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Abstract— Several distributed algorithms have been recently
proposed to estimate clock offsets and skews in a network of
processors from a set of noisy measurements of the difference
between clock offsets and of the ratios of clock skews. These
algorithms are designed to converge to the optimal, i.e., the best
linear unbiased, estimates even in the presence of node and
link failures. However, they require symmetric communication
between nodes for convergence. We examine the case when
communication is asymmetric, i.e., when a node can receive
information from another node but not vice versa. We first show
that in the presence of asymmetric communication links, these
algorithms converge to an unbiased but suboptimal estimate.
In fact, we show that with a distributed algorithm that is con-
strained to use only local information, it is generally impossible
to converge to the optimal estimate when communication is
asymmetric. We characterize the resulting estimate that these
algorithms converge to in the presence of asymmetry, and node
and link failures, and its error covariance.

I. INTRODUCTION

Time-synchronization is an important problem for sensor

and actuator networks because a wide range of potential

applications for these networks require tight synchronization.

For example, due to the severe constraints on the energy

budgets of the constituent devices in a sensor network,

sleep scheduling is proposed to maximize network lifetime;

see [1] and references therein. Such scheduling requires the

clocks at the sensor nodes to be accurately synchronized.

Collaborative processing tasks such as event detection and

warning, target tracking and sensor fusion also require

clock synchronization. In addition, for feedback control over

communication networks to be a reality, it is important that

the clocks of different nodes connected by a communication

network are synchronized with one another.

In practice, clocks have two main sources of inaccuracy:

skew and offset. Skew refers to the rate at which clocks

measure time and offset refers to the difference between

the local times of two clocks that have the same skew. At

a particular “global” time t, the measured local time tu at

a clock u is given by tu = αut + βu, where αu is the

clock’s skew w.r.t the global time and βu is the offset. The

relative offset between a pair of nodes u and v in a network

can be measured (up to some error) by exchanging time-

stamped messages between them, e.g., using the methods

described in [2] and in [3, Chapter 2]. In particular, a noisy
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measurement of βu − βv can be obtained. Noisy ratios of

skews αu/αv can also be measured by exchanging time-

stamped messages [3], [4]. Measurements of skew ratios and

offsets between a pair of nodes can also be obtained by the

RBS (Reference Broadcast System) method, which does not

require bidirectional message exchange between them but

requires the involvement of a third node [5]. The problem

of estimating the clock skews w.r.t. a global time can be

separated from the problem of estimating offsets, and in fact,

can be handled in almost exactly the same way that the offset

estimation problem is handled, as described in [6]. For this

reason and for simplicity of presentation, for now we restrict

our attention to the offset estimation problem alone.

Many of the current synchronization protocols use relative

offset measurements to synchronize node clocks to a global

clock in a sequential manner [5], [7], [8]. For example, in

TPSN protocol [7], nodes close to a root node, called level 1

nodes, synchronize their clocks to the root node’s clock by

using such relative measurements. The nodes close to level 1

nodes, called level 2 nodes, in turn synchronize their clocks

to the level 1 nodes’ clocks, and so on until all the nodes are

synchronized. For a review of time synchronization protocols

for sensor networks, see [4].

It is possible to construct estimates of clock offsets more

accurate than what is possible by the above mentioned meth-

ods by using all the available relative offset measurements.

In particular, it is possible to compute the optimal estimate

of the clock offsets (w.r.t. a global time frame) by using all

the relative clock offset measurements [6], [9], [10], [11].

The optimal estimate refers to the one obtained from the Best

Linear Unbiased Estimator (BLUE), which has the minimum

variance among all linear unbiased estimators [12].

