
1

DISTRIBUTED CUT DETECTION IN SENSOR NETWORKS

Prabir Barooah

Abstract— We propose a distributed algorithm to detect
“cuts” in sensor networks, i.e., the failure of a set of nodes
that separates the networks into two or more components. The
algorithm consists of a simple iterative scheme in which every
node updates a scalar state by communicating with its nearest
neighbors. In the absence of cuts, the states converge to values
that are equal to potentials in a fictitious electrical network.
When a set of nodes gets separated from a special node, that we
call a “source node”, their states converge to 0 because “current

is extracted” from the component but none is injected. These
trends are used by every node to detect if a cut has occurred
that has rendered it disconnected from the source. Although the
algorithm is iterative and involves only local communication, its
convergence rate is quite fast and is independent of the size of
the network.

I. INTRODUCTION

Wireless sensor networks (WSNs) have emerged as a

promising new technology to monitor large regions at high

spatial and temporal resolution. Virtually any physical vari-

able of interest can be monitored by equipping a wireless

device with a sensor and networking these sensors together

with the help of their on-board wireless communication

capability. WSNs can potentially have a large impact on

diverse applications in the civil as well as defense are-

nas. However, several challenges have to be overcome to

achieve the potential of WSNs. One of the challenges in

the successful use of WSNs come from the limited energy

of the individual sensor nodes. Significant current research

has therefore been directed at reducing energy consumption

at the sensor nodes. In the hardware front, energy efficient

components have been developed, and in the software front,

power aware routing, low complexity coding, and low power

data processing algorithms have been examined.

Although these advances are expected to increase the

lifetime of the wireless sensor nodes, due to their extremely

limited energy budget and environmental degradation, node

failure is expected to be quite common. This is especially

true for sensor networks deployed in harsh and dangerous

situations for critical applications, such as forest fire monitor-

ing. In addition, the nodes of a sensor network deployed for

defense applications may be subject to malicious tempering.

When a number of sensors fail, whether due to running out of

energy, environmental degradation, or malicious intervention,

the resulting network topology may become disconnected.

That is, as a result of failure of a set of nodes, a subset of

nodes that have not failed become disconnected from the rest

of the network.

Prabir Barooah is with the Dept. of Mechanical and Aerospace Engineer-
ing, University of Florida, Gainesville, FL 32611. This research has been
supported by the University of Florida.

In this paper we consider the problem of detecting cuts

in wireless sensor networks. A sensor network is modeled

as a graph G = (V ,E) whose node set V correspond to

the wireless sensors and whose edges E consists of pairs of

nodes (u, v) that can communicate directly with each other.

A cut is defined as the failure of a set of nodes so that the

removal of those nodes and the edges incident on them from

the original graph results in the separation of the graph into

two or more components.

We propose a distributed algorithm that allows every node

to monitor the topology of the (initially connected) graph and

detect if a cut occurs. For reasons that will be clear soon,

one node of the network is denoted as the “source node”.

The algorithm consists of every node updating a local state

periodically by communicating with its nearest neighbors.

The state of a node converges to a positive value in the

absence of a cut. If a node is rendered disconnected from

the source as a result of a cut, its state converges to 0. By

monitoring its state, therefore, a node can determine if it has

been separated from the source node. In addition, the nodes

that are still connected to the source are able to detect that,

one, a cut has occurred somewhere in the network, and two,

they are still connected to the source node. We call it the

Distributed Source Separation Detection (DSSD) algorithm.

Since the algorithm is iterative, a faster convergence rate

is desirable for it to be effective. The convergence rate of the

proposed algorithm is not only quite fast, but is independent

of the size of the network. As a result, the delay between

the occurrence of a cut and its detection by all the nodes can

be made independent of the size of the network. This last

feature makes the algorithm highly scalable to large sensor

networks.

As noted by Shrivastava et. al. [1], the challenges posed

by the possibility of network partitioning in WSNs has

been recognized in several papers (see, e.g. [2], [3], [4])

but the problem of detecting when such partitioning occurs

seems to have received little attention. Kleinberg et. al. have

studied the problem of detecting network failures in wired

networks, and proposed schemes for the case when k edges

fail independently [5], [6].

