALING LAWS FOR LINEAR OPTIMAL ESTIMATION FROM RELATIVE MEASUREMENTS 5669

. Using this bound in (13), and by using (11),
we conclude that

(14)

Since , from Rayleigh’s monotonicity law (Theorem
5), we obtain

When is dense in, say, in , we have from Lemma 5 that

which implies

Combining this with (12) and (14), we get

From Lemma 4, we know that the effective resistance in and
its -fuzz is of the same order, so that

from which the desired result follows:

The statements of the upper bounds for 1-D and 3-D can be
proved similarly. This concludes the proof of the upper bounds
in Theorem 1.

[Lower Bounds]: Now we establish the lower bounds on the
BLUE error covariance in a sparse graph. Throughout the
proof of the lower bounds, for a graph , we will use
to denote the effective resistance between nodes and in
the electrical network with every edge of having a
generalized resistance of . From the electrical analogy and
Rayleigh’s monotonicity law (Theorems 4 and 5), we get

(15)

Therefore, to establish a lower bound on , we proceed by
establishing a lower bound on the resistance . Since
is sparse in , it follows from Theorem 2 that there exists a
positive integer , such that . Let be the
embedding of into . Consider the generalized electrical
network formed by assigning a generalized resis-
tance of to every edge of . From Rayleigh’s mono-
tonicity law, we get

(16)

where refer to the nodes in that
correspond to the nodes in . When the graph is sparse in,
say, , it follows from (16) and Lemma 5 that

where the second statement follows from (6) in Theorem 2.
Combining the above with (15), we get ,
which proves the lower bound for graph that are sparse in .
The statements for the lower bounds graphs that are sparse in
or can be proved in an analogous manner. This concludes the
proof of the theorem.

VI. CHECKING DENSENESS AND SPARSENESS

To show that a graph is dense (or sparse) in a particular dimen-
sion, one has to find a drawing in that dimension with the appro-
priate properties. For sensor networks, sometimes the natural
drawing of a deployed network is sufficient for this purpose. By
the natural drawing of a sensor network, we mean the mapping
from the nodes to their physical locations in the Euclidean space
in which they are deployed. We can use this natural drawing to
construct the following examples of dense and sparse graphs.

Proposition 1:
1) Deploy a countable number of nodes in so that the max-

imum uncovered diameter of its natural drawing is finite,
and allow every pair of nodes whose Euclidean distance is
no larger than to have an edge between them. The re-
sulting graph is weakly connected and dense in . Such
a graph is also sparse in if the nodes are placed such
that every finite volume in contains a finite number of
nodes.

2) Consider an initial deployment of nodes on a square lattice
in , for which a fraction of the nodes has subsequently
failed. Suppose that the number of nodes that failed in any
given region is bounded by a linear function of the area
of the region, i.e., that there exist constants and such
that, for every region of area , the number of nodes that
failed in that region is no larger than . Assuming that

, there will be an infinite connected component
among the remaining nodes, which is dense and sparse in
2-D.

The interested reader may consult [6] for the proof of the
proposition.

The first example in the proposition is that of a geometric
graph that is obtained by placing a number of nodes in a region
and specifying a range such that a pair of nodes have an edge be-
tween them if and only if the Euclidean distance between them
is no more than the given range. The second example refers to
a network in which some of the initially deployed nodes have
failed, with the stipulation that in large areas, no more than a
certain fraction of the node may fail. For example, and

satisfy the stated conditions. It can be shown that
and mean that in areas larger than 10 10, at

most 4% of the nodes may fail.
To show that a graph is not dense (or not sparse) in a particular

dimension is harder since one has to show that no drawing with
the required properties exists. Typically, this can be done by
showing that the existence of a dense (or sparse) drawing leads
to a contradiction. An application of this technique leads to the
following result.
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Lemma 6:
1) The -dimensional lattice is not sparse in for every

, and it is not dense in for every .
2) A regular-degree2 infinite tree is not dense or sparse in any

dimension.

The proof of the first statement of the lemma is provided in the
Appendix. The second statement can be proved in an analogous
manner.

We are now ready to prove Lemma 2.
Proof of Lemma 2: To prove the result by contradiction,

suppose that a graph is dense in as well as sparse in ,
where . It follows from Theorems 3 and 2 that there exist
positive integers such that and . It is
straightforward to verify the following facts:

1) for every pair of graphs that do not have any parallel
edges, for every positive integer ;

2) for an arbitrary graph without parallel edges, and two
positive integers , we have .