Recently, several distributed algorithms have been pro-

posed to iteratively compute the optimal estimates of clock

offsets [6], [9], [10], [11], [2]. These algorithms are iterative;

at every step nodes exchange their current estimates with

their neighbors and update their own estimates based on

the received estimates of their neighbors. All the refer-

ences above assumed symmetric (bidirectional) communica-

tion between nodes. However, in ad-hoc wireless networks,

communication between certain pairs of nodes may be

asymmetric, meaning that a node may be able to receive

transmissions from another node but may not be able to

transmit information to that node. This could be caused by

non-homogeneous interference, packet collisions, and even

due to an imperfect sleep scheduling arising from inaccurate

time-synchronization itself. Motivated by this possibility, we

examine the behavior of these algorithms in the presence
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of asymmetric communication. Since the algorithms in [6],

[11], [2] are all special cases of the Jacobi algorithm

described in [9], in this paper we focus exclusively on the

Jacobi algorithm.

We first show that in the presence of asymmetric com-

munication links, the Jacobi algorithm does not converge to

the optimal estimates. However, the Jacobi algorithm does

converge to an unbiased but sub-optimal estimate, provided

certain connectivity properties of the communication graph

are satisfied. In fact, we prove that it is impossible to design

a distributed algorithm that converges to the optimal estimate

when communication is asymmetric, if the algorithm is con-

strained to use only local information. The Jacobi algorithm

is shown to be robust to temporary node and communication

link failures.

We characterize the error covariance of the “limiting”

estimate the Jacobi algorithm converges to when communi-

cation is asymmetric. An interesting feature of this limiting

estimate is that the error variances of some of the node offset

estimates may increase upon using more measurements.

This is in contrast to the optimal estimate, for which more

measurements (no matter how noisy) always leads to lower

variances for all node offset estimates. Thus, an important

lesson is that in the presence of asymmetric communication,

more measurements may not lead to more accurate estimates.

II. PROBLEM STATEMENT AND PREVIOUS WORK

The local time tu at node u is related to the global

(unknown) time t by

tu = αut + βu,

where αu and βu are the skew and offset of node u’s clock,

respectively. By using one of the methods mentioned in

Section I, it is possible to obtain noisy measurement ζu,v

of the difference between clock offsets of certain node pairs

(u, v):

ηu,v = βu − βv + eu,v, (1)

where eu,v is a zero-mean measurement error. For the

details of obtaining such measurements, see [3, Chapter 2].

Similarly, noisy ratios of their skews, αu/αv can also be

obtained. Upon taking logarithm, we get

ξu,v = log(αu) − log(αv) + e′u,v, (2)

where ξu,v is the logarithm of the measured ratio of clock

skews, and e′u,v is a zero-mean error. The details of obtaining

such measurements are explained in [3, Chapter 2]. It is clear

from the similarity of (1) and (2) that both of them are special

cases of

ζu,v = xu − xv + ǫu,v, (3)

where ζu,v is a noisy “relative measurement” between the

unknown variables xu and xv , and ǫu,v is a zero-mean

measurement error.

In a network of n nodes, we have n such offsets (and

logarithm of skews) x1, x2, . . . , xn, which we will refer to

as node variables from now on. We associate these node

variables with the nodes V = {1, 2, . . . , n} of a directed

measurement graph G = (V,E). The measurements cor-

respond to the edges in E, where each edge consists of an

ordered pair (u, v) such that a noisy relative measurement of

the form (3) is available. Using only relative measurements,

the xu’s can be determined only up to an additive constant.

To avoid this ambiguity, we assume that a particular variable

(say xo) is known. One could imagine that the node o is

a cluster-head and the times of all the nodes need to be

synchronized to the cluster-head. In certain cases, more than

one node’s offsets and skews may be known, such as when

a subset of the nodes can receive GPS signals. The node

variables that are known are called the reference variables

and the corresponding nodes are called the reference nodes.

The set of reference nodes is denoted by Vr. The problem is

to estimate the unknown node variables from all the available

measurements and the reference variables.