To the best of our knowledge, the work by Shrivastava

et. al. [1] is the only one that addresses the problem of

detecting cuts in wireless sensor networks. They developed

an algorithm for detecting ǫ linear cuts, which is a linear sep-

aration of ǫn nodes from the base station. The reason for the

restriction to linear cuts is that their algorithm relies critically

on a certain duality between straight line segments and points

in 2D, which also restricts the algorithm in [1] to sensor

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuB14.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1097

2

networks deployed in the 2D plane. The algorithm developed

in [1] needs a few nodes called sentinels that communicate

with a base station either directly or through multi-hop paths.

The base station detects ǫ-cuts by monitoring whether it can

receive messages from the sentinels.

In contrast to the algorithm in [1], the DSSD algorithm

proposed in this paper is not limited to ǫ-linear cuts; it can

detect cuts that separate the network into multiple compo-

nents of arbitrary shapes. Furthermore, the DSSD algorithm

is not restricted to networks deployed in 2D, it does not

require deploying sentinel nodes, and it allows every node to

detect if a cut occurs.

The DSSD algorithm involves only nearest neighbor com-

munication, which eliminates the need of routing messages to

the source node. This feature makes the algorithm applicable

to mobile nodes as well. Since the computation that a node

has to carry out involves only averaging, it is particularly

well suited to wireless sensor networks with nodes that have

limited computational capability. Simulations are reported

in [7] that illustrate the capability of the algorithm to detect

cuts in mobile networks, and also its ability to detect if

a “reconnection” occurs after a cut. The DSSD algorithm

has been demonstrated in an wireless testbed with MicaZ

motes [8].

Even though the proposed algorithm is iterative and in-

volves only nearest neighbor communication, the conver-

gence rate of the algorithm is quite fast and is independent

of the size of the network. The assumptions are that the

source node never fails, the sensor network is initially

connected, and the communication between the sensor nodes

is bidirectional.

II. PROBLEM STATEMENT

Consider a sensor network modeled as an undirected graph

G = (V ,E), whose node set V represents the sensor nodes

and the edge set E consists of pairs of nodes (u, v) such that

nodes u and v can exchange messages between each other.

Note that we assume inter-node communication is symmetric.

An edge (u, v) is said to be incident on both the u and v. The

nodes that share an edge with a particular node u are called

the neighbors of u. A cut is the failure of a set of nodes

V cut ⊂ V such that the removal of the nodes in V cut and

the edges that are incident on V cut from G results in G being

divided into multiple connected components. Recall that an

undirected graph is said to be connected if there is a way

to go from every node to every other node by traversing the

edges, and that a component Gc of a graph G is a maximal

connected subgraph of G (i.e., no other connected subgraph

G′
c of G contains Gc as its subgraph). We are interested in

devising a way to detect if a subset of the nodes has been

disconnected from a distinguished node, which we call the

source node, due to the occurrence of a cut.

s A

Fig. 1. A graph describing a sensor network (left), and the associated
electrical network (right). In the electrical network, one node is chosen as
the source that injects s Ampere current into the network, and additional
nodes are introduced (fictitiously) that are grounded, through which the
current flows out of the network. The thick line segments in the electrical
network are resistors of 1Ω resistance.

III. DISTRIBUTED SOURCE SEPARATION DETECTION

(DSSD) ALGORITHM

The algorithm is based on an electrical analogy. Given an

undirected graph G = (V ,E) with, say, n nodes and m

edges that describes the sensor network, we first designate

one of the nodes as the source node. The algorithm is

designed to detect when nodes get disconnected from the

source node. We now construct a fictitious graph Gelec =
(V elec,E elec) where V elec = V ∪ V fict, where V fict

consists of n − 1 nodes, one node for every node in V

except the source node, and every node in V is connected

to its corresponding fictitious node in V fict with a single

edge. These edges constitute the extra edges in E elec that

were not there in E . Now an electrical network (Gelec, 1) is

imagined by assigning to every edge of Gelec a resistance of

1 Ω. Figure 1 shows a sensor network and the corresponding

electrical network.

