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Estimation 
on Graphs 
from Relative 
Measurements

A
sensor network is a collection of interconnected
nodes that are deployed in a geographic area to
perform monitoring tasks. Each node is equipped
with sensing and computing capability. Sensor
networks consisting of a large collection of nodes

are currently under development or envisioned for the
near future [1], [2]. Usually, each node can communicate
with only a small subset of the remaining nodes. These
communication constraints define a graph whose vertices
are the nodes and whose edges are the communication
links. In typical situations, a node may lack knowledge of
certain attributes such as its own position in a global refer-
ence frame. However, nodes might be capable of measur-
ing relative values with respect to nearby nodes. In this
scenario, it is desirable to use relative measurements to
estimate global attributes. We describe three scenarios that
motivate these problems.

Consider the problem of localization, where a sensor
does not know its position in a global coordinate system
but can measure its position relative to a set of nearby
nodes. These measurements can be obtained, for exam-
ple, from range data and bearing (that is, angle) data (see
Figure 1). In particular, two nearby sensors u and v locat-
ed in a plane at positions pu and pv, respectively, have
access to the measurement

ζu,v = pu − pv + εu,v ,

where εu,v denotes measurement error. The problem of
interest is to use the ζu,vs to estimate the positions of all the
nodes in a common coordinate system whose origin is
fixed arbitrarily at one of the nodes. 

The second scenario involves the time-synchronization
problem, in which the sensing nodes are part of a multi-
hop communication network. Each node has a local clock,
but each pair of clocks differs by a constant offset. Howev-
er, nodes that communicate directly can estimate the dif-
ference between their local clocks by exchanging “hello”
messages that are time stamped with local clock times. For
example, suppose that nodes u and v can communicate
directly with each other and have clock offsets tu and tv
with respect to a reference clock. By passing messages
back and forth, the nodes can measure the relative clock
offset tu − tv with the measurement

ζu,v = tu − tv + εu,v ∈ R ,

where εu,v denotes measurement error (see Figure 2).
The task is now to estimate the clock offsets with
respect to the global time, which is defined to be the
local time at some reference node. A variation of this
problem is considered in [3].

The third scenario is a motion consensus problem, in
which each agent wants to determine its velocity with
respect to the velocity of a leader using only
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measurements of its relative velocities with respect to
nearby agents. These measurements can be obtained, for
example, by using vision-based sensors. In particular, two
nearby agents u and v moving with velocities ṗu and ṗv,
respectively, have access to the measurement

ζu,v = ṗu − ṗv + εu,v ,

where εu,v denotes measurement error. The task is to
determine the velocity of each agent with respect to the
leader based solely on the available relative velocities
between pairs of neighboring agents.

GRAPH-INDUCED MEASUREMENT
MODEL AND OPTIMAL ESTIMATE

The problems described above share the com-
mon objective of estimating the values of node
variables x1, . . . xn from noisy relative measure-
ments of the form

ζu,v = xu − xv + εu,v, u, v ∈ {1, . . . , n} , (1)

where εu,v is a zero-mean noise vector, with
associated covariance matrix Pu,v = E[εu,vε

T
u,v].

Node variables are vector valued, and the
dimension of the node variables is denoted by k.
For example, in the time-synchronization prob-
lem, k = 1, while in the localization problem, k
can be 2 or 3. The measurement noise is
assumed to be spatially uncorrelated, that is,
E[εu,vε

T
p,q] = 0 if u �= p or v �= q. This estimation

problem can be naturally associated with the
measurement graph G = (V, E), which is a direct-
ed graph. For more details on directed graphs
and the terminology associated with them, see
“Graph-Theoretic Definitions.” The vertex set of
the measurement graph consists of the set of
nodes V := {1, . . . , n}, while its edge set E con-
sists of all of the ordered pairs of nodes (u, v) for

which a noisy measurement of the form (1) is available.
By stacking together all of the measurements into a sin-

gle vector z, all node variables into one vector X, and all of
the measurement errors into a vector ε, we can express all
of the measurement equations (1) in the compact form

z = ATX + ε , (2)

where the matrix A is uniquely determined by the graph
G. To construct A, we start by defining the incidence
matrix of G, which is defined in “Graph-Theoretic Defini-
tions.” A measurement graph and its incidence matrix are
shown in “A Graph Estimation Example.” The matrix A
that appears in (2) is an expanded version of the incidence
matrix A, defined by A := A ⊗ Ik , where Ik is the k × k
identity matrix and ⊗ denotes the Kronecker product.
Essentially, every entry of A is replaced by a matrix of the
form aueIk to construct the matrix A (see “A Graph Esti-
mation Example”).

With relative measurements alone, determining xu is
possible only up to an additive constant. To avoid this
ambiguity, we assume that at least one of the nodes is used
as a reference by all of the nodes, and therefore its node
variable can be assumed known. When several node

FIGURE 1 Relative position measurement in a Cartesian reference frame using
range and bearing measurements. A local compass at each sensor is needed to
measure bearing with respect to a common north. Noisy measurements of ru,v

and θu,v , range and bearing between a pair of sensors u and v are converted to
noisy measurements of relative position in the x − y plane as
ζu,v = [ru,v cos θu,v, ru,v sin θu,v ]T . The same procedure is performed for every
pair of sensors that can measure their relative range and bearing. The task is to
estimate the node positions from the relative position measurements.
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FIGURE 2 Measurement of differences in local times by exchanging
time-stamped messages. Node u transmits a message, say, at
global time t , while the local time of the transmitter u is τtu = t + tu.
The receiver v receives this message at a later time, when its local
clock reads τr v = t + tv + δu,v , where δu,v is a random delay arising
from the processing of the message at both u and v. Some time
later, say at t ′ (global time), node v sends a message back to u,
when its local time is τ ′

tv = t ′ + tv . This message includes the val-
ues τr v and τ ′

tv in the message body. Receiver u receives this mes-
sage at local time τ ′

r u = t ′ + tu + δuv , where the delay δvu has the
same mean as the delay δuv . Node u can now estimate the clock
offsets as ζu,v = 1

2 [(τ ′
r u − τ ′

tv) − (τr v − τtu)] = tu − tv + (δvu − δuv)/2.
The error εu,v := (δvu − δuv)/2 has zero mean as long as the (unidi-
rectional) delays have the same expected value. The measured
clock offset between u and v is now ζu,v = tu − tv + εu,v , of the form
(1). Similarly, the measurement of clock offsets between nodes v
and w is ζv,w = tv − tw + εv,w .
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w

u
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variables are known, we can have several references. The
task is to estimate all of the unknown node variables from
the measurements and the reference variables.

By partitioning X into a vector x containing the
unknown node variables and another vector xr containing
the known reference node variables, we can rewrite (2) as
z = AT

r xr + AT
b x + ε or 

z − AT
r xr = AT

b x + ε , (3)

where Ar contains the rows of A corresponding to the ref-
erence nodes and Ab contains the rows of A corresponding
to the unknown node variables.

Estimation of the unknown node variables in the vector
x based on the linear measurement model (2) is a classical
estimation problem. Since ε is a random vector with zero
mean and covariance matrix P := E [εεT], the least squares
solution leads to the classical best linear unbiased estima-
tor (BLUE) [6], given by

x̂∗ := L−1b, L := AbP−1AT
b ,

b := AbP−1
(

z − AT
r xr

)
. (4)

Among all linear estimators of x, the BLUE has the
smallest variance for the estimation error x − x̂∗ [6]. The
inverse of the matrix L, which exists as long as the mea-
surement graph is weakly connected, provides the covari-
ance matrix of the estimation error [7], given by

� := E
[
(x − x̂∗)(x − x̂∗)T] = L−1 . (5)

A directed graph is weakly connected if it is connected ignor-
ing the edge directions. A precise definition is given in
“Graph-Theoretic Definitions.” The covariance matrix �u

for the estimation error of a particular node variable xu

appears in the corresponding k × k diagonal block of �. A
measurement graph, along with the corresponding mea-
surement equations (2) and (3) and the estimate (4), is
shown in “A Graph Estimation Example.” Since the mea-
surement errors are assumed uncorrelated with one anoth-
er, the error covariance matrix is block diagonal. For this
reason, the structure of the matrix L is closely related to the
structure of the graph Laplacian of G. For details, see [8].