Our objective is to construct an optimal estimate x̂∗
u of xu

for every node u ∈ V \ Vr. The optimal estimate refers to

the estimate produced by the classical Best Linear Unbiased

Estimator (BLUE), which achieves the minimum variance

among all linear unbiased estimators [12]. To compute the

optimal estimate directly one would need all the measure-

ments and the topology of the graph (see section III). Thus, if

a central processor has to compute the x̂∗
us, all this informa-

tion has to be transmitted to it. In a large ad-hoc network,

such centralized computation suffers from poor scalability

and lack of robustness to node and communication link

failures. Therefore a distributed algorithm that can compute

the optimal estimate while using only local communication

is advantageous.

An iterative distributed algorithm, called the Jacobi al-

gorithm, to compute the optimal estimates was proposed

in [9]. The algorithm is distributed in the sense that every

sensor can compute its own node variable’s estimate and all

the data needed for the computation can be obtained from

communication with only those neighbors with whom it has

relative measurements. The algorithm is based on the Jacobi

method of iteratively computing the solution to a system of

linear equations. A distributed algorithm was also proposed

in [2] for computing the least squares estimate of the time

shifts, which was a special case of the Jacobi algorithm,

where all the measurement error variances were assumed

to be equal. An algorithm based on the Jacobi method was

also proposed in [6], though not investigated. However, the

algorithms proposed in [6], [9], [11], [2] assumed that the

communication between nodes is symmetric. In other words,

if node u receives a transmission from node v, then v
can also receive a transmission from u. In many situations,

specially in wireless ad-hoc networks, node u maybe able to

receive messages from v but not vice versa.

III. OPTIMAL ESTIMATION OF NODE VARIABLES

The measurement error ǫe on the edge e ∈ E is assumed

to be of known variance, and uncorrelated with all other
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measurement errors. That is, for every edge e ∈ E, σ2
e =

E[ǫ2e] is known, and E[ǫeǫē] = 0 if e 6= ē. Here and in the

sequel, we use the symbol e to denote an edge as well as

the index of that edge, i.e., e = (u, v) ∈ E as well as e =
1, . . . , |E|. Consider a measurement graph G with n nodes

and m edges. Let X := [x1, x2, . . . , xn]T ∈ R
n be the vector

obtained by stacking together all node variables, known and

unknown. Similarly define z := [ζ1, ζ2, ...., ζm]T ∈ R
m and

ǫ := [ǫ1, ǫ2, ..., ǫm]T ∈ R
m. We can now rewrite (3) as

z = AT
X + ǫ, (4)

where A is the incidence matrix of the graph G [13]. The

incidence matrix is an n×m matrix with one row per node

and one column per edge defined by A := [au,e], where au,e

is nonzero if and only if the edge e ∈ E is incident on the

node u ∈ V. When nonzero, aue = −1 if the edge e is

directed towards u and aue = 1 otherwise.

By partitioning X into a vector x containing all the

unknown node variables and another vector xr containing

all the known reference node variables: X
T = [xT

r ,xT ]T ,

we can re-write (4) as z = AT
r xr + AT

b x + ǫ, where Ar

contains the rows of A corresponding to the reference nodes

and Ab contains the rows of A corresponding to the unknown

node variables. The equation above can be further rewritten

as:

z̄ = AT
b x + ǫ, (5)

where z̄ := z − AT
r xr is a known vector. The optimal

estimate (BLUE) x̂
∗ of the vector of unknown node variables

x for the measurement model (5) is the solution to the

following system of linear equations:

Lx̂
∗ = b, (6)

where L := AbP
−1AT

b , b := AbP
−1

z̄, and P := E[ǫǫT ] is

the covariance matrix of the measurement error vector [12].

Since the measurement errors on two different edges are

uncorrelated, P is a positive definite diagonal matrix with

the measurement error variances along its diagonal: P =
diag(σ2

1 , σ2
2 , . . . , σ2

m) ∈ R
m×m. The error covariance of the

optimal estimate, Σ := E[(x − x̂
∗)(x − x̂

∗)T ], is given

by Σ = L−1, where L−1 exists if and only if every

weakly connected component of the graph G has at least one

reference node [9]. A directed graph G is said to be weakly

connected if there is a path from every node to every other

node, not necessarily respecting the direction of the edges.