The DSSD algorithm consists of two phases. One is a state

update law, which a simple iterative procedure to compute

the node potentials in the electrical network (Gelec, 1) when

s Ampere current is injected at the source node and extracted

through the nodes Vfict, with all the nodes in Vfict grounded.

The source strength s is a design parameter. The other phase

of the algorithm consists of monitoring the state of a node,

which is used to detect if a cut has occurred. We now describe

the two phases below. Note that the separation into two

phases is merely for conceptual clarity, they are carried out

simultaneously at every node.

A. State update law

Let G(k) = (V (k),E (k)) denote the sensor network that

consists of all the nodes and edges of G that are still active at

time k, where k = 0, 1, 2, . . . is an iteration counter. For ease

of description, we index the source node as 1. Every node

u maintains a scalar state xu(k) that is iteratively updated.

At every iteration k, nodes broadcast their current states. Let

Nu(k) = {v|(u, v) ∈ E (k)} denote the set of neighbors of

u in the graph G(k). Every node in V except the source

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB14.4

1098

3
updates its state as:

xu(k + 1) =
1

du(k) + 1

∑

v∈Nu(k)

xv(k), xu(0) = 0, u 6= 1,

(1)

where du(k) := |Nu(k)| is the number of active neighbors of

u at time k. If we count the fictitious node corresponding to

u as one of u’s neighbors whose state is held fixed at 0, then

the above can be thought of as an average of the neighbors’

states. The source node updates its state as:

x1(k + 1) =
1

d1(k) + 1

∑

v∈N1(k)

xv(k) + s

 x1(0) = 0.

(2)

The description above assumes that all updates are done

synchronously, or, in other words, every node shares the

same iteration counter k. In practice, especially with wireless

communication, an asynchronous update is preferable. To

achieve this, every node keeps in its buffer a copy of the

last received state of each of its neighbors. If in a particular

iteration, a node does not receive messages from a neighbor

during a time-out period, it updates its state using the last

successfully received state from that neighbor. When a node

fails, its neighbors will cease to receive messages from it

permanently. When a node does not receive broadcasts from

one of its neighbors for sufficiently long time, it removes

that neighbor from its neighbor set. From then on, the node

carries on the algorithm with the remaining neighbors.

We will need the following terminology. Given an electri-

cal network (G, 1), two nodes u and o, and a set of nodes U ,

all in G, suppose all of the nodes in U are shorted together

and grounded. The potential at u (with respect to the ground)

when a current source of s Ampere is connected between o

and the ground is called the potential difference between u

and U with a current flow of s between o and U in the

network (G, 1).

The evolution of the node states with and without the

occurrence of cuts is stated in the next theorem. Note that

we assume that the source node never fails. The proof of the

theorem is provided in the Appendix.

Theorem 1: Let the nodes of a sensor network modeled

as an undirected graph G(t) = (V ,E (t)) that is initially

connected (i.e., G(0) is connected) iteratively update their

stated by (2) and (2) with an arbitrary initial condition xu(0),
u ∈ V .

1) If no nodes or edges fail, so that G(t) = G(0)
for all t, the state of every node converges to the

potential difference between itself and V fict with a

current flow of s between the source and V fict in the

electrical network (Gelec, 1). Furthermore, the steady

state potential is positive for every node.

2) If a node u gets disconnected from the source at time

τ > 0 and remains disconnected from the source for

V cut

Gsource

Vfict(Gsource)

G2

s Ampere

Fig. 2. The connected components of the electrical network after a cut
occurs in the graph shown in Figure 1.

all k > τ , then its state converges to 0,i.e., xu(k) → 0
as k − τ → ∞. �

Figure 2 shows an example of a cut of the network that

was shown in Figure 1.

B. State monitoring for cut detection

Theorem 1 shows how the occurrence of a cut in the

network is manifested in the states of the nodes. By analyzing

their own states, nodes can detect if a cut has occurred.