CHALLENGES IN ESTIMATION ON GRAPHS
The estimation problem defined above can be solved by
first sending all measurements to one particular node,
computing the optimal estimate using (4) in that node, and
then distributing the estimates to the individual nodes.
However, this centralized solution is undesirable for sev-
eral reasons. First, it unduly burdens the nodes close to the
central processor, since for a large ad-hoc network of wire-
less sensor nodes, sending all of the measurements
requires multihop communication, and most of the data

transmitted to the central processor have to be routed
through the nodes close to it. When the nodes operate on
batteries with small energy budgets, this mode of opera-
tion greatly reduces the life of the nodes that carry out
most of the communication. It should be noted that the pri-
mary source of energy consumption in wireless sensor net-
works is communication [2], while much less energy is
consumed for computation [9]. Second, centralized compu-
tation is less robust to node and link failures over time.
Multihop data transfer to a central node typically requires
construction of a routing tree rooted at the central node.
Failure of a node in one of the branches of the routing tree
effectively cuts off communication from all of the nodes in
the tree branch rooted at the faulty node. In addition,
construction of a routing tree can be challenging when

Graph-Theoretic Definitions

Adirected graph G is a pair (V, E) consisting of a set V of

vertices or nodes, and a set E of edges, where each

edge e ∈ E, is an ordered pair (u, v ) of nodes u, v ∈ V. The

edge (u, v ) is directed toward v and away from u, and is

incident on u and v .

The incidence matrix of the directed graph (V, E) with n

nodes and m edges the n × m matrix A with one row per

node and one column per edge defined by A := [aue], where

aue is nonzero if and only if the edge e ∈ E is incident on the

node u ∈ V, and, when aue is nonzero, aue = −1 if the edge

e is directed toward u and aue = 1 otherwise. Figure S1 of

“A Measurement Graph Example” shows an example of a

directed graph and its incidence matrix.

A directed graph is weakly connected if it is possible to go

from every node to every other node by traversing the edges,

not necessarily respecting the directions of the edges.

Given two graphs G = (V, E) and Ḡ = (V̄, Ē), we say that

G can be embedded in Ḡ, or, Ḡ embeds G, if the following

conditions hold:

1)  Every node u ∈ V of G can be mapped to one node

ū ∈ V̄ of Ḡ such that no two nodes of G are mapped

to the same node of Ḡ.

2)  For every edge e ∈ E between u and v in G, there is

an edge ē ∈ Ē between ū and v̄ in Ḡ, where ū and v̄

are the nodes of V̄ that correspond to the nodes u

and v of V, respectively.

When G can be embedded in Ḡ, we write G ⊂ Ḡ. Figure 6

shows two graphs to illustrate the concept of graph embedding.

Since edge directions play no role in the definition of embed-

ding, they are not shown in the figure.

Given two nodes u and v of a graph G, their graphical

distance, denoted by dG(u, v), is the minimal number of

edges needed to be traversed in going from one node to the

other. In this definition, we allow edges to be traversed in any

direction, and therefore dG(u, v) = dG(v , u).
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communication links suffer from temporary failures or
when nodes are mobile [10]. Third, a centralized computa-
tion renders the entire network susceptible to a catastro-
phe if the central processor fails. This discussion raises one
of the key issues investigated in this article:

» Question 1: Is it possible to construct the optimal esti-
mate (4) in a distributed fashion such that the compu-
tation and communication burden is shared equally
by all of the nodes? If so, how much communication
is required, and how robust is the distributed algo-
rithm with respect to communication faults?

By a distributed algorithm we mean an algorithm in
which every node carries out independent computations

to estimate its own variable but is allowed to periodically
exchange messages with its neighbors. A neighborhood is
defined by the edges of the measurement graph G. In
particular, two nodes u and v are allowed to communi-
cate directly if and only if there is an edge between the
corresponding vertices of G (in any direction), which is to
say that there is a relative measurement between xu and
xv. We implicitly assume bidirectional communication
between nodes.

In this article we show that it is indeed possible to
design scalable distributed algorithms to compute optimal
estimates that are robust to communication faults. How-
ever, one may wonder what are the fundamental limitations

Ameasurement graph G with four nodes and five edges, in

which node 1 is the reference, is shown in Figure S1. The

incidence matrix A is therefore a 4 × 5 matrix consisting of 0s,

1s, and −1s. The matrix form (2) of the measurement equa-

tions (1) for this graph is




ζ1

ζ2

ζ3

ζ4

ζ5




︸ ︷︷ ︸
z

=




I −I 0 0
I −I 0 0
0 I 0 −I
0 I −I 0
0 0 −I I




︸ ︷︷ ︸
AT




x1

x2

x3

x4




︸ ︷︷ ︸
X

+




ε1

ε2

ε3

ε4

ε5




︸ ︷︷ ︸
ε

,

where I is the k × k identity matrix. The four-node variables in the

vector x are related to the five measurements in the vector z by

the 4k × 5k matrix A, the expanded version of the incidence

matrix. The measurement model (3) when node 1 is the refer-

ence with x1 = 0 is




ζ1

ζ2

ζ3

ζ4

ζ5




︸ ︷︷ ︸
z

=




I
I
0
0
0




︸ ︷︷ ︸
AT

r

0︸︷︷︸
xr

+




−I 0 0
−I 0 0

I 0 −I
I −I 0
0 −I I




︸ ︷︷ ︸
AT

b

[ x2

x3

x4

]

︸ ︷︷ ︸
x

+ ε .

The relationship between the three

unknown node variables in the vector

x are related to the known quantities,

that is, measurements z and the ref-

erence variable x1 , by the 3k × 5k

matrix Ab . Since the graph G is

weakly connected, L is invertible.

The optimal estimate of the vector x,

the solution to (4), is given by

x̂∗ = L−1Ab P−1z̄ . Therefore, the

optimal estimates (4) when all mea-

surement covariance matrices are

equal to the identity matrix are

[ x̂∗
2

x̂∗
3

x̂∗
4

]
=

[ 4I −I −I
−I 2I −I
−I −I 2I

]−1

︸ ︷︷ ︸
L

[−I −I 0 0 0
0 0 0 −I −I
0 0 −I 0 I

]

︸ ︷︷ ︸
Ab P−1

×




ζ1

ζ2

ζ3

ζ4

ζ5




︸ ︷︷ ︸
z−AT

r xr

.

Note the Laplacian-like structure of the matrix L. The covariance

matrices of the overall estimation error and of the individual

node-variable errors are

� = 1
6

[ 3I 3I 3I
3I 7I 5I
3I 5I 7I

]

︸ ︷︷ ︸
L−1

, �2 = 1
2

I ,

�3 = 7
6

I , �4 = 7
6

I .

The covariance of the estimation error of node u is simply the

u − 1th diagonal block of the covariance matrix �.

FIGURE S1 A measurement graph G and its incidence matrix A. The row and column indices
of A correspond to node and edge indices, respectively. The single positive entry in each
column of A, namely, 1, indicates the start node of the corresponding edge in G, while the
single negative entry −1 indicates the end node.
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in terms of accuracy for estimation problems defined in
truly large graphs. Reasons for concern arise from estima-
tion problems such as the one associated with the graph
shown in Figure 3, which is a chain of nodes with node 1
as the reference and with a single edge (u + 1, u) between
consecutive nodes u and u + 1. For such a graph the opti-
mal estimate of xu is given by

x̂u = ζu,u−1 + · · · + ζ3,2 + ζ2,1 + x1 .

Since the variance of a sum of uncorrelated random vari-
ables is the sum of their variances, the variance of the opti-
mal estimation error x̂u − xu increases linearly with u.
Therefore, if the uth node is far from the reference node 1,
then its estimate is quite poor. Although the estimation
error depends on the values of the variances of the mea-
surements, for this graph the variance of the optimal esti-
mate of xu grows linearly with u. This example motivates
the second issue investigated in this article:

» Question 2: Do all graphs exhibit the property that
the estimation error variance scales linearly with the
distance to the reference nodes? If not, what error
scaling laws can occur, and how can one infer these
scaling laws from structural properties of the graph?

It seems reasonable that for every measurement graph
the estimation error variance increases with the distance
to the reference nodes. We show that the exact nature of
the scaling of error variance with distance depends on
intrinsic structural properties of the measurement graph
and that some graphs exhibit scaling laws that are far bet-
ter than the linear scaling associated with the graph
shown in Figure 3. For a given maximal acceptable error,
the number of nodes with acceptable estimation errors is
large if the graph exhibits a slow increase of variance with
distance but is small otherwise. These scaling laws there-
fore help us to design and deploy large networks for
which accurate estimates are possible.