The optimal estimate can be computed by a fusion center

when all the nodes are able to communicate their noisy

measurements to the fusion center over a noise-free channel.

In the next section we describe and analyze a distributed

algorithm to compute the optimal estimates that does not

require a fusion center.

IV. JACOBI ALGORITHM

To describe the Jacobi algorithm with (possibly) asym-

metric communication, we introduce a directed graph G
c =

(V,Ec) consisting of the same nodes as the measurement

graph, but with edge directions that determine which nodes

can receive information from which other nodes. We call G
c

the communication graph associated with the measurement

graph G. In particular, a node u can receive information

from another node v if and only if there is an edge (v, u) in

the communication graph G
c. Communication between two

nodes u and v is symmetric if and only if both (u, v) and

(v, u) belong to E
c. An edge e (in G or G

c) between two

nodes u and v is said to be incident on both the nodes u
and v, which is denoted by e ∼ u and e ∼ v respectively,

whether the edge is directed from u to v or otherwise. For

an edge e that is incident on a node u, we denote e \ u as

the other end of u. That is, if e = (v, u), then e \u = v and

e \ v = u.

The following conditions are assumed to hold:

Assumption 1: 1) Every weakly connected component

of the measurement graph G = (V,E) has at least

one reference node, and G does not contain multiple

edges between the same pair of nodes.

2) The communication graph G
c = (V,Ec) is such that

for every pair of nodes that have a measurement edge

between them, there is at least one communication

edge between them.

3) If there is a communication edge between a pair of

nodes, then there must by a corresponding measure-

ment edge between them (in either direction).

4) Every node that is not a reference node has at least

one communication edge directed toward it. �

The assumption of not having multiple edges between a pair

of nodes is not restrictive because multiple measurements

between the same pair of nodes can be combined into a

single measurement (see Chapter 2 of [3]). The second

condition ensures that the nodes employing the algorithm

will be able to use all the available measurements. The third

condition clarifies that the communication graph is used only

to model the information exchange that occurs during the

execution of the algorithm. The fourth condition ensures

that every node (other than a reference node) is able to

receive messages from at least one neighbor, since otherwise

it cannot update its estimate.

Figure 1 shows a measurement graph G and the asso-

ciated communication graph G
c. Since there is only one

communication edge (4, 2) between 4 and 2, node 2 can

receive broadcasts from 4 but not the other way around.

This communication graph is therefore asymmetric. Note

that lack of communication edges (2, 1) and (3, 1) is not

a cause of asymmetry since the reference node 1 does not

use any information from its neighbors (see Assumption 1).

According to the terminology introduced above, if e = (4, 2),
then e \ 2 = 4 and e \ 4 = 2.

The Jacobi algorithm can be mathematically expressed by

the following update law implemented by every node u ∈

V \ Vr, where x̂
(i)
u denotes node u’s estimate of xu at the

ith iteration:
(

∑

e∈~Eu

1

σ2
e

)

x̂(i+1)
u =

∑

e∈~Eu

1

σ2
e

(

x̂
(i)
e\u

+ au,eζe

)

, (7)
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Fig. 1. A measurement graph and a communication graph associated with
it. Note that the asymmetry in the communication graph comes from the
lack of a communication edge from node 2 to node 4. Though there is no
edge from 2 to 1, that is not a cause of asymmetry since 1 is a reference
node and it does not use information from its neighbors even if available.

where ~Eu is the set of edges in the measurement graph

G that are incident on the node u such that there are

communication edges from their other ends toward u :

