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Abstract— We consider the problem of estimating vector-
valued variables from noisy “relative” measurements. The
measurement model can be expressed in terms of a graph,
whose nodes correspond to the variables being estimated and
the edges to noisy measurements of the difference between
the two variables. We take the value of one particular
variable as a reference and consider the optimal estimator
for the differences between the remaining variables and the
reference. This type of measurement model appears in several
sensor network problems, such as sensor localization and time
synchronization.

Two algorithms are proposed to compute the optimal
estimate in a distributed, iterative manner. The first algorithm
implements the Jacobi method to iteratively compute the
optimal estimate, assuming all communication is perfect.
The second algorithm is robust to temporary communication
failures, and converges to the optimal estimate when certain
mild conditions on the failure rate are satisfied. It also employs
an initialization scheme to improve accuracy in spite of the
slow convergence of the Jacobi method.

I. INTRODUCTION

We consider an estimation problem that is relevant to
a large number of sensor networks applications, such as
localization and time synchronization. Consider the esti-
mation of n vector-valued variables x1, x2, . . . , xn ∈ R

k

based on several noisy “relative measurements” ζij . The
measurement indices (i, j) take values in some set E of
pairs of values from V := {1, 2, . . . , n}. The term “relative”
comes from the measurement model considered:

ζuv = xu − xv + εuv, ∀(u, v) ∈ E, (1)

where the εuv are uncorrelated zero-mean noise vectors
with known covariance matrices Puv = E[εuvεT

uv]. Just
with relative measurements, determining the xu’s is only
possible up to an additive constant. To avoid this ambiguity,
we assume that a particular variable (say x1) is used as the
reference and therefore x1 = 0.

The measurement equations (1) can be expressed in terms
a directed graph G = (V,E) with |V| = n vertices (nodes)
and |E| = m edges, with an edge (u, v) if the measurement
ζuv is available. The vector xu is called the u-th node
variable. Our objective is to construct the optimal estimate
x̂∗

u of xu for every node u ∈ V\{1}. The Optimal estimate
refers to the estimate produced by the classical Unbiased
Minimum Variance Estimator (UMVE), which achieves the
minimum variance among all linear unbiased estimators.

When applied to the location estimation problem, a node
variable xu could be the position of node u in 2-d or 3-d
space w.r.t. the reference node, and when applied to time

synchronization, it could be time shift of u’s local clock
w.r.t. the clock of node 1. For a through discussion on how
these problems can be modeled with (1), see [1], [2] and
references therein.

To compute the optimal estimate directly, one seems to
need all the measurements and the topology of the graph
(see beginning of section III). Thus, if one node in the
network has to compute it, all this information has to be
transmitted to that node. For networks with a large number
of measurements, doing so will be prohibitively expensive
in terms of energy consumption, bandwidth and communi-
cation time. Moreover, such a centralized computation will
be less robust to dynamic changes in topology resulting
from link and node failures over time.

In this paper we propose an iterative algorithm to com-
pute the estimate of the node variables in a distributed
manner. By distributed we mean that at every step, each
node computes its own estimate and the data required for
the computation performed at a node is obtained through
communication with its one-hop neighbors. We show that
the estimate produced by the algorithm asymptotically
approaches the optimal estimate even in the presence of
faulty communication links, as long as some mild conditions
on the duration of faults are satisfied. We first propose an
algorithm that implements the Jacobi iterative method to
compute the optimal estimate, assuming that all communi-
cation is perfect (no failure), for which we can establish
performance bounds. This algorithm was then improved to
handle dynamic changes in the communication topology
brought about by temporary link failures. It also employs an
initialization scheme to achieve greater accuracy. Accuracy
of an estimate is measured by the norm of the difference
between it and the optimal one.