Suppose a cut occurs at some time τ > 0 which sepa-

rates the network into n components Gsource,G2, . . . ,Gn, the

component Gsource containing the source node. Since there

is no source (and therefore no current injection) in each of

the components G2, . . . ,Gn disconnected from the source,

it follows from Theorem 1 that the state of every node

in each of these components will converge to zero. When

the potential at a particular node drops below a particular

threshold value, the node can declare itself cut from the

source node. In fact, there may be additional node failures

(and even increase in the number of components) after the cut

appears. Since the state of a node converges to 0 if there is no

path to the source, additional time variation in the network

will not affect cut detection.

If additional failures do not occur after the cut occurs, it

follows from Theorem 1 that the states of the nodes that are

in the component Gsource (which contains the source) will

converge to new steady state values. So, if a node detects

that its state has converged to a steady state, then changed,

and then again converged to a new steady state value that

is different from the initially seen steady state, it concludes

that there has been a cut somewhere in the network.

A node detects when steady state is reached by comparing

the derivative of its state (with respect to time) with a small

number ǫ that is provided a-priori. The parameters s and ǫ

are design variables.

IV. SIMULATIONS

The algorithm was tested in simulation on a graph shown

in Figure 3(a) that consists of 200 nodes with an average

degree 3.2. Figure 3(b) shows the graph after a cut appears.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB14.4

1099

4

(a) G before cut

u v

w z

(b) G(k) for k > 100

Fig. 3. A sensor network with 200 nodes before and after a cut occurs.
The source node is shown as a diamond shaped node at the center. Four
nodes u, v, w, and z, at four corners of the network are shown for later
reference.

For the sake of simplicity, simulations were run in a syn-

chronous manner and a neighbor was assumed “dead” by a

node the first time it failed to receive broadcasts from that

neighbor (i.e., Tth in (6) was set to 1).

Figure 4 shows the time evolution of four nodes chosen

from the four corners of the network, which are named

u, v, w and z for easy reference (see Figure 3). Node v is the

only one among the four that belongs to a component that is

separated from the source after the cut occurs. Initially, the

state of every node increases from 0 and then settles down

to its steady state value. After the cut occurs, the state of the

node v decreases to 0, and the states of the other three nodes

u, w, and z converge to their new steady states.

Figure 5 shows the delay between the occurrence of a cut

and its detection by the nodes, when cut detection is done by

monitoring steady state values (as described in Section III-

B). The average delay for the nodes that are disconnected is

49 iterations. Since no failures occur after the cut, even the

nodes that remain connected to the source after the cut are

able to detect correctly that there has been a cut somewhere

but they are still connected to the source.

V. ANALYSIS OF THE STATE UPDATE LAW

To analyze the behavior of the state update law described

in Section III-A with and without cuts, we first express

the iterations (1),(2) in a compact manner. Define x(k) :=
[x1(k), . . . , xn(k)]T as the vector of states of all the nodes in

G at the kth iteration. Now define D = diag(d1, . . . , dn) as

the diagonal matrix of node degrees, where the degree of a

node is the number of its neighbors. Let A be the adjacency

matrix of the graph G, i.e., Au,v = 1 if (u, v) ∈ E , and 0
otherwise. With these matrices, the iterations (1) and (2) can

be compactly written as

x(k + 1) = (D + I)−1 (Ax(k) + s e1) , (3)

0 100 200
0

1

2

3

0 100 200
0

1

2

0 100 200
3.5

3.6

3.7

3.8

0 100 200
3.5

3.6

3.7

3.8

node u node v

node w node z

x
u
(k

)

k (iter. index)

Fig. 4. The states of four nodes u, v, w and z (see Figure 3 for their
locations) as a function of iteration number. The source strength was chosen
arbitrarily at 5 × 104. A cut occurs at time k = 100. As the plots show,
the states converge to their steady values quite fast.

where e1 = [1, 0, . . . , 0]T . Eq. (3) is essentially the Jacobi

method for solving the linear equation

L̃x = s e1 (4)

in an iterative manner [9], where

L̃ := D − A + I. (5)

The matrix L̃ is the n × n principal sub-matrix of the

Laplacian Lelec of the graph Gelec, obtained by removing the

rows and the columns corresponding to the nodes in V fict

from Lelec. Such matrices are known as Dirichlet Laplacians,

since they appear in the numerical solution of the Laplace

equation with Dirichlet boundary conditions [10]. As long as

the graph G is connected, the matrix L̃ is invertible [10] and

therefore, the solution to (4) exists and is unique.