~Eu := {e ∈ E | e ∼ u, (e \ u, u) ∈ E
c}, (8)

and au,e is the (u, e)th entry of the incidence matrix of G

defined in Section III. The Jacobi algorithm has a simple

interpretation. When communication is symmetric, a node

obtains multiple estimates of its own variable by adding

the appropriate relative measurements to its measurement-

neighbors’ estimates. It then computes the new estimate

of its variable by taking a weighted average of those

estimates. When communication is asymmetric, it carries

out the same procedure, but the averaging uses information

from only those measurement neighbors from which it can

receive data. We have assumed above that transmitted data

is digitized and coded sufficiently so that errors due to

noisy communications channels can be ignored. That is, the

communication channels between the nodes are error-free

during the iterative updating of the estimates. Thus, when

an estimate is transmitted in a data packet, if successfully

delivered, the estimate is received without being corrupted

by any error.

The question naturally arises as to whether this algorithm

converges to an unbiased estimate of x; if so, whether

it converge to the optimal estimate, and if not, what is

the covariance of the resulting estimate. To answer these

questions, we need to express the iteration (7) in a more

compact form. To that end, we now define a few matrices.

We define the combined incidence matrix Ac ∈ R
n×m for

the pair of directed graphs (G,Gc), where m is the number

of edges in the measurement graph G, in the following

manner:

[Ac]u,e =

{

aue if e ∼ u, (e \ u, u) ∈ E
c

0 otherwise
, (9)

where au,e is the (u, e)th entry of the incidence matrix A
for the measurement graph G. The incidence matrix was

defined in Section III. If communication between every pair

of nodes is symmetric, then Ac(G,Gc) = A(G).

The weighted in-degree matrix D ∈ R
n×n of the directed

graph pair (G,Gc) is defined as a diagonal matrix with

[D]u,u =
∑

e∈~Eu

1

σ2
e

. (10)

Similarly, the weighted adjacency matrix C ∈ R
n×n of the

directed graph pair (G,Gc) is defined as

[C]u,v =

{

1
σ2

e

if (v, u) ∈ E
c and e ∼ u, e ∼ v,

0 otherwise
(11)

Let M, N ∈ R
nb×nb be the sub-matrices of D and C,

respectively, obtained by removing the rows and columns

corresponding to the reference nodes, where nb is the number

of nodes in V \Vr that do not know their variables. Using

the matrices introduced above, the Jacobi algorithm (7)

with asymmetric communication links can be compactly

expressed as the following discrete-time dynamical system:

Mx
k+1 = Nx

k + b
c, (12)

b
c := Ac

bP
−1(z − AT

r xr), (13)

where Ac
b is a submatrix of Ac that is obtained from Ac by

removing from it the rows that correspond to the reference

nodes. The fixed point of (12) is given by the solution of the

following system of linear equations, when it exists.

Lcx̂
∞ = b

c, where (14)

Lc := M − N. (15)

For x̂
∞ to exist and be unique, Lc must be invertible. The

next lemma, whose proof is in Appendix I, states when this

is true.

Lemma 1: The matrix Lc is invertible if and only if there

is a directed path in G
c from at least one reference nodes

to u for every u ∈ V \ Vr. �

We conclude that when the path existence condition of

Lemma 1 is satisfied, the Jacobi algorithm converges to

the estimate x̂
∞. In the next section, we show that this

convergence is, in fact, robust to link and node failures under

appropriate conditions.

It is straightforward to verify that

Lc = Ac
bP

−1AT
b (16)

and this matrix does not depend on the edge directions of G

but does depend on the edge directions in G
c. Furthermore,

it can be verified if G is weakly connected, then Lc = L if

and only if communication is symmetric between all pairs of

nodes. Therefore, when communication is asymmetric, the

Jacobi algorithm does not converge to the optimal estimate

in general.

A. Convergence and robustness to faults

The algorithm described by (12) is synchronous, since that

description implicitly assumes that all the nodes update their

estimates at the same time after getting updates from all of

their communication neighbors. In practice, with time de-

pendent communication failures or due to sleep scheduling,
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waiting to get information from all neighbors may not be

advisable. In this case, the algorithm can be implemented

in an asynchronous fashion, in which nodes wait to receive

estimates from their neighbors until a ”time-out” occurs. If

estimates from some neighbors do not arrive in this time,

they use the previously received data from those nodes.