A similar algorithm was alluded to in [1] where the
problem of time synchronization from measurements of
time differences was considered; but the algorithm was not
investigated. The algorithm proposed in this paper is more
general, since it works for vector valued variables such as
positions and not just scalar valued ones such as clock times.
Moreover, our algorithm is proven to work even in the
presence of faulty communication. Our work was inspired
by [3] where the Jacobi and other iterative algorithms were
applied to computing the optimal estimate in a different
problem, one where absolute measurements of random node
variables (such as temperature) were available, but the node
variables were correlated.

In a previous paper [2], the authors considered how



the variance of the optimal estimator (for the problem
considered in this paper) grows with the distance of a
node from the reference, and how that growth depends
on the structure of the graph. A classification of graphs
were obtained that determined the bounds on the variance
achieved by the optimal estimate.

In this paper, we propose an algorithm that asymptotically
obtains the optimal estimate (when the number of iterations
approaches infinity), while simultaneously being simple,
scalable, distributed and robust to communication failures.

The paper is organized as follows. In section III, we de-
scribe the first distributed algorithm that implements the Ja-
cobi iterative method and establish its performance bounds.
In section IV we modify this algorithm to handle faulty
communication links. Section V describes a modification to
this algorithm to improve its performance. Simulations done
with the resulting algorithm are presented in section VI.
The paper concludes with a note on future directions in
section VII.

II. THE OPTIMAL ESTIMATE

Consider a measurement graph G with n nodes and
m edges. Let X be a vector in R

(n−1)k obtained by
stacking together all the unknown node variables, i.e., X :=
[xT

2 , . . . , xT
n ]T . Define Z := [ζT

1 , ζT
2 , ...., ζT

m]T ∈ R
km and

ε := [εT
1 , εT

2 , ..., εT
m]T ∈ R

km. Eq. (1) can now be rewritten
as follows:

Z = AT
b X + ε, Ab := Ab ⊗ Ik , (2)

where Ab ∈ R
n−1×m is called the basis incidence matrix

of G, defined as Ab = [auj ], where auj = 1, −1 or 0,
if edge j is incident on node u and directed away from
it, is incident on node u and directed toward it, or is not
incident on node u, respectively. Ab has n − 1 rows, each
row corresponding to one node in G, except the reference
node. For a measurement graph with node variables xu ∈
R

k, the we call the matrix Ab ∈ R
k(n−1)×km defined in

(2) the Generalized Basis Incidence Matrix.
This optimal estimate X̂∗ with the measurement model 2

is the solution to the following system of linear equa-
tions [4]:

LX̂∗ = b, (3)

where L := (AbP
−1AT

b ), b := AbP
−1Z,

and P := E[εεT ] is the covariance matrix of the mea-
surement error vector. The error covariance of the optimal
estimate E[(X−X̂∗)(X−X̂∗)T ] is equal to [4] L−1. Since
the measurement errors on two different edges are assumed
to be uncorrelated, P is a symmetric positive definite
block diagonal matrix with the measurement error covari-
ances along the diagonal: P = diag(P1, P2, . . . , Pm) ∈
R

km×km, where Pe is the covariance of the measurement
represented by the edge e ∈ E.

A path from a node to another node that does not respect
the orientation of the edges is called an undirected path. A
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Fig. 1. A measurement graph G with 3 nodes and 4 edges. Node 1 is
the reference.

directed graph is said to be weakly connected if there is a
undirected path from any node to any other node. In this
paper we consider only weakly connected graphs. Under
this assumption, the estimation error covariance always
exists and is of finite norm [2], and therefore the optimal
estimate X̂∗ is unique for a given set of measurements Z.
We call the matrix L the Weighted Generalized Grounded
Laplacian.