It follows that , which means, from sparse embed-
ding Theorem 2, that a -dimensional lattice is sparse in .
This is a contradiction because of Lemma 6, which completes
the proof.

VII. SUMMARY AND FUTURE WORK

In a large number of sensor and ad hoc network applications,
a number of node variables need to be estimated from measure-
ments of the noisy differences between them. This estimation
problem is naturally posed in terms of a graph.

We established a classification of graphs, namely, dense or
sparse in , that determines how the optimal linear
unbiased estimation error of a node grows with its distance from
the reference node. The notion of denseness/sparseness intro-
duced in this paper is distinct from the usual notion based on
the average degree. In fact, we illustrated through examples that
node degree is a poor measure of how the estimation error scales
with distance.

The bounds and the associated graph classification derived
here can be used in performance analysis, design, and deploy-
ment of large networks. For example, if a sensor network is
sparse in , then we know that the estimation error of a node
will grow linearly with its distance from a reference. A large
number of reference nodes will thus be needed for large net-
works that are sparse in . On the other hand, if one has control
over the network deployment, then one should strive to obtain
a network that is dense in with as large as possible. In the
ideal case of , with a single reference node one can get
bounded estimation error regardless of how large the network
is.

There are several avenues for future research. The scaling
laws described in this paper were derived for infinite measure-
ment graphs. This is justified by the fact that the BLUE covari-
ance of a node in an infinite graph is very close to the ob-
tained in a large finite subgraph that contains the nodes and
sufficiently inside it [8]. However, to gain a better understanding
of the “boundary” effects that can occur in finite graphs, an in-

2A graph is called regular degree if the degree of every node in the graph is
the same.

teresting research direction is to determine how large the BLUE
error covariance can be as a function of the size of the graph,
for nodes that are close to the edge of the graph. A connection
between the notions introduced in this paper and those in coarse
geometry might be useful in this regard. It can be shown that a
graph that is both sparse and dense in is coarsely equiva-
lent to , which intuitively means that and are the same
in their large scale structure (see [24] for a precise definition
of coarse equivalence). Certain coarse geometric notions that
were originally defined for infinite graphs have been extended
to finite graphs (see [25]). This connection between coarse ge-
ometry and denseness/sparseness might provide a way to extend
the techniques used in this paper to finite graphs.

Although the dense and sparse classification does allow ran-
domness in the structure of the graph, the effect of such random-
ness on the scaling laws for the error is not explicitly accounted
for in the present work. A useful research direction would be the
characterization of the estimation error covariances in graphs
with random structure, such as random geometric graphs [26].
Another interesting avenue for future research is the investiga-
tion of estimation error growth in scale-free networks that do
not satisfy the bounded degree assumption.

APPENDIX

TECHNICAL PROOFS

Proof of Lemma 1: We prove that 1) implies 2) by contra-
diction. Assuming that 2) does not hold, we have that

such that

or equivalently

such that

This means that for a given , the set

and

contains at least the element

and therefore

and

Making , we obtain that

and

But since can be arbitrarily large, the above actually implies
that , which contradicts 1).
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Fig. 4. Lattices: (a) 1-D lattice � , (b) 2-D lattice � , and (c) 3-D lattice � .

To prove that 2) implies 1), we note that when 2) holds,
we conclude that for every pair of nodes , for which

, we have that

Therefore

and

As , the left-hand side converges to and the right-hand
side converges to , from which 1) follows.

Proof of Theorem 3: In this proof, we will denote by
the natural drawing of the lattice .

We have to prove that if is dense in , conditions i)
and ii) are satisfied. Since is dense in , there is a drawing
function so that the -drawing of has a
and . Define a new drawing as

so that the maximum uncovered diameter of the drawing
of is . Note that is still a dense drawing of . Now we
superimpose the natural -drawing of on the -drawing of

, and draw open balls of diameter centered at the natural
drawing of every lattice node, denoted by .
Fig. 5 shows an example in . Since , it follows from
the definition of denseness that in every one of those balls, there
is at least one node . To construct the embedding, we
associate each node of the lattice to a node of whose drawing
appears inside the ball centered around the lattice node. This
defines an injective function . Consider two nodes
of the lattice that have an edge between them.
Let . Since and belong to
adjacent balls of unit diameter (see Fig. 5)

Since is a dense drawing in with , it follows from
Lemma 1 that , for some positive constants

and . Define . Then and will have an edge
between them in the -fuzz . So , and we have
the desired result that denseness implies i).