Consider time index t ∈ N that is incremented by 1 at

the end of every time-out period. A communication edge

(u, v) is said to fail in time t if during the time between

t − 1 and t, all broadcasts from node u fail to reach v,

which may occur due to interference etc. A node u is said

to fail at time t if during the time between t − 1 and t,
node u either does not broadcast its current estimate or

does not process any information. Such node failures can

occur due to sleep-scheduling [1], among other reasons. We

say that a communication edge (u, v) is active at time t if

in that time, neither of the nodes u and v fails, and the

communication edge (u, v) does not fail. At every time t,
the communication graph G

c(t) = (V,Ec(t)) consists of

all the nodes of G and all the communication edges that are

active in that time. We assume that every node u ∈ V \Vr

detects its communication-neighbors, i.e., the nodes from

which it can receive messages, during an initial detection

phase, before the iterations begin. This detection, which

may be carried out even during the process of obtaining

the relative measurements, leads to an initial communication

graph G
c
init = (V,Ec

init) consisting of those communication

edges that were active over the time interval of the detection

phase. A node does not update its list of communication

neighbors thereafter.

The next theorem states how the algorithm behaves in the

presence of asymmetric communication, and is implemented

in an asynchronous manner in the presence of node and link

failures. We consider the following model of random failures.

At every time instant t ∈ N, every communication edge may

fail independently of all other edges with probability p, and

every node may fail independently of all other nodes, with

probability q, where p < 1, q < 1. This model of failure is

referred to as i.i.d. failure.

Theorem 1: Consider the asynchronous Jacobi algorithm

implemented on the measurement graph G and its associated

time-varying communication graph G
c(t), such that G and

G
c(t) satisfy Assumption 1 at every t ∈ N. Let G

c
init denote

the initial measurement graph that describes the neighbor

relations used by the nodes to implement the algorithm.

Let Lc and b
c be as defined in (15) and (13) for the

pair (G,Gc
init). The Jacobi algorithm converges to x̂

∞ for

every initial condition, where x̂
∞ is the unique solution of

Lcx = b
c, if

1) for every node u ∈ V \ Vr, there is a directed path

in G
c
init from at least one reference node to that node,

and

2) no communication edge in G
c
init fails permanently, and

no communication edge that is not in G
c
init remains

active infinitely often, i.e.,

∞
⋂

ℓ=1

∞
⋃

t=ℓ

G
c(t) = G

c
init. (17)

When nodes and communication edges fail according to the

i.i.d. failure model, if condition 1 above is satisfied, then the

Jacobi algorithm converges to the unique solution of Lcx =
bc almost surely. �

Due to space limitations, the proof of this result is omitted.

The interested reader is referred to [3, Chapter 3] for

a complete proof. We briefly note that the proof of the

convergence of the asynchronous Jacobi algorithm is based

on the results on asynchronous iterations in [14].

Remark 1: If the communication graph G
c
init is symmet-

ric, Lc = L, Ac
b = Ab, and therefore x̂

∞ = x̂
∗, which

means that the Jacobi algorithm will converge to the optimal

estimate. When communication is asymmetric, it converges

to the sub-optimal estimate x̂
∞. Therefore, asymmetry in

communication leads to poorer estimates.

B. Unbiasedness and covariance of the limiting estimate

The next result characterizes the covariance of the limiting

estimate produced by the Jacobi algorithm.

Theorem 2: The limiting estimate x̂
∞, when it exists, is

unbiased and the covariance of the estimation error ẽ
∞ :=

x − x̂
∞ is given by

Σ := E[ẽ∞ẽ
∞T ] = L−1

c Ac
bP

−1AcT
b L−T

c . �

Proof. From (14), (13) and (5), we get

x̂
∞ = L−1

c Ac
bP

−1(z − AT
r xr)

= L−1
c Ac

bP
−1(AT

b x + ǫ)

= x + L−1
c Ac

bP
−1

ǫ,

where the last equality follows from (16). It follows that

E[x̂∞] = x. The expression for the covariance of the

estimation error ẽ
∞ follows immediately.