As a simple example, consider the weakly connected
measurement graph G shown in figure 1. The basis inci-
dence matrix for this graph is Ab =

[

−1 0 1 −1
0 −1 −1 1

]

. Writing
the measurement equations (1) for the four edges explicitly
shows how we get (2) from (1):
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For the graph in figure 1, with every measurement covari-
ance being Ik, (3) becomes

[

3Ik −2Ik

−2Ik 3Ik

] [

x̂∗

2

x̂∗

3

]

=

[

ζ3 − ζ1 − ζ4

ζ4 − ζ2 − ζ3

]

. (4)

III. DISTRIBUTED ESTIMATION WITH PERFECT
COMMUNICATION CHANNELS

In order to compute the optimal estimate X̂∗ by solving
the equations (3) directly, one needs all the measurements
and their covariances (Z, P), and topology of the graph
(Ab). Our goal is to compute the estimate in a distributed
manner, employing only local communication. We use the
Jacobi iterative method to achieve this. A discussion of
the Jacobi method can be found in standard textbooks [5],
hence we refrain from describing it here. Instead we make
the presentation of the algorithm self-contained. At first we
assume that there are no communication failures, and design
an algorithm for that scenario. In section IV, we modify the
algorithm to make it robust to temporary communication
failures.

A node u′ is said to be a neighbor of another node v′ in a
graph (V′,E′) if there is an edge (u′, v′) ∈ E

′ or (v′, u′) ∈
E

′. The set of neighbors of u in the measurement graph G
are denoted by Nu. We assume that after deployment of the
network, the nodes detect their neighbors and exchange their
relative measurements well as the associated covariances.
So every node has access to the measurements on the edges
that are incident on it, whether the edge is directed to or
away from it. Each node uses the measurements obtained



initially for all future computation. Arguably, in future inter-
node communication, additional measurements between the
same node pair may become available. However, we want to
compare the estimate produced by the proposed algorithm
with the optimal estimate, and the optimal estimate is
defined for a given set of measurements. Therefore we
assume that the measurements are given a priori and the
measurement graph does not change with time. For sim-
plicity, it is assumed that computation time is negligible
compared to communication time.

SCG OPTIMAL ESTIMATOR1 : After the deployment of
the network, the reference node initializes its “estimate” to
0 and never changes it. Every other nodes initializes its
estimate to an arbitrary value. At the start of iteration i+1,
a node sends its most recent estimate x̂

(i)
p to its neighbors

along with the corresponding iteration number i. It also
gathers the i-th estimates of its neighbors, x̂

(i)
v , v ∈ Np,

and then updates its estimate by solving the following k

equations for x̂
(i+1)
p :

Mpx̂
(i+1)
p = bp +

∑

(p,v)∈E

P−1
pv x̂(i)

v +
∑

(v,p)∈E

P−1
vp x̂(i)

v , (5)

where Mp :=
∑

(p,v)∈E

P−1
pv +

∑

(v,p)∈E

P−1
vp , (6)

bp :=
∑

(p,v)∈E

P−1
pv ζp,v −

∑

(v,p)∈E

P−1
vp ζvp. (7)

To understand where this update equation came from, we
note that the optimal estimate of a particular node, say
p ∈ V, satisfies the following equations, which are obtained
simply by expanding (3) and using the definitions of Mp

and bp:

Mpx̂
∗

p −
(

∑

(p,v)∈E

P−1
pv x̂∗

v +
∑

(v,p)∈E

P−1
vp x̂∗

v

)

= bp. (8)

If at some iteration i, x̂
(i+1)
p = x̂

(i)
p for all p ∈ V, then

equations 5 and 8 become equivalent. Thus, if the estimates
x̂

(i)
p , ∀p ∈ V converge to anything (and in a moment

we show that they do),they must converge to the optimal
estimates.

Note that to compute the update x̂
(i+1)
p , node p needs

Mp, bp and the neighbors’ estimates x̂
(i)
v , ∀v ∈ Np. The

quantities Mp and bp are computed in the beginning from
the measurements and the associated covariances on the
edges that are incident on p, so all the computation needs
only local information. The algorithm is summarized in
table I.