Roughly speaking, the structural properties of interest are
related to the denseness of the graph but are not captured by
naive measures of density such as node degree or node and
edge density, which are commonly used in the sensor net-
works literature [11], [14], [15]. We describe a classification of
graphs that determines how the variance grows with dis-
tance from the reference node. In particular, we show that,
for a large class of graphs, the variance grows only logarith-
mically with distance. Most surprisingly, in certain graphs
the node variance remains below a constant value, regard-
less of the distance from the node to the reference node.

In this article, we address the error scaling issue
(Question 2) before delving into distributed estimation
(Question 1).

ERROR SCALING OF THE OPTIMAL ESTIMATE
As a first step toward addressing the error-scaling issue,
we show that the covariance of a node’s optimal estimate

is numerically equal to the matrix-valued effective resistance
in an abstract electrical network that can be constructed
from the measurement graph G. This analogy with electri-
cal networks is instrumental in deriving several results
and builds useful intuition into the problem. We show that
the matrix-valued effective resistance in a complicated
graph can sometimes be bounded by the matrix-valued
effective resistance in a simpler graph, in which we know
how the resistance grows with distance. These simpler
graphs are the lattice graphs. An answer to the question of
variance scaling is thus obtained by exploiting the electri-
cal analogy.

Analogies with electrical networks are used in [12] and
[21] to construct solutions to various graph problems,
notably those concerned with random walks in graphs. In
[12], questions about random walks in certain infinite
graphs are answered by bounding the effective resistance
in those graphs with that in lattices. It turns out that a sim-
ilar approach can be used to answer the question of esti-
mation-error scaling once we establish the analogy
between error covariance matrices and matrix-valued
effective resistances.

Electrical Analogy
A resistive electrical network consists of an interconnec-
tion of purely resistive elements. Such interconnections are
generally described by graphs whose nodes represent the
connection points between resistors and whose edges
correspond to the resistors. The effective resistance between
two nodes in an electrical network is the potential drop
between the nodes when a current source of 1 A is

FIGURE 3 A graph where a node variable’s optimal estimate has an
error variance that grows linearly with the node’s distance from the
reference. In this case, since every edge represents a measure-
ment with independent error, the optimal estimate of a node variable
xu is simply the sum of the measurements along the edges from the
reference (node 1) to node u, while its variance is the sum of the
error variances of those measurements. Assuming for simplicity that
all of the measurement-error variances are equal, the variance of
the estimation error xu − x̂u is proportional to the minimal number of
edges that must  traversed in going from 1 to u, that is, the graphical
distance between 1 and u.

1 2 43
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connected across the two nodes (see Figure 4). The compu-
tation of effective resistances in an electrical network relies
on Kirchoff’s laws and Ohm’s law.

To see the connection between electrical networks and
the estimation problem, consider the measurement graph
shown in Figure 5, where the unknown scalar variable x2
needs to be estimated based on two noisy measurements
with error variances σ 2

a and σ 2
b . The reference node vari-

able x1 = 0 is assumed known. Calculation using the BLUE
covariance (5) shows that the variance σ 2

2 of the optimal
estimate of x2 is given by

1
σ 2

2
= 1

σ 2
a

+ 1
σ 2

b

.

Suppose now that we construct a resistive network based
on the measurement graph, by setting the edge resistances
Ra, Rb equal to the variances σ 2

a , σ 2
b of the corresponding

measurement errors (see Figure 5). The effective resistance
between nodes 1 and 2 of the electrical network is thus
given by

1

Reff
12

= 1
Ra

+ 1
Rb

= 1
σ 2

a
+ 1

σ 2
b

= 1
σ 2

2
, (6)

and therefore the variance σ 2
2 of the optimal estimate of x2

is exactly equal to the effective resistance Reff
12 between this

node and the reference node. This observation, which is
made in [3] in the context of estimating scalar node vari-
ables, extends to arbitrary measurement graphs, not just
the simple one shown in Figure 5.

Returning to the estimation problem in Figure 5, but
with node variables that are k-vectors, a simple application
of (5) shows that the k × k covariance matrix �2 of the opti-
mal estimate of the k-vector x2 is now given by

�−1
2 = P−1

a + P−1
b , (7)

where Pa and Pb are the k × k covariance matrices of the
two measurements. Since this formula is similar to the
effective resistance formula (6), we search for a more gen-
eral electrical analogy.

We now consider an abstract generalized electrical net-
work in which currents, potentials, and resistors are k × k
matrices. For such networks, the generalized Kirchoff’s
current and voltage laws are defined in the usual way,
except that currents are added as matrices and voltages are
subtracted as matrices. Furthermore, the generalized
Ohm’s law takes the matrix form

Ve = Reie ,

where ie is the generalized k × k matrix current flowing
through the edge e of the electrical network, Ve is the
generalized k × k matrix potential drop across the edge
e, and Re is the generalized resistance on that edge.
Generalized resistances are symmetric positive-defi-
nite matrices. 

Generalized electrical networks share many of the prop-
erties of scalar electrical networks. In particular, given the
generalized current injected into a node and extracted at
another node, the generalized Kirchoff’s and Ohm’s laws
uniquely determine all generalized currents and general-
ized voltage drops on the edges of a generalized electrical
network. Solving for the generalized currents and voltages
allows us to define the generalized effective resistance between
two nodes as the generalized potential difference between

FIGURE 5 A (a) measurement graph and (b) the corresponding resis-
tive electrical network. Node 1 is the reference. The variance of the
optimal estimate of x2 has the same numerical value as the effec-
tive resistance between nodes 1 and 2 in the electrical network on
the right when resistances are chosen to be equal to the measure-
ment-error variances, that is, Ra = σ 2

a and Rb = σ 2
b .

σa
2

σb
2 Ra Rb

x2

x1

(a) (b)

FIGURE 4 A resistive electrical network. A current of 1 A is injected at
node u and extracted at the reference node o. The resulting poten-
tial difference Vu − Vo is the effective resistance between u and o.
For scalar-valued measurements, if every resistance value is set
equal to the variance of the measurement associated with that
edge, the effective resistance between u and o is numerically equal
to the variance of the estimation error xu − x̂u obtained with o as the
reference.

1 A

u

o
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the two nodes when a current source equal to the k × k
identity matrix is connected across them. It turns out that
(7) is precisely the formula for computing the generalized
effective resistance for the parallel network of two general-
ized resistors. Moreover, the electrical analogy for scalar
measurements [3] remains valid for vector measurements
when one considers generalized electrical networks. This
result, which is proved in [7], is stated below.

Theorem 1
Consider a weakly connected measurement graph G with
a single reference node o, and construct a generalized elec-
tric network with k × k edge resistors whose resistances
equal the covariance matrices of the edge-measurement
errors. Then, for every node u, the k × k covariance matrix
�u of the BLUE estimation error of xu is equal to the gener-
alized effective resistance between the node u and the ref-
erence node o.

The optimal estimates and coefficient matrices that mul-
tiply the measurements to construct these estimates also
have interesting interpretations in terms of electrical quan-
tities. For example, the coefficient matrices turn out to be
the generalized currents on the edges [8]. It should be
noted that although measurement graphs are directed
because of the need to distinguish between a measurement
of xu − xv versus a measurement of xv − xu, the direction
of edges is irrelevant as far as determining the error covari-
ance. In the context of electrical networks, the edge direc-
tions determine the signs of the currents but are irrelevant
in determining generalized effective resistances.

Rayleigh’s Monotonicity Law
We now discuss several results for scalar electrical net-
works that can be adapted to generalized electrical net-
works. In view of Theorem 1, these results carry over to
our graph estimation problem. The first such result is
Rayleigh’s monotonicity law [12], which states that if the
edge resistances in a scalar electrical network
are increased, then the effective resistance
between each pair of nodes in the network can-
not decrease. Conversely, a decrease in edge
resistances cannot lead to an increase in effec-
tive resistances. The proof of Rayleigh’s monot-
onicity law given in [12] can be extended to the
case of generalized electrical networks to show
that this monotonicity also holds for general-
ized effective resistances [7]. Theorem 1 there-
fore allows us to use Rayleigh’s monotonicity
law for error scaling in measurement graphs.