We simulated the Jacobi algorithm for the measurement

and communication graph pair shown in Figure 1. Simulation

results are shown in Figure 2. All the nodes started with

0 initial estimates for their node variables, i.e., log-skews

and offsets. At every iteration of the simulation, every

communication edge was allowed to fail with a probability

of 0.2, independent of all other edges, i.e., p = 0.2 and

q = 0. The Figure validates the predictions of Theorem 1

and 2: the estimate converges to the predicted value x̂
∞ but

not to the optimal estimate x̂
∗.

C. An impossibility result

The result established in the previous section shows that

the Jacobi algorithm will not lead to convergence to the

optimal estimate when the communication graph is asym-

metric. This raises the question if it possible to construct

a distributed algorithm that will ensure convergence to the

optimal estimate even when communication is asymmetric.
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Fig. 2. Simulation results on the convergence of the Jacobi algorithm
with asymmetric communication. The simulation was conducted for the
measurement graph G1 and communication graph G

c

1
shown in Figure 1.

Each communication edge was allowed fail at each iteration, with a
probability of 0.1, independent of all other edges. The algorithm converges
to an unbiased estimate x̂

∞ whose variance is larger than the that of the
BLU estimate.

The answer to this question will depend on the precise

characterization of what is meant by ’distributed’. If we

restrict our attention to algorithms in which the information

exchange in purely local, i.e., a node is allowed to have

information about only those measurements that are incident

on itself and is allowed to broadcast its current estimate

only to its communication-neighbors, then the answer is

no. This can be seen by the example shown in Figure 3,

where the reference variable is x1 = 0 and the measurement

error variances are all equal to one another. Consider the

case when the communication graph (shown in Figure 3)

is time-invariant. It satisfies the conditions of Theorem 1,

and therefore the Jacobi algorithm will converge. However,

due to the asymmetry in the communication graph, the

limiting estimate will be different from the optimal estimate.

It is clear from the figure that due to the information flow

structure imposed by the communication graph, node 2
will only have information of the reference variable, which

is 0, and the measurement ζ12. The optimal estimate of

x2 is, however, a combination of all three measurements:

x̂∗
2 = − 2

3ζ12−
1
3 (ζ13−ζ32). Clearly no distributed algorithm

can converge to the optimal estimate, since information on

ζ13 will never reach node 2. Even if nodes are allowed to

transmit their neighbors’ information in addition to their

own, similar examples can be constructed that shows the

impossibility of optimal estimation in the presence of com-

munication asymmetry.

D. More measurements need not reduce error further

Another important effect of asymmetric communication

is that using more measurements need not lead to more

accurate estimates of all node variables, in the sense that

the variance of some of the node variables’ estimation error

can in fact increase.

Fig. 3. A measurement graph and its associated communication graph.

When communication is symmetric, the Jacobi algorithm

converges to the optimal estimate, which has the property

that its estimation error variance can only decrease upon

using more measurements. This follows from the so-called

Rayleigh’s monotonicity law of effective resistances; see [15]

for details. We thus conclude that with symmetric com-

munication, having more measurement edges, regardless of

the associated error, produces more accurate (less variance)

estimates when the Jacobi algorithm is used. However, the

presence of asymmetry in the communication graph destroys

this monotonicity. We illustrate this effect of asymmetry

with an example, where the addition of a measurement edge

makes the error variances of all the node estimates increase.

Figure 4 shows two measurements graphs G1 and G2 and

their associated communication graphs G
c
1 and G

c
2. The

measurement graph G1 contains all the nodes and edges of

the measurement graph G2. Similarly, G
c
1 contains all the

nodes and edges in G
c
1. Every measurement error variance

in both the measurements graphs is unity. The estimation

error variances of the limiting estimates x̂
∞ computed from

Theorem 2 are shown alongside the graphs. It is clear from

the variances that the estimates in G1 are poorer than those

in G2, even though G1 contains more measurements than

G2.