A. Correctness and Performance

Let X̂(i) = [x̂
(i)T
2 , . . . , x̂

(i)T
n ]T be the vector of node

estimates after the ith iteration of the algorithm has been
completed. One iteration is said to be complete when all
nodes update their estimate once. The error at the ith

1SCG: Static communication Graph

Name: SCG OPTIMAL ESTIMATOR
Goal: Compute estimates of node variables

that approach the optimal estimate.
Initialization: x

(0)
1 = 0, x

(0)
u is arbitrary for u ∈ V \ {1}.

After deployment, every node p ∈ V \ {1} performs:

1 Detect all neighbors Np.
2 Obtain measurements ζpv , ζvp and the associated

covariances Puv, Pvu for every v ∈ Np. Compute Mp

and bp from (6) and (7).

At every iteration i, a node p performs:

3 Send x̂
(i)
p , i to every v ∈ Np, get x̂

(i)
v from all v ∈ Np.

4 Compute x̂
(i+1)
p from neighbors’ estimates x̂

(i)
v for every

v ∈ Np and previously computed Mp and bp, using (5).

TABLE I
PSEUDO-CODE FOR THE SCG OPTIMAL ESTIMATOR ALGORITHM.

iteration is X̂(i) − X̂∗, where X̂∗ is the optimal estimate.
Let ε(i) := ‖X̂(i) − X̂∗‖/‖X̂(0) − X̂∗‖. The algorithm is
said to be correct if the ε(i) → 0 as i→∞ for any initial
condition X(0).

Apart from correctness, a quantifiable measure of per-
formance is also desirable. In networks with energy and
bandwidth constrained sensor nodes, achieving a good ac-
curacy with as few iterations as possible is important. In
light of this, we use as performance metric the number of
iterations i required so that ε(i) achieves a given value ε.

To make the analysis of correctness and performance of
the algorithm tractable, we make the following additional
assumption:

Assumption 1: Either the node variables are scalars (k =
1) and the measurement error variances are bounded, or, the
node variables are vectors (k > 1) and all the measurement
error covariance matrices are equal.

For establishing the performance bounds, we restrict our
attention to graphs with low Fiedler value. Recall that the
Fiedler value, or the Algebraic connectivity, α(G) of a
graph G is the second smallest eigenvalue of the graph
Laplacian.

Theorem 1. Consider a weakly connected measurement
graph G which satisfies Assumption 1. Then the proposed
algorithm is correct. If, in addition, α(G) << 1, for every
0 < ε < 1, the number of iterations N(ε) required so that
ε(i) < ε, ∀i > N(ε), satisfies

N(ε) > Ω
( | log ε|

α(G)

)

. �

Proof: When assumption 1 holds, the algorithm is
simply a Jacobi iteration on a non-singular M matrix [6],
and the Jacobi method is correct if the spectral radius of the
Jacobi iterative operator is < 1. It follows from standard
results (see Theorem 7.5.2 in [6]) that is true in our case.
For the lower bound on performance, see [7].

Remark 1: The reason for considering graphs with low
Fiedler value is that for most large ad-hoc networks, which



are the networks of interest here, the Fiedler value is
generally quite small. For example, the Fiedler value of a
10× 10 grid graph is 0.094.

B. Communication Cost

An important performance measure for a distributed
algorithm is the total number of messages that have to be
exchanged before a given accuracy is achieved. In sensor
networks with energy constrained nodes and unreliable
communication channels, this issue is particularly acute. In
the SCG OPTIMAL ESTIMATOR algorithm, every pair of
neighboring nodes has to exchange two messages per iter-
ation – to tell each other their current estimates. Therefore
it will take 2mi messages to complete i iterations, where
m is the number of edges.

For comparison, it takes at most nDG messages to trans-
mit all the measurements and node IDs to a central node
that can then compute the optimal estimate directly, where
n is the number of nodes and DG is the diameter of G. The
diameter of a graph is the length of the longest shortest path
between any two nodes. Interestingly, communication cost
of the centralized estimator can be lower than that of the
distributed one, especially if a higher accuracy is desired.