For the problems considered here, it is conve-
nient to consider not only increases or decreases in
edge resistances but also the removal and addition
of new edges, for which we need the concept of
graph embedding. Given two graphs G = (V, E)

and Ḡ = (V̄, Ē), we say that G can be embedded in

Ḡ, or alternatively that Ḡ can embed G, if, ignoring the edge
directions, G appears as a subgraph of Ḡ. Figure 6 illustrates
the concept of graph embedding. A precise definition of
embedding is given in “Graph-Theoretic Definitions.” Since
edge directions play no role in the definition of embedding,
they are not shown in Figure 6.

The next theorem, which is taken from [7], shows that
Rayleigh’s monotonicity law also holds for generalized
electrical networks.

Theorem 2
Consider two generalized electrical networks with graphs
G = (V, E) and Ḡ = (V̄, Ē) and matrix k × k edge resis-
tances Re, e ∈ E, and R̄ē, ē ∈ Ē, respectively, and assume
that the following statements hold:

1)  G can be embedded in Ḡ, that is, G ⊂ Ḡ.
2)  For every edge e ∈ E of G, Re ≥ R̄ē, where ē ∈ Ē is

the corresponding edge of Ḡ.
Then, for every pair of nodes u, v ∈ V of G, 

Reff
u,v ≥ R̄eff

ū,v̄ ,

where Reff
u,v denotes the generalized effective resistance

between u and v in G, and R̄eff
ū,v̄ denotes the generalized

effective resistance between the corresponding nodes ū
and v̄ in Ḡ. 

In the statement of Theorem 2 and in the sequel, given
two matrices A and B, A ≥ B means that A − B is positive
semidefinite.

In terms of the original estimation problem, Rayleigh’s
monotonicity law leads to the conclusion that if the error
covariance of one or more measurements is reduced (that is,
measurements are made more accurate), then for every node
variable the optimal estimation error-covariance matrix
decreases, that is, the estimate becomes more accurate. In
addition, when additional measurements are introduced, the

FIGURE 6 A graph-embedding example. Every node of the graph G can be
made to correspond in a one-to-one fashion with a subset of the nodes of Ḡ,
and, whenever there is an edge between two nodes in G, there is an edge
between their corresponding nodes in Ḡ. Consequently, Ḡ can embed G, or,
equivalently, G can be embedded in Ḡ, which is denoted by G ⊂ Ḡ.

G G ⊂ GG
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resulting optimal estimates become more accurate, regard-
less of the noise levels in the additional measurements.

Lattices, Fuzzes, and their Generalized 
Effective Resistances
Scaling laws for the generalized effective resistance in
graphs possessing special symmetry can be obtained easi-
ly. One such class consists of the lattice graphs (see Figure
7), which are described in “Lattices and Fuzzes.” The effec-
tive resistance in lattices with scalar resistors on every
edge are studied in the literature [4], [5], and we show that
similar results can be obtained for generalized lattice net-
works, in which edges have matrix-valued resistances. Lat-
tices and a class of graphs derived from them, called lattice
fuzzes, are useful for analyzing the scaling laws for gener-
alized effective resistance in large graphs.

An h-fuzz of a graph G, where h is a positive integer, is a
graph with the same set of nodes as G but with a larger set
of edges [12]. In particular, the h-fuzz G(h) has an edge
between every two nodes whose graphical distance in G is
less than or equal to h. For the definition of graphical dis-
tance see “Graph-Theoretic Definitions.” More detail on
fuzzes is provided in “Lattices and Fuzzes.” An h-fuzz of a
graph has lower generalized effective resistances than the
original graph because of Rayleigh’s monotonicity law.
However, it is shown in [13] for scalar electrical networks
that the effective resistance in the h-fuzz is lower than that
in the original graph only by a constant factor. It is not diffi-
cult to see that the same result also holds for generalized
networks, which is stated in the following lemma.

Lemma 1
Consider a weakly connected graph G = (V, E) and let h
be a positive integer. Construct two generalized electrical

networks, one by placing a matrix resistance R at every
edge of a graph G and the other by placing the same
matrix resistance R at every edge of its h-fuzz G(h). Then
there exists α ∈ (0, 1] such that, for every pair of nodes u
and v in V,

αReff
u,v(G) ≤ Reff

u,v(G
(h)) ≤ Reff

u,v(G) ,

where Reff
u,v(G) is the generalized effective resistance

between u and v in G and Reff
u,v(G

(h)) is the generalized
effective resistance in G(h).

The following lemma from [7] establishes the general-
ized effective resistance of d-dimensional lattices and their
fuzzes.

Lemma 2
Consider a generalized electrical network obtained by plac-
ing a generalized matrix resistance equal to R at every edge
of the h-fuzz of the d-dimensional lattice, where h is a posi-
tive integer, d ∈ {1, 2, 3}, and R is a symmetric positive defi-
nite k × k matrix, where k is a positive integer. Then, for
d = 1, 2, 3, there exist positive constants �d, αd, βd such that
the formulas in Table 1 hold for every pair of nodes u, v
whose graphical distance from each other is larger than �d.

The result in Lemma 2 that in a one-dimensional (1D)
lattice, the generalized effective resistance grows linearly
with the distance between nodes can be deduced from
the formula for the effective resistance of a series of
resistors, which generalizes to generalized electrical net-
works. In two-dimensional (2D) lattices the generalized
effective resistance grows with only the logarithm of the
graphical distance and thus more slowly than in the 1D
case. Far more surprising is what Lemma 2 says about

FIGURE 7 Lattices in Euclidean spaces. (a) 1D lattice Z1, (b) 2D lattice Z2, and (c) 3D lattice Z3. Due to their special symmetry, generalized
effective resistances in lattices with unit resistance on each edge can be analytically derived. By embedding graphs in lattices or lattices in
graphs, the effective resistances in graphs can be compared with those in lattices.

(a) (b) (c)
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three-dimensional (3D) lattices. Specifically, in 3D, the
generalized effective resistance is bounded by a constant
even for arbitrarily large distances.

Error Scaling with Distance: Dense and Sparse Graphs
We now combine the tools developed so far to determine
scaling laws for the estimation error variance arising from
general classes of measurement graphs. Roughly speaking,
our approach is the following: we determine the structural
properties that a graph must satisfy so that it can either
embed, or be embedded in, a lattice or the h-fuzz of a lat-
tice. When a graph can be embedded in a lattice,
Rayleigh’s monotonicity law provides a lower bound on
the generalized effective resistance of the graph in terms of
the generalized effective resistance in the lattice, which is
given by Lemma 2. Similarly, when a graph can embed a
lattice, we obtain an upper bound on the general-
ized effective resistance.

Before we describe these concepts precisely, we
ask ourselves whether there exist simple indica-
tors of the relationship between graph structure
and estimator accuracy that determine variance
scaling. In the sensor networks literature, it is rec-
ognized that a higher density of nodes and edges
usually leads to better estimation accuracy [11],
[15]. In particular, the average number of nodes
per unit area, or the average degree of a node (that
is, its number of neighbors), is used to quantify the
notion of denseness [11], [14], [15]. We have
already seen that when one graph is embedded in
another, the graph with the higher number of

edges has a lower generalized effective resistance, and,
consequently, lower covariance of the estimation error. We
therefore expect higher node and edge density to lead to
better estimates. However, naive measures of density, such
as node degree or the number of nodes and edges per unit
area, turn out to be misleading predictors for how the esti-
mation error variance scales with distance. We now pre-
sent an example to motivate the search for deeper
graph-structural properties to determine variance scaling
with distance.

Counterexamples to Conventional Wisdom
The three graphs in Figure 8 illustrate the inadequacy of
node degree as a measure of denseness. In particular, 
Figure 8 shows a 3-fuzz of a 1D lattice, a triangular lat-
tice, and a 3D lattice. The generalized effective resistance

Ad-dimensional lattice, denoted by Zd, is a graph that has a

vertex at every point in Rd with integer coordinates as well

as an edge between every pair of vertices whose Euclidean

separation is one. Edge directions are arbitrary. Figure 7 shows

1D, 2D, and 3D lattices. Lattices have infinitely many nodes and

edges and are therefore examples of infinite graphs. In practice,

infinite graphs serve as proxies for large graphs, in the sense

that, from the point of view of most nodes in a large finite graph,

the graph appears to extend to infinity in all directions. Analysis

of error-scaling laws in infinite graphs is easier than in finite

graphs, since boundary effects can be neglected.