When a cut occurs at a time τ > 0, the nodes that were

neighbors of the failed nodes will cease to receive broadcasts

from the failed nodes. After a predetermined number of

iterations in which messages are not received, the neighbors

of a failed node recognizes its failure, and ceases to use the

buffered state of the failed node to update their states. we

use Tth to denote this predetermined number of iterations

after which a node removes its failed neighbors from its list

of neighbors. Since a component that has been disconnected

from the source node after a cut contains no source node,

the node belonging to it now execute a slightly different

algorithm than what is described above. Consider the nodes

of a component Gi that has been rendered disconnected from

the source node after a cut. Since there is no current injection

into that component, the iterations in that component can in

fact be expressed as

x
(i)(k + 1) = (D(i) + I)−1

(

A(i)
x

(i)(k)
)

, k > τ + Tth

(6)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB14.4

1100

5

−0.5

0

0.5

−0.5

0

0.5

−50

0

50

d
el

ay
×

cu
t

st
at

e

Fig. 5. The product of detection delay and the detected cut state of
the nodes, when using steady state values to detect cuts, as described in
Section III-B. Detection delay is the delay between the occurrence of the
cut and its detection by a node. The “cut state” is: 0 if no cut is detected,
1 if the node detects that a cut has taken place and it is separated from the
source, and −1 if a cut is detected but it is still connected to the source. The
plot shows that every node detects its cut state correctly, with an average
delay of 49 iterations for the nodes disconnected from the source, with a
standard deviation of 0.8. Parameters: s = 105, ǫ = 10−3.

where the superscript (i) denotes that all quantities are

defined for the component Gi. This is precisely an average

consensus algorithm [11].

On the other hand, the iterations carried out by the nodes

in the component Gsource that contains the source node still

has the form (3). As stated in Theorem 1, the states of the

nodes in Gsource which now converge to positive values.

A. Convergence rate

Since the algorithm is iterative, a measure of its perfor-

mance is its speed of convergence. Define the error e(k) :=
x(k) − x(k − 1) so that (1),(2) reduce to

e(k + 1) = He(k), where H := (D + I)−1A. (7)

The error converges to 0 if and only if ρ(H) < 1, where ρ(·)
denotes the spectral radius, since ‖e(k)‖ ≈ ρ(H)k‖e(0)‖ for

large k. When ρ(H) is much smaller than one, convergence

is fast, while when it is close to 1, convergence is slow.

Therefore the spectral gap 1 − ρ(H) can be taken as a

measure of convergence speed. The larger the gap is, the

faster the convergence, and faster the nodes can detect

whether or not a cut has occurred, as described in Section III-

B.

The next result, whose proof is provided in the Appendix,

describes the convergence rate of the state-update law.

Lemma 1: For a connected graph G, a lower bound on the

convergence of the state update law (3) rate is given by

1 − ρ(H) ≥
1

2 + dmax
,

where H is defined in (7), and dmax is the maximum degree

of a node in G. �

Remark 1: A major strength of the algorithm is that its

convergence rate is independent of the number of nodes in the

graph. This is particularly remarkable in view of the fact that

the algorithm is purely distributed and employs only nearest

neighbor communication. The convergence rate of distributed

algorithms that use nearest neighbor communication, such

as average consensus, rendezvous, decentralized formation

control, etc. typically depend on the algebraic connectivity

of the graph (see [12], [13] and references therein). The

algebraic connectivity tends to decrease as the size of the

graph increases, slowing down the convergence rate [14]. In

contrast, the DSSD algorithm’s convergence rate is indepen-

dent of the size of the network. The upshot of this property

is that the delay between the occurrence of a cut and its

detection can be bounded by a constant irrespective of the

size of the network.