To show that denseness implies ii), first note that if
, then ii) is trivially true (choose , so only nodes

in are interesting. For every , find as

Fig. 5. Superimposing a 2-D lattice (gray) on a 2-D dense graph (black).

Fig. 6. Natural drawing of the 2-D lattice (gray) superimposed on the �

drawing of � . Edges are not shown to prevent clutter. In this example, � � ��

but � �� ��.

the node in the lattice such that the ball of unit diameter drawn
around is closest to . That is, find such that

(17)

where between a point and a set is
defined as

There are only balls one needs to check to determine the
minimum in (17), so exists, though it may not be unique.
If there are multiple minima in (17), pick any one. This proce-
dure defines an onto map . Let
be the embedding of into as described earlier in this
proof. Define as . We will now show
that, for every , the node , which has a cor-
responding node in the lattice, is within a uniformly bounded
graphical distance of . Since either lies in the ball cen-
tered at or in the gaps between that ball and the neigh-
boring balls . Therefore

(18)



5672 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009

where we have used the fact that . From
Lemma 1 and the denseness of the -drawing of , we get

Define

(19)

which is a constant independent of and . Then, for every
, there exists a such that

, which is the desired condition ii).
We have to prove that if i) and ii) are satisfied, then is

dense in . We will construct a drawing of in with the
following procedure and then prove that it is a dense drawing.
Since , there is an injective map such
that . Pick a node in that has not been drawn
yet. By ii), there exist a positive constant and a node
such that and . If has not been
drawn yet, then draw it the location of its corresponding lattice
node, i.e.,

(20)

A little thought will reveal that if has been drawn already,
as long as the drawing procedure outlined so far is followed,
it must have been drawn on the lattice location , so (20)
holds. Once is drawn, we draw in the following way. In
case , drawing of is determined by the drawing of . If

, draw by choosing a random location inside an open
ball of diameter 1 with the center at . To show that a drawing
obtained this way is dense, first note that the largest uncovered
diameter since a subset of the nodes of occupies the
lattice node positions. Pick any two nodes . Again,
from ii), we know that there exists such that

and for some positive constant .
Therefore

Since

where denotes the vector -norm

[from (20)]

Because of the way the drawing is constructed, we have
, which implies

. So we have

From Lemma 1, we see that the asymptotic distance ratio
for the -drawing of , which establishes that is a dense

drawing of in . It follows that is dense in .
To prove the relationship (7) for any dense drawing , con-

sider again the scaled drawing defined as , so
that the maximum uncovered diameter of is . Since is
dense in can be embedded in with an embedding

. We choose the embedding as described in the
first part of the proof. For every , call , where

was defined earlier in this proof for the dense
drawing of . Now consider two arbitrary nodes and
let (see Fig. 6). It was shown earlier
in this proof that for every pair of nodes , we have

and , where is defined in
(19).

Now

and

We know that since
, and from (18). Using

these in the above, we get

which is the desired result.

Proof of Lemma 6: We only provide the proof that the 2-D
lattice is not sparse in and is not dense in . The general case
for arbitrary dimensions is analogous.

To prove by contradiction the lack of denseness, assume that
there exists a dense drawing of in , with associated

and . Fix the origin of at for an ar-
bitrary node in the lattice . For an arbitrary , the
volume of the sphere in centered at the origin with diameter

, denoted by , is . Therefore, the number of
nodes of drawn inside is . It
is straightforward to show that for any set of distinct nodes in
the lattice , the maximum graphical distance between any two
nodes in the set is . Therefore, the maximum graphical
distance between the nodes in is . The max-
imum Euclidean distance between any two nodes drawn inside
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the sphere under the -drawing is at most , and
since is a dense drawing, it follows from Lemma 1 that for
every pair of nodes in such that ,
we have . Therefore, the maximum graph-
ical distance between pairs of nodes whose drawing falls inside

is , as well as , which is a contradiction
for sufficiently large . Hence, no dense drawing of in
is possible.

To show is not sparse in , assume that there exists a
civilized drawing of in with and , where and

are constants. Consider a subgraph of that consists all
nodes within a Euclidean distance from the origin. The total
number of nodes in this finite subgraph is . The length of
the interval in which the nodes of this subgraph are located
in the sparse 1-D drawing of is clearly . Since
the maximum graphical distance between any two nodes in the
subgraph is by construction, the maximum connected
range in the 1-D drawing must be at least .
Since this must be true for every cannot be a finite constant.
Thus, no civilized drawing of in exists.
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