Given a graph G and an integer h ≥ 1, the h-fuzz of G

[12], denoted by G(h), is a graph that has an edge between u

and v whenever the graphical distance between u and v is

less than or equal to h. The directions of the edges in G(h) are

arbitrary (see the comment following Theorem 1). Figure S2

shows a graph and its two-fuzz. Although the generalized

effective resistance between two nodes in the h-fuzz is lower

than that in the original graph, it is lower by a constant factor that does not depend on the distance between the nodes.

FIGURE S2 A graph G and its two-fuzz G(2). Every pair of nodes
in G that are at a graphical distance of two have an edge
between them in G(2). The graphical distances are reduced by a
factor of h in going from a graph to its h-fuzz. Note that the edge
directions are not shown since they are not important as long as
we are interested only in the generalized effective resistance.

G G(2)

TABLE 1 Effective resistance for lattices and their fuzzes.
The graphical distance between the nodes u and v in the lattice Zd is
denoted by dZd (u, v). Generalized effective resistance grows linearly
with distance in the 1D lattice, logarithmically in the 2D lattice, and
remains bounded by a constant independent of distance in the 
3D lattice.

Graph Generalized effective resistance Reff
u,v between u and v

Z(h)

1 α1dZ1(u, v)R ≤ Reff
u,v ≤ β1dZ1(u, v)R

Z(h)

2 α2 log
(
dZ2(u, v)

)
R ≤ Reff

u,v ≤ β2 log
(
dZ2(u, v)

)
R

Z(h)

3 α3 R ≤ Reff
u,v ≤ β3 R

Lattices and Fuzzes



scales linearly with distance in the 3-fuzz of the 1D lat-
tice, scales logarithmically with distance in the triangular
lattice, and is globally bounded with respect to distance
in the 3D lattice, even though each of these graphs has
the same degree, namely, six. The statements about the
generalized effective resistances in the 3-fuzz of the 1D
lattice and in the 3D lattice follow from Lemma 2. The
growth of generalized effective resistance in the triangu-
lar lattice is discussed below.

Graph Drawings
We now derive conditions for embedding a graph in a lat-
tice, and vice versa, by looking at drawings of the graph. A
drawing of a graph G = (V, E) is a mapping of its nodes to
points in a Euclidean space Rd, which can formally be
described by a function f : V → Rd. Figure 9 shows two
different drawings of the same graph. From a graph-theo-
retic point of view, the two graphs are identical because
they have the same nodes and edges. However, the two
graphs are drawn differently. Further discussion on graph
drawings and its relevance to sensor networks can be
found in “Drawing Graphs.” Although every graph can be
drawn in many different ways, we are interested in draw-
ings that accurately reflect denseness and sparseness of the
graph, which we call dense and sparse drawings. We show
below that the existence of such drawings completely char-
acterizes whether or not the graph (or a fuzz of it) can be
embedded in a lattice, or vice versa.

For a particular drawing of a graph, the Euclidean dis-
tance between nodes induced by the drawing is the
Euclidean distance between the nodes in the drawing.
More precisely, given two nodes u, v ∈ V, the Euclidean dis-
tance between u and v induced by the drawing f : V → Rd is
defined by

df (u, v) := ‖ f (v) − f (u)‖ ,

where ‖ · ‖ denotes the Euclidean norm on Rd. Note that
the Euclidean distance between two nodes depends on the
drawing and can be different from the graphical distance.
It is important to emphasize that the definition of drawing
does not require edges to not intersect, and therefore every
graph has a drawing in every Euclidean space.

For a sensor network, there is a natural drawing of its
measurement graph obtained by associating each node to its
position in 1D, 2D, or 3D Euclidean space. In reality, all sen-
sor networks are situated in 3D space. However, it is often
more natural to draw these networks on a 2D Euclidean

FIGURE 9 Two drawings of the same graph G. Drawing f1(G) is a
1D drawing, whereas f2(G) is a 2D drawing. These drawings show
that the same graph may appear quite different when drawn in dif-
ferent Euclidean spaces. To determine the estimation error scaling
laws in a graph, we want to compare the graph with the d-dimen-
sional lattice, which is best done by comparing different drawings of
the graph in Rd with the natural drawing of the d-dimensional lattice.
In fact, the notions of denseness and sparseness of graphs
described in this article, which determine the scaling of estimation
error, are based on graph drawings.

f2(G)f1(G)

FIGURE 8 Measurement graphs. (a) Three-fuzz of a 1D lattice, (b) tri-
angular lattice, and (c) 3D lattice. In all of these graphs, every node
has the same degree, but the graphs have quite different variance
growth rates with distance. The variance grows linearly with dis-
tance in the three-fuzz of the 1D lattice, as guaranteed by Lemma 2.
On the other hand, in the triangular lattice the variance grows as the
logarithm of distance, while, in the 3D lattice, the variance is bound-
ed by a constant regardless of the distance between nodes. The
last two statements follow from Theorem 4.

(a)

(b)

(c)
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space if one dimension (for example, height) does not vary
much from node to node, or is irrelevant. In yet another
situation, such as shown in Figure 3, one can draw the
graph in 1D since the nodes essentially form a chain even
though the nodes are situated in 3D space. For natural
drawings, the Euclidean distance induced by the drawing
is, in general, a much more meaningful notion of distance
than the graphical distance. In this article, we see that the
Euclidean distance induced by appropriate drawings pro-
vides the relevant measure of distance for determining
scaling laws for error variances.

Measures of Graph Denseness and Sparseness
For a drawing f and induced Euclidean distance df of a
graph G = (V, E), four parameters can be used to charac-
terize graph denseness and sparseness. The term minimum
node distance s denotes the minimum Euclidean distance
between the drawing of two nodes defined by 

s := inf
u,v∈ V

v �=u

df (u, v) .

The term maximum connected range r denotes the Euclidean
length of the drawing of the longest edge

r := sup
(u,v)∈E

df (u, v) .

The term maximum uncovered diameter γ denotes the diame-
ter of the largest open ball that can be placed in Rd with no
drawing of a node inside it, that is,

γ := sup{δ : there exists Bδ such that

f (u) /∈ Bδ, for every u ∈ V},

where Bδ is a ball in Rd with diameter δ. Finally, the asymp-
totic distance ratio ρ is the largest asymptotic ratio between
the graphical and the Euclidean distance between two
nodes defined by

ρ := lim
n→∞ inf

{ df (u, v)

dG(u, v)
: u, v ∈ V and dG(u, v) ≥ n

}
,

where dG(u, v) denotes the graphical distance between u
and v in the graph G. Essentially ρ provides a lower bound
for the ratio between the Euclidean and the graphical dis-
tance for nodes that are far apart. Figure 10 shows the
drawing of a graph and the corresponding parameters s, r,
γ , and ρ.

Dense Graphs
The drawing of a graph for which the maximum uncov-
ered diameter γ is finite and the asymptotic distance ratio
ρ is positive is a dense drawing. A graph G is dense in Rd if
there exists a dense drawing of G in Rd. Intuitively, these

drawings are dense in the sense that the nodes can cover
Rd without leaving large holes between them, and the

FIGURE 10 A drawing of a graph in 2D Euclidean space, and the cor-
responding denseness and sparseness parameters. Since the mini-
mal distance between any two nodes is one, the minimum node
distance is s = 1. Since the longest edge is between u ∗ and v ∗, of
length 

√
10, the maximum connected range is r = √

10. The diame-
ter of the largest ball that can fit inside the drawing without enclosing
any node is two, the maximum uncovered diameter is thus γ = 2.
The minimal ratio between the Euclidean and graphical distances
between a pair of nodes is achieved by the pair p∗, q ∗; hence the
asymptotic distance ratio is ρ = df (p ∗, q ∗)/dG(p ∗, q ∗) = 1/5.

q*p*

γ

r

s = 1

u*

v*

In graph theory, a graph is treated purely as a collection of

nodes connected by edges, without any regard to the

geometry determined by the nodes’ locations. However, in

sensor network problems there is an underlying geometry for

the measurement graph since this graph is tightly related to

the physical locations of the sensor nodes. For example, a

pair of nodes from a sensor network typically has an edge if

the two nodes are within some sensing or communication

range of each other. Although this range can be defined in a

complicated fashion (not just determined by the Euclidean

distance), the geometric configuration of nodes in Euclidean

space plays a key role in determining the measurement

graph. The geometric features of a graph are best captured

by its drawings, which are mappings of its nodes to points in

Euclidean spaces.