IV. DISTRIBUTED ESTIMATION WITH FAULTY
COMMUNICATION

One desirable attribute of any distributed algorithm is
robustness to communication failures, such failures being
unavoidable in practice. We modify our algorithm slightly
to make it robust to such failures. The resulting algorithm
is call the DCG OPTIMAL ESTIMATOR2 algorithm. We
assume for the sake of simplicity that during the estimation
process, no nodes fail permanently and no new nodes be-
come active. This assumption does not place any restriction
on employing the algorithm when there are permanent
changes to the network. It is made solely to facilitates
a fair comparison between the estimates produced by the
algorithm to the optimal one, the latter being defined only
for a given set of node variables and measurements.

Since a neighbor may become unavailable at any time,
every node stores in its local memory the estimates of
its neighbors’ variables recorded from the last successful
communication. We denote by (x̂v)

(i)
p the estimate of xv

kept in p’s local memory at the end of the ith iteration. If
the last successful communication between p and v took
place during the jth iteration, j < i, then (x̂v)

(i)
p = x̂

(j)
v .

We assume that computation time is negligible compared
to communication time.

DCG OPTIMAL ESTIMATOR: Let t
(i)
p be the local time at

node p in the beginning of the i+1th iteration. At this time,
every node p tries to communicate with all its neighbors
Np for τc(i, p) seconds, after which it stops attempts at
communication until the next iteration. Let N

(i)

p ⊆ Np be
the set of nodes p is able to and get data from successfully

2DCG: Dynamic Communication Graph

during the time period (t
(i)
p , t

(i)
p + τc). Thus, node p gets

from every v ∈ N
(i)

p its most recent estimates x̂
(i)
v .

Moreover, it sends its own most recent estimate, x̂
(i)
p , to as

many nodes in Np as possible during this period. After the
communication period of τc seconds, node p then updates
its copy of its neighbors’ estimates with the recent estimates
gathered: (x̂v)

(i)
p ← x̂

(i)
v , v ∈ N

(i)

p . For the nodes it was
not able to get data from, it keeps the local copies of their
estimates unchanged: (x̂v)

(i)
p ← (x̂v)

(i−1)
p , ∀v ∈ Np\N

(i)

p .
After this, node p computes its own estimate update, x̂

(i+1)
p ,

by solving the following system of k linear equations:

Mpx̂
(i+1)
p = bp+

∑

(p,v)∈E

P−1
pv (x̂v)(i)p +

∑

(v,p)∈E

P−1
vp (x̂v)(i)p .

The pseudo-code in Table II implements the algorithm
just described. An additional difference in the algorithm
described in Table II from the first algorithm is the ini-
tialization scheme described in V. The DCG OPTIMAL
ESTIMATOR algorithm in its final form uses therefore not
the update equation shown above, but (9).

A. Correctness under Faulty Communication

In the presence of temporary link failures, the DCG
OPTIMAL ESTIMATOR algorithm executes what are known
in parallel computing literature as asynchronous Iterations.
This is a well-studied problem and the conditions under
which it converges are known [8], [9]. Suppose a node p is
at the i-th iteration, and the last successful communication
between p and one of its neighbors v took place at the
jth iteration, with j < i, meaning that the previous i − j
communications between the nodes had failed.

Theorem 2. Consider a weakly connected measurement
graph G which satisfies Assumption 1. Then the DCG
OPTIMAL ESTIMATOR algorithm is correct if there is a
positive integer ` <∞ such that the number of consecutive
communication failures between every pair of neighboring
nodes in G is less than `. �

Proof: This follows from theorem 4.1 in [9] which
states that asynchronous iterations for a system of linear
equations converge to the correct solution when the spectral
radius of the iteration operator is < 1, and the proof of
theorem 1 where it was shown that when Assumption 1 is
satisfied, the spectral radius of the Jacobi iterative operator
is < 1 for the system of linear equations considered in this
paper.