V. SUMMARY

We examined the behavior of recently proposed dis-

tributed algorithms for network-wide clock synchroniza-

tion under asymmetric communication between neighboring

nodes. Clock synchronization consists of estimating the

skews and offsets of the clocks w.r.t. a global reference. We

showed that in the presence of asymmetry, these algorithms

converge to a unbiased but sub-optimal estimate, provided

certain conditions on the communication graph are satisfied.

An example was provided to show that it is impossible to

converge to the optimal estimate with a distributed algo-

rithm. We showed that when communication is asymmetric,

the error variance of the resulting estimate may actually

increase upon considering more measurements. This is in

contrast to the symmetric communication case where more

measurements lead to more accurate estimates. This raises

several questions that point to new research directions, such

as, when should one not use certain measurements, and how

can the nodes collaboratively decide which measurements

should be excluded.
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σ2
2 = 1, σ2

3 = 1, σ2
4 = 2.5.

σ2
2 = 0.67, σ2

3 = 0.67, σ2
4 = 1.67.

Fig. 4. Two measurements graphs G1 and G2, and their associated
communication graphs G

c

1
and G

c

2
. The variance of every measurement

error is 1 for both the measurement graphs. The estimation error variances
of the limiting estimate (that the Jacobi algorithm converges to) computed
from Theorem 2 are shown alongside the graphs. Even though G2 ⊂ G1

and Gc

2
⊂ Gc

1
, the resulting estimation error variances are still higher in

(G1,Gc

1
) than in (G2,Gc

2
).
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APPENDIX I

TECHNICAL PROOFS

In the proofs, we will use the following result due to

Fiedler, where � (≻) is used to denote entry-wise ordering.

In addition, ρ(X) denotes the spectral radius of a matrix X .

Theorem 3 (Theorems 5.1 and 5.12 of [16]): Let X be

a real square n × n matrix whose off-diagonal terms are

non-positive. Then, the following statements are equivalent:

1) There exists a splitting X = Y − Z of the matrix X
such that Y −1 � 0, Z � 0 and ρ(Y −1Z) < 1.

2) X is a non-singular M-matrix. �

The reader is referred to [17] for properties of M-matrices.

Proof of Lemma 1. Consider the case when the communica-

tion graph is time-invariant and the Jacobi algorithm operates

in a synchronous fashion. It can be deduced from (12) that

the error at the i-th iteration e
(i) := x̂

(i) − x̂
∗ evolves

according to :

e
(i+1) = M−1Ne

(i) (18)

Due to the structure of the matrices M−1 and N , (18)

implies that in every iteration, each node u ∈ V computes

its new state as the weighted average of the states of those

nodes that have an edge with u directed toward u in the graph

G
c. In other words, it is a distributed average-consensus

algorithm where the reference nodes keep their values at 0,

and the remaining nodes try to reach consensus by averaging

with their neighbors. The system (18) satisfies the strict

convexity assumption of [18]. Thus, from Theorem 2 of [18]

we know that the system (18) is uniformly globally attractive

with respect to the equilibrium (which in this case is 0) if

and only if for every node u ∈ V \Vr, there is at least one

reference node such that there is a directed path in G
c from

the reference node to u. Note that here we have used a slight

specialization of the results in [18] to the case when one or

more agents do not participate in the consensus algorithm

but keep their values fixed.

It is also easy to see that the iteration (18) converges to 0 if

and only if ρ(M−1N) < 1. Since M−1 � 0 (follows from

Assumption 1) and N � 0, it follows from Theorem 3 that

non-singularity of Lc is equivalent to ρ(M−1N) < 1, which

was shown to be equivalent to the path existence condition.

This proves the lemma.
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