Drawing Graphs
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graph has sufficiently many edges so that a small Euclid-
ean distance between two nodes in the drawing guarantees
a small graphical distance between them. In particular, it is
shown in [8] that, for every dense drawing f of a graph G,
there exist finite constants α, β such that, for every pair of
nodes u, v in G,

dG(u, v) ≤ α df (u, v) + β. (8)

Using the natural drawing of a d-dimensional lattice, it fol-
lows that the d-dimensional lattice is dense in Rd. One can
also show that the d-dimensional lattice is not dense in Rd̄

for all d̄ > d. For example, no dense drawing of a 2D lattice
in the 3D Euclidean space is possible.

Sparse Graphs
Graph drawings for which the minimum node distance s is
positive and the maximum connected range r is finite are
called civilized drawings [12]. Intuitively, one can draw the
edges with finite lengths while maintaining a minimum
distance between the nodes. We say that a graph G is
sparse in Rd if it can be drawn in a civilized manner in the 
d-dimensional Euclidean space. For example, we can con-
clude from the natural drawing of a d-dimensional lattice
that the d-dimensional lattice is sparse in Rd. In fact, every
h-fuzz of a d-dimensional lattice is sparse in Rd. However,
for all d̄ < d, no d-dimensional lattice can be drawn in a
civilized way in Rd̄. For example, the 3D lattice is not
sparse in R2.

The notions of graph sparseness and denseness are
interesting mainly for infinite graphs because every finite
graph is sparse in all Euclidean spaces Rd for d ≥ 1, and no
finite graph can be dense in any Euclidean space Rd for
d ≥ 1. The reason is that a drawing of a finite graph that
does not place nodes on top of each other necessarily has a
positive minimum node distance and a finite maximum
connected range (from which sparseness follows) and it is
not possible to achieve a finite maximum uncovered diam-
eter with a finite number of nodes (from which lack of
denseness follows). However, infinite graphs serve as
proxies for large graphs in the sense that, from the per-
spective of most nodes, a large graph appears to extend to
infinity in all directions. Furthermore, it is often easier to
examine scaling laws for the effective resistance in infinite
graphs since boundary effects are weaker than in finite
graphs. For this reason we derive results for infinite
graphs and draw heuristic conclusions about finite graphs.
As long as we are interested in nodes that are not close to
the boundary, such conclusions drawn for infinite graphs
are applicable to large graphs.

Sparseness, Denseness, and Embeddings
The notions of sparseness and denseness introduced above
are useful because they characterize the classes of graphs
that can embed or be embedded in lattices, for which

Lemma 2 provides the precise scaling laws for the general-
ized effective resistance.

Theorem 3
Let G = (V, E) be a graph without multiple edges between
the same pair of nodes.

1)  G is sparse in Rd if and only if G can be embedded
in an h-fuzz of a d-dimensional lattice. Formally, G
is sparse in Rd if and only if there exists a positive
integer h such that G ⊂ Z(h)

d .
2)  G is dense in Rd if and only if i) the d-dimensional

lattice can be embedded in an h-fuzz of G for some
positive integer h, and ii) every node of G that is not
mapped to a node of Zd is at a uniformly bounded
graphical distance from a node that is mapped to
Zd. More precisely, G is dense in Rd if and only if
there exist positive integers h, c such that G(h) ⊃ Zd
and for every u ∈ V there is a ū ∈ Vlat(G) such that
dG(u, ū) ≤ c, where Vlat(G) denotes the set of nodes
of G that are mapped to nodes of Zd.

The first statement of Theorem 3 is essentially taken
from [12], while the second statement is a consequence of
results in [7] and [8]. The condition of “no multiple edges
between two nodes” is not restrictive for the estimation
problems because the generalized effective resistance
between any two nodes in a graph does not change if we
replace a set of multiple, parallel edges between two nodes
by a single edge with a generalized resistance equal to the
generalized effective resistance of those parallel edges.

Scaling Laws for the Estimation-Error Variance
We now characterize the scaling laws of the estimation
error variance in terms of the denseness and sparseness
properties of the measurement graph. The following theo-
rem characterizes the scaling laws by combining the elec-
trical analogy Theorem 1, Rayleigh’s monotonicity law, the
lattice generalized effective resistance Lemma 2, and the
lattice embedding Theorem 3. This result follows from the
results established in [7] and their extensions in [8].

Theorem 4
Consider a measurement graph G = (V, E) with a single
reference node o ∈ V, in which there exist symmetric posi-
tive-definite matrices Pmin and Pmax such that, for every
e ∈ E, the covariance matrices of the measurement errors
satisfy Pmin ≤ Pe ≤ Pmax. Then, for d = 1, 2, 3, there exist
constants �d, αd, βd > 0 such that the formulas in Table 2
hold for every node u whose Euclidean distance from the
reference node o is larger than �d, whenever the graph is
sparse or dense in the d-dimensional Euclidean space.

At this point it is easy to check that the triangular lattice
in Figure 8 is both sparse and dense in 2D, which validates
the statement in the section “Counterexamples to Conven-
tional Wisdom” that the effective resistance in the triangu-
lar lattice grows as the logarithm of distance.
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In practice, sensor networks are typically sparse and
dense in appropriate Euclidean spaces, as seen by consider-
ing the natural drawing of the network. All natural draw-
ings of sensor networks are sparse in 3D, since the only
requirements for sparseness are that nodes not lie on top of
each other and that edges have finite length. When a sensor
network is deployed in a 2D domain or when the third
physical dimension is irrelevant, again the natural drawing
is likely to be sparse in 2D space for the same reasons. Fur-
thermore, a dense graph in R2 is generated when nodes are
deployed in the plane in such a way that every node com-
municates with all of its neighbors within a range twice as
large as the diameter of the largest ball that contains no
nodes. A similar construction can be used to generate a
graph that is dense in R3 by deploying nodes in 3D space. 

DISTRIBUTED COMPUTATION
We now answer the first question concerning the use of local
information to compute the optimal estimate of the node
variables in a distributed way. We show that this objective is
indeed feasible and present two distributed asynchronous
algorithms that achieve this goal. The algorithms are itera-
tive, whereby every node starts with an arbitrary initial
guess for its variable and successively improves its estimate
by using the measurements on the edges incident on it as
well as the estimates of its neighbors. The algorithms are
guaranteed to converge to the optimal estimate as the num-
ber of iterations goes to infinity. Moreover, these algorithms
are robust to link failures, and they converge to the optimal
estimate even in the presence of faulty communication links,
as long as certain mild conditions are satisfied.

The starting point for the construction of the algorithm
is the recognition that the optimal estimate given by (4) is
the unique solution to the system of linear equations

Lx̂∗ = b , (9)

where L and b are defined in (4). We seek iterative algorithms
to compute the solution to (9) subject the following constraints:

1)  At every iteration, each node is allowed to broad-
cast a message to all of its one-hop neighbors.

2)  Each node is allowed to perform computations
involving only variables that are local to the node or
that were previously obtained from its neighbors.

The “one-hop neighbors” of a node u is the set of nodes in
the measurement graph G with which u has an edge. By
letting the nodes exchange information with their one-hop
neighbors, we allow two nodes to receive each other’s
messages if the measurement graph G has an edge
between them in either direction. In short, we implicitly
assume bidirectional communication.

Jacobi Algorithm
Consider a node u with unknown node variable xu and
imagine for a moment that the node variables of all of the
neighbors of u are exactly known and available to u. In this
case, the node u can compute its optimal estimate by using
the measurements between u and its one-hop neighbors.
This estimation problem is no different from the original
problem, except that it is defined over the much smaller
graph Gu(1) = (Vu(1), Eu(1)), whose nodes include u and
its one-hop neighbors and whose edge set Eu(1) consists of
only the edges between u and its one-hop neighbors. We
call Gu(1) the one-hop subgraph of G centered at u. Since we
assume that the node variables of the neighbors of u are
exactly known, all of these nodes should be understood as
references. The Jacobi algorithm for computing the optimal
estimates of the node variables is an iterative algorithm
that operates as follows:

1)  Each node u ∈ V picks an arbitrary initial estimate
x̂(0)

v for the node variables xv of each of its one-hop
neighbors v ∈ Vu(1). These estimates need not be
consistent across different nodes.