V. IMPROVING PERFORMANCE

It may be possible to improve the convergence rate by
using other iterative techniques such as Gauss – Siedel,
SOR or the conjugate gradient [5] methods, or even by
preconditioning, but any such improvement will come at
the cost of increased communication.

For the problem at hand, however, one feasible strategy of
improving performance without improving the convergence



rate is to reduce the initial error by choosing a “better”
initial condition. The question is how to provide a node
with a “better” initial condition without requiring much
more communication or computation. We add the following
modification to the DCG OPTIMAL ESTIMATOR algorithm
to help a node detect which of its neighbors have “good”
estimates so that it may update its estimate based only on
those neighbors. After a while, all neighbors will be recog-
nized to have good estimates. Therefore this modification
makes only the initial phase of the algorithm’s execution
different from the previously described algorithm.

After deployment of the network, every node other than
the reference initializes a flag have estimate to 0,
meaning it has no estimate of its variable. The reference
node initializes its flag to 1. During every inter-update
communication, a node gets from its neighbors their current
estimates and the values of their flags. If the recent com-
munication fails, it uses the flag values gathered during the
last successful communication. The node then computes its
update based only on the estimates of those neighbors whose
flags were 1 in the recently concluded communication. If
any of its neighbors had its flag as 1, after computing its
own estimate it sets its own flag to 1 and never resets
it. Otherwise it keeps the flag at 0 and does not compute
any estimate. At the beginning, only the reference has an
estimate. In the first iteration, neighbors of the reference
can compute estimates by adding measurements they share
with the reference, and then update their have estimate
flags to 1. In the next iteration, their neighbors do the same,
and so on. This way, a node can detect if global coordinate
information from the reference node has reached it. With
successive iteration, the accuracy increases as the algorithm
converges to the optimal estimate.

Let h
(i)
v be the value of the flag have estimate of

node v at iteration i and (hv)
(i)
p be the local copy of this

variable at node p. At iteration i, let N h
p (i) ⊆ Np be the set

of neighbors of p ∈ V that p knows have their flag values
at 1, i.e, N h

p (i) := {u ∈ Np|(hu)
(i)
p = 1}. When N h

p (i)
is not empty, node p will be employ the following update
equations:

Mh
p x̂(i+1)

p = bh
p +

∑

(p,v)∈E

h(v)=1

P−1
pv (x̂v)(i)p +

∑

(v,p)∈E

h(v)=1

P−1
vp (x̂v)(i)p , (9)

where

Mh
p :=

∑

(p,v)∈E

h(v)=1

P−1
pv +

∑

(v,p)∈E

h(v)=1

P−1
vp ,

bh
p :=

∑

(p,v)∈E

h(v)=1

P−1
pv ζpv −

∑

(v,p)∈E

h(v)=1

P−1
vp ζvp.

After a while, all of p’s neighbors will have their flags
at 1, at which point Mh

p = Mp and bh
p = bp. This

modification is included in the summary of the DCG
OPTIMAL ESTIMATOR algorithm presented in table II.

Name: DCG OPTIMAL ESTIMATOR
Goal: Compute estimates of node variables that ap-

proach the optimal estimate in the presence of
faulty communication links.

Data: A rule for every node to determine its communi-
cation time-out interval
τc (seconds) at the i iteration.

Initialization: x
(0)
1 = 0, h

(0)
1 = 1.

xv(0) = ∅, ∀v ∈ V \ {1} and
h
(0)
u = 0, ∀v ∈ V \ {1}.

After deployment, every node p ∈ V performs:

1 Detect all neighbors Np.
2 Obtain measurements ζpv , ζvp and the associated

covariances Puv, Pvu for every v ∈ Np.

At every iteration i + 1, during the time interval (t
(i)
p , t

(i)
p + τc)

seconds, every node p ∈ V \ {1} performs:

3a Get x̂
(i)
v , h

(i)
v from every v ∈ N

(i)
p , and

send x̂
(i)
p , h

(i)
p , i to as many nodes in Np.