2)  At the ith iteration, each node u ∈ V assumes that its
current estimate x̂(i)

v for the node variable xv of each
of its neighbors v ∈ Vu(1) is correct and solves the
corresponding estimation problem associated with
the one-hop subgraph Gu(1). The corresponding

TABLE 2 Scaling laws for the covariance matrix of the estimation error for a measurement graph G that is dense
or sparse in d dimensions. df (u, o) denotes the Euclidean distance between node u and the reference node o for
the drawing f that establishes the graph’s sparseness or denseness.

Euclidean space Covariance matrix �u of the estimation error of xu Covariance matrix �u of the estimation error of xu

if f is a sparse drawing of G in Rd if f is a dense drawing of G in Rd

R α1df (u, o)Pmin ≤ �u �u ≤ β1df (u, o)Pmax

R
2 α2 log(df (u, o))Pmin ≤ �u �u ≤ β2 log(df (u, o))Pmax

R
3 α3 Pmin ≤ �u �u ≤ β3 Pmax
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estimate x̂(i+1)
u turns out to be the solution to the sys-

tem of linear equations
( ∑

e∈Eu

P−1
e

)
x̂(i+1)

u =
∑
e∈Eu

P−1
e

(
x̂(i)

ve + aueζe

)
, (10)

where ve denotes the one-hop neighbor that shares
the edge e with u, and aue is the (u, e) entry of the
incidence matrix A. The node u then broadcasts the
new estimate x̂(i+1)

u to all of its neighbors.
3)  At the end of the ith iteration, each node listens for

the broadcasts from its one-hop neighbors, which
are used to update the node-variable estimate x̂(i+1)

v
for each of its neighbors v ∈ Vu(1). Once all updates
are received, a new iteration can start.

These iterations can be terminated at a node when the
change in its recent estimate is seen to be lower than a pre-
specified threshold value or a prespecified maximum
number of iterations are completed. “Jacobi Iteration”
shows the relevant equations for one iteration of the Jacobi
algorithms applied to the measurement graph shown in
Figure S1 of “A Graph Estimation Example.”

The iterative algorithm described by (10) can be
viewed as the Jacobi algorithm for solving linear equa-
tions. Iterative techniques for solving linear equations

have a rich history, and a host of iterative methods have
been developed for specific applications, each with its
own particular advantages and disadvantages. For the
optimal estimation problem, the Jacobi algorithm has
several benefits, namely, it is scalable, it converges to the
optimal estimate under mild conditions, and it is robust
to temporary link failures [16]. However, its weakness
lies in its slow convergence rate.

Overlapping Subgraph Estimator Algorithm
The overlapping subgraph estimator (OSE) algorithm
achieves faster convergence than Jacobi, while retaining its
scalability and robustness properties. The OSE algorithm
can be thought of as an extension of the Jacobi algorithm,
in which individual nodes utilize larger subgraphs to
improve their estimates. To understand how, suppose that
each node broadcasts to its one-hop neighbors not only its
current estimate, but also all of the latest estimates that it
received from its one-hop neighbors. In the absence of
drops, at the ith iteration step each node has the estimates
x̂(i)

v for its one-hop neighbors as well as the (older) esti-
mates x̂(i−1)

v for its two-hop neighbors, that is, the nodes at
a graphical distance equal to two.

Under this information exchange scheme, at the ith
iteration each node u has estimates of all of the node

T o describe the Jacobi iterations in a measurement graph, we

consider the measurement graph in Figure S1 of “A Graph

Estimation Example.” The one-hop subgraph G4(1) of node 4 for

the measurement graph in Figure S1 is shown in Figure S3. In

this subgraph, the measurement model (3) for the only unknown

variable x4, when x2 and x3 are taken as references, is

[
z3

z5

]

︸ ︷︷ ︸
z

=
[

I 0
0 −I

]

︸ ︷︷ ︸
AT

r

[
x2

x3

]

︸ ︷︷ ︸
xr

+
[−I

I

]

︸ ︷︷ ︸
AT

b

x4︸︷︷︸
x

+
[

ε2

ε5

]

︸ ︷︷ ︸
ε

.

The corresponding optimal estimate (4) when all measurement

covariance matrices are equal to the identity matrix is given by 

(
AbAT

b︸ ︷︷ ︸
L

)−1 Ab
(
z − AT

r xr
)

︸ ︷︷ ︸
b

= 1
2

(x2 − z3 + x3 + z5) .

The Jacobi iteration for node 4 is

x̂ (i+1)

4 = 1
2

(
x̂ (i)

2 − z3 + x̂ (i)
3 + z5

)
.

A similar construction based on the one-hop subgraphs cen-

tered at nodes 2 and 3 leads to update equations for estimates

of x2 and x3 given by

x̂ (i+1)

2 = 1
4

(
x̂ (i)

4 + x̂ (i)
3 + ζ3 + ζ4 − ζ1 − ζ2

)
,

x̂ (i+1)

3 = 1
2

(
x̂ (i)

2 + x̂ (i)
4 − ζ4 − ζ5

)
.

The reference node, which is node 1, is assumed to be at the ori-

gin, and thus x1 does not appear in the equations.

FIGURE S3 The one-hop subgraph G4(1) for the measurement
graph G in Figure S1. In each time step of the Jacobi algorithm,
node 4 estimates its own variable by solving the optimal estima-
tion problem for this subgraph taking the current estimates of x2

and x3 as reference variables.
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variables of the nodes in the set Vu(2) consisting of all of
its one-hop and two-hop neighbors. In the OSE algorithm,
each node updates its estimate using the two-hop subgraph
Gu(2) = (Vu(2), Eu(2)) centered at u, with edge set Eu(2)

consisting of all of the edges of the original graph G that
connect elements of Vu(2). For this estimation problem,
node u takes as references the node variables of its two-
hop neighbors. The gain in convergence speed with
respect to the Jacobi algorithm comes from the fact that
the two-hop subgraph Gu(2) contains more edges than the
one-hop subgraph Gu(1). The OSE algorithm can be sum-
marized as follows:

1)  Each node u ∈ V picks an arbitrary initial estimate
x̂(−1)

v of the node variable xv of each of its two-hop
neighbors v ∈ Vu(2) \ Vu(1). These estimates need
not be consistent across different nodes.

2)  At the ith iteration, each node u ∈ V assumes that
the estimates x̂(i−2)

v of the node variables xv of its
two-hop neighbors that it received through its one-
hop neighbors are correct and solves the corre-
sponding optimal estimation problem associated
with the two-hop subgraph Gu(2). In particular,
each node u solves the linear equations Lu,2yu = bu,
where yu is a vector of node variables that corre-
spond to the nodes in its one-hop subgraph Gu(1),
and Lu,2, bu are defined for the subgraph Gu(2) as
L, b are for G in (9). After this computation, node u
updates its estimate as x̂(i+1)

u ← λyu + (1 − λ)x̂(i)
u ,

where 0 < λ ≤ 1 is a prespecified design parameter
and yu is the variable in yu that corresponds to xu.
The new estimate x̂(i+1)

u as well as the estimates x̂(i)
v

previously received from its one-hop neighbors
v ∈ Vu(1) are then broadcast to all of its one-hop
neighbors.

3)  At the end of the ith iteration, each node u then lis-
tens for the broadcasts from its one-hop neighbors
and uses them to update its estimates for the node
variables of all of its two-hop neighbors. Once all
updates are received a new iteration
can start.

As in the case of the Jacobi algorithm, the ter-
mination criteria vary depending on the
application, and nodes use measurements
and covariances obtained initially for all
future time. Figure 11 shows a two-hop sub-
graph used by the OSE algorithm.

The previous description assumes that
communication is synchronous and that each
node receives broadcasts from all of its neigh-
bors. For the OSE algorithm to work under
imperfect synchronization and link failures, a
node may have to proceed to a new iteration
step before receiving broadcast messages from
all of its neighbors or after receiving multiple
messages from the same neighbor. A timeout

mechanism can be used for this purpose, in which each
node resets a timer as it broadcasts its most recent estimates.
When this timer reaches a prespecified timeout value, the
node initiates a new iteration, regardless of whether or not it
received messages from all of its one-hop neighbors. If a
message is not received from one of its neighbors, the node
uses the data most recently received from that neighbor for
the next iteration.

One can also design an h-hop OSE algorithm by letting
every node utilize an h-hop subgraph centered at itself,
where h is an (small) integer. The resulting algorithm is a
straightforward extension of the two-hop OSE just
described, except that at every iteration, individual nodes
have to transmit to their neighbors larger amounts of data
than in two-hop OSE, potentially requiring multiple packet
transmissions at each iteration. In practice, this added
communication cost limits the allowable value of h.

The following result establishes the correctness of the
OSE algorithm [17].

Theorem 5
When the total number of consecutive iterations for which
a node does not receive information from one of its neigh-
bors is uniformly upper-bounded by a constant � f , the OSE
algorithm is guaranteed to converge if all of the covariance
matrices Pe, where e ∈ E, are either all equal or are all diag-
onal (but not necessarily equal).

It should be noted that the requirement that the matri-
ces Pe be equal or diagonal to establish convergence in the
presence of drops can probably be relaxed. In the simula-
tions described below, this assumption is violated but the
algorithm is seen to converge.

Flagged Initialization
The performance of the basic Jacobi or OSE algorithms can
be further improved by providing them with better initial-
izations, which does not require more communication or
computation. After the deployment of the network, the

FIGURE 11 (a) A measurement graph G with node 1 as reference and (b) a two-hop
subgraph G4(2) centered at node 4. While running the overlapping subgraph esti-
mator algorithm, node 4 treats nodes 1, 5, and 2 as reference nodes in the sub-
graph G4(2) and solves for the unknowns x3, x4, and x6.

4

e3

1e1e2

e4

e5

e7

7

e8

6

2

35

e6

4

2

35 1

6

(a) (b)



72 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

reference nodes initialize their estimates to their known
values, but all other nodes initialize their estimates to ∞,
which serves as a flag to declare that these nodes do not
have a good estimate of their variables. Subsequently, in
its estimate updates, each node includes in its one- or two-
hop subgraph only those nodes that have finite estimates.
If none of their neighbors has a finite estimate, then the
node keeps its estimate at ∞. In the beginning, only the
references have a finite estimate. In the first iteration, the
one-hop neighbors of the references can compute finite
estimates, whereas in the second iteration, the two-hop
neighbors of the references can also obtain finite estimates
and so forth until all nodes have finite estimates. Flagged
initialization affects only the initial stage of the algorithms,
and thus does not affect their convergence properties.

SIMULATIONS
In this section, we present numerical simulations to illus-
trate the performance of the OSE algorithm. In these simu-
lations the node variables represent the physical position of
sensors in the plane. All simulations refer to a network with
200 nodes that are randomly placed in the unit square (see
Figure 12). Node 1, placed at the origin, is chosen as the sin-
gle reference node. Pairs of nodes separated by a distance
smaller than rmax := 0.11 are allowed to have noisy mea-
surements of each others’ relative range and bearing (see
Figure 1). The range measurements are corrupted with

zero-mean additive Gaussian noise with standard deviation
σr = 0.15 rmax, and the angle measurements are corrupted
with zero-mean additive Gaussian noise with standard
deviation σθ = 10◦ . Assuming that the range and bearing
measurement errors are independent and have variances
independent of distance, consider a noisy measurement
(r, θ) of true range and angle (r0, θ0). Then it can be shown
that the covariance matrix of the measurement
ζu,v = [rcos θ, rsin θ]T is given approximately by

Pu,v =
[

y2
0σ

2
θ + σ 2

r cos2 θ0 −x0 y0σ
2
θ + σ 2

r
2 sin(2θ0)

−x0 y0σ
2
θ + σ 2

r
2 sin(2θ0) x2

0σ
2
θ + σ 2

r sin2 θ0

]
,

where x0 = r0 cos θ0 and y0 = r0 sin θ0. Assuming that the
scalars σr, σθ are provided a priori to the nodes, a node can
estimate this covariance by using the measured r and θ in
place of their unknown true values. Since the covariances
are not diagonal and since distinct measurements have dis-
tinct covariances, this example does not satisfy the
assumptions for which the OSE algorithm is guaranteed to
converge. The locations estimated by the centralized opti-
mal estimator are shown in Figure 12, together with the
true locations.

Figure 13(a) compares the normalized error as a func-
tion of iteration number for the Jacobi and OSE algorithms.
Two versions of the OSE are tested, namely, OSE two-hop

and three-hop. The parameter λ for
OSE is chosen arbitrarily as 0.9. The
straight lines in the log-scaled
graph reflect the exponential con-
vergence of both algorithms as well
as the faster convergence rate of the
OSE algorithm compared to Jacobi.
Figure 13 also shows the dramatic
improvement achieved with the
flagged initialization scheme. With
flagged initialization, the two-hop
OSE algorithm can estimate the
node positions within 3% of the
optimal estimate after only nine
iterations. Figure 13(b) shows the
performance of the two-hop OSE
algorithm with flagged initializa-
tion under two different link-failure
probabilities. Every link is made to
fail independently with probability
pf . Not surprisingly, higher failure
rates result in slower convergence.

OSE Versus Jacobi
In Figure 13, the OSE algorithm
exhibits faster convergence than the
Jacobi algorithms. However, faster
convergence is achieved at the

FIGURE 12 A sensor network with 200 nodes distributed randomly in a unit square area. The
edges of the measurement graph are shown as line segments connecting the node positions,
which are shown as black dots. Two nodes with an edge between them are provided with a
measurement of their relative positions in the plane. The red squares are the positions estimat-
ed by the (centralized) optimal estimator. A single reference node is located at the origin.
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expense of each node sending more data to its one-hop
neighbors because each node broadcasts its own estimate
as well as the estimates previously received from its one-
hop neighbors. Hence the messages needed by OSE are d
times longer than the messages required by Jacobi, where d
denotes the node degree. One may then ask whether there
is a significant advantage to using the OSE algorithm.

Energy consumption in wireless communication net-
works depends in a complicated way on radio hardware,
underlying physical and medium access control layer pro-
tocols, network topology, and a host of other factors. Due
to the overhead introduced by these factors, sending a
short message offers no advantage in terms of energy con-
sumption over sending a somewhat longer message [18].
In fact, transmitted energy per bit in a packet decreases
monotonically up to the maximum payload [19]. One of
the main findings in [20] is that, in highly contentious net-
works, transmitting large payloads is more energy effi-
cient. Therefore, communication overhead generally favors
the transmission of fewer long messages over many short
ones. As a result, sending a packet may cost almost as
much energy as sending a packet many times longer. In
such cases, the OSE algorithm is advantageous compared
to the Jacobi algorithm because OSE requires a smaller
number of iterations—and therefore a smaller number of
messages—compared to Jacobi to achieve a desired error
tolerance, resulting in lower energy consumption and

increased network life. In [17], simulations with a simple
model of energy consumption shows that OSE can reduce
energy consumption by a factor of two or more compared
to the Jacobi algorithm while achieving the same accuracy.

CONCLUSIONS
Large-scale sensor networks give rise to estimation prob-
lems that have a rich graphical structure. We studied one
of these problems in terms of how such an estimate can be
efficiently computed in a distributed manner as well as
how the quality of an optimal estimate scales with the size
of the network. Two distributed algorithms are presented
to compute the optimal estimates that are scalable and
robust to communication failures. In designing these algo-
rithms, we found the literature on parallel computation to
be a rich source of inspiration.

In answer to the second question, structural properties
that dictate how variance scales with distance are deter-
mined. The answer to the variance-scaling question
results in two classes of graphs, namely, dense and sparse,
for which we can find upper and lower bounds on the
variance growth with distance. The variance-scaling ques-
tion was answered by exploiting the analogy between
estimation error covariance and generalized effective
resistance. The monograph by Doyle and Snell [12] in par-
ticular helped us immensely by bringing to our attention
the notion of bounding effective resistance by embedding.

FIGURE 13 (a) Performance comparison between the Jacobi algorithm and the overlapping subgraph estimator (OSE) algorithm without link
failures. The normalized error is defined as ε(i) = ‖x̂(i) − x̂ ∗‖/‖x̂ ∗‖, where x̂(i ) is the vector of estimates at the i th iteration and x̂ ∗ is the opti-
mal estimate. Except for the case with flagged initialization, all of the simulations are run with all initial estimates of node variables set to
zero. For the flagged OSE, the normalized error can be defined only after iteration number 8 because until then not all nodes have valid
(finite) estimates. (b) Performance of two-hop OSE with link failures. All simulations are run with flagged initialization. Two different failure
probabilities are compared with the case of no failure. With higher probability of failure, performance degrades but the error is seen to
decrease with iteration count even with large failure probabilities.
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The study of generalized electrical networks with matrix-
valued resistances appears to be useful for a wide variety
of other problems, such as distributed control, defined on
large graphs [22].
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