3b Update local copies of neighbors’ estimates as
IF v ∈ N

(i)
p

(x̂v)
(i)
p ← x̂

(i)
v , (hv)

(i)
p ← h

(i)
v .

ELSE
(x̂v)

(i)
p ← (x̂v)

(i−1)
p , (hv)

(i)
p ← (hv)

(i−1)
p .

At the end of t
(i)
p + τc seconds, node p performs

4 IF ∃v ∈ Np s.t. (hv)
(i)
p = 1,

a) Compute bp,Mp, then update x̂
(i+1)
p using (9).

b) Set h
(i+1)
p ← 1.

ELSE
x̂
(i+1)
p ← x̂

(i)
p , h

(i+1)
p ← h

(i)
p .

TABLE II
PSEUDO-CODE FOR THE DCG OPTIMAL ESTIMATOR ALGORITHM

WITH THE INITIALIZATION SCHEME DESCRIBED IN SEC. V. THE

VARIABLE h
(i)
v IS THE VALUE OF THE FLAG HAVE ESTIMATEOF NODE

v AT ITERATION i.

VI. SIMULATION

For simulations, we pick location estimation as an ap-
plication of the general problem described in this paper.
The node variable xu is node u’s position in 2-d Euclidean
space. 200 nodes were randomly placed in a 1 × 1 area
(figure 2) and pairs of nodes that are within a range of
0.11 took measurements of each others’ relative positions.
Every measurement was corrupted by Gaussian noise with a

covariance matrix of Po = 10−3

[

0.28 0.27
0.27 0.28

]

. A single

set of measurements were used for all the simulations; the
locations estimated by the optimal estimator are also shown
in Figure 2. The Fiedler value of this graph was computed
to be 0.073.

Figure 3 compares the effect of different initializations
on the accuracy achieved by the DCG OPTIMAL ESTIMA-
TOR. The initialization described in V performs better than
fixed initialization (all positions initialized to 0) or random
initialization (initial positions chosen from a uniform dis-
tribution). The error at the i-th iteration as a fraction of the



Fig. 2. A sensor network with 200 nodes randomly distributed in a
unit square area. The edges of the measurement graph are shown as line
segments connecting the true nodes positions. The little squares are the
positions estimated by the (centralized) optimal estimator. The reference
node is at (0, 0).
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Fig. 3. Comparison different initialization schemes. “Flagged” refers to
the initialization scheme described in section V. It took 9 iterations for
all the nodes to have their have estimate flags to 1, hence errors are
shown only after i = 9 for that case.

optimal estimate is shown to make it independent of the
unit of length used.

To simulate the algorithm with faulty communication, the
following model of link failure was adopted. Every link fails
independently of other links, and during every iteration it
fails with a probability pf that is constant for all links.
Thus, the time instants that a particular link fails forms a
sequence of Poisson points. Figure 4 shows three different
error histories for three different failure-probabilities: pf =
0.05, 0.1 and 0.2. In all the cases, the initialization scheme
described in section V was used. The error trends show the
algorithm converging to the optimal estimate even with link
failures. As expected, though, higher failure rates degrade
performance.

VII. SUMMARY AND FUTURE WORK

We have implemented a modified version of the Jacobi
iterative scheme to compute the optimal estimator; the
resulting algorithm is robust to link failures, distributed,
scalable and simple. The main drawback of the proposed
algorithms is the potentially large number of iterations
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Fig. 4. Estimation error with iteration number with link failures. Three
different failure probabilities are compared with the case of no link failure.

that maybe required to achieve a desired accuracy when
the measurement graph has a low algebraic connectivity
(theorem 1). We improved the convergence of the algorithm
by employing a particular initialization scheme. Other ways
to reduce the number of iterations or messages needed
to achieve a given accuracy will be explored in future
research. Another important issue is that of security, when
one or more node estimates may be manipulated by a hostile
party. Making the algorithm robust to security threats and
extending it to be able to compute the variance of the
estimate are some of the avenues for future research.
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