VI. COMMENTS

Although we only discussed cut detection in this paper,

the proposed algorithm can also be used for detection of

“reconnection”. If a component that is disconnected due to a

cut gets reconnected later (say, due to the repairing of some

of the failed nodes), the nodes can detect such reconnection

from their states. Simulations are reported in [7] that illustrate

the capability of the algorithm to (i) detect cuts in mobile

networks and (ii) detect re-connections after cuts.

There are several issues related to the DSSD algorithm

that need to be examined. The first is the appropriate choice

of the design parameter s (source strength) in the algorithm.

The potentials of nodes far away from the source typically

become smaller as the network size increases. To keep the

state values become too small – which will affect cut detec-

tion – the parameter s has to be chosen as a large number

for a large network. Guidelines for choosing s depending on

the size of the network, and how much a-priori knowledge

of the network structure is needed to make the appropriate

choice, is being investigated.

The states of the nodes computed by the DSSD algorithm

are affected by even those node failures that do not lead

to cuts. This is intuitive, since the electrical potential of a

node in a resistive electrical network is a function of the

network structure [12], [15], [16], which changes due to

node failures. This feature raises the possibility of designing

algorithms to compute “electrical potentials” of nodes in a

wireless network so as to detect structural changes that are

more complex than simply cuts.

While a protocol that enables nodes to detect cuts is

useful, there is also a need for protocols that allow a base

station to detect when and where a cut has occurred. We

envision a protocol that lies on top of the DSSD algorithm

to determine the location of a cut when it occurs. This will

the subject of future investigation. Another related issue that

merits investigation is secure cut detection, when some of the

nodes may “fail” in a malicious mode, such as when nodes

are hacked by an adversary to send incorrect state data.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB14.4

1101

6
REFERENCES

[1] N. Shrivastava, S. Suri, and C. D. Tóth, “Detecting cuts in sensor net-
works,” in IPSN ’05: Proceedings of the 4th international symposium

on Information processing in sensor networks, 2005, pp. 210–217.
[2] A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Configuring sEnsor

Networks Topologies,” in IEEE Infocom. New York, NY: IEEE, June
2002.

[3] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated
coverage and connectivity configuration in wireless sensor networks,”
in SenSys03, Los Angeles, California, USA, November 57 2003.

[4] X. J. Du, M. Zhang, K. E. Nygard, S. Guizani, and H.-H. Chen, “Self-
healing sensor networks with distributed decision making,” Interna-

tional Journal of Sensor Networks (IJSNET), vol. 2, no. 5/6, 2007.
[5] J. Kleinberg, “Detecting a network failure,” Internet Mathematics,

vol. 1, pp. 37–56, 2003.
[6] J. Kleinberg, M. Sandler, and A. Slivkins, “Network failure detection

and graph connectivity,” in the 15th ACM-SIAM Symposium on Dis-

crete Algorithms, 2004.
[7] P. Barooah, H. Chenji, R. Stoleru, and T. Kalmár-Nagy, “Detecting

separation in robotic sensor networks,” 2008, submitted to the IEEE
wireless communications magazine.

[8] H. Chenji, P. Barooah, R. Stoleru, and T. Kalmár-Nagy, “Demo
abstract: Distributed cut detection in sensor networks,” in 6th ACM

Conference on Embedded Networked Sensor Systems (SenSys’08),
November 2008.

[9] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. The
John Hopkins University Press, 1996.

[10] F. Chung, “Spectral graph theory,” Regional Conference Series in
Mathematics, Providence, R.I., 1997.

[11] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE

Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, June
2003.

[12] P. Barooah and J. P. Hespanha, “Graph effective resistances and
distributed control: Spectral properties and applications,” in Proc. of

the 45th IEEE Conference on Decision and Control, December 2006,
pp. 3479–3485.

[13] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in
multivehicle cooperative control,” IEEE Control Systems Magazine,
vol. 27, pp. 71–82, April 2007.

[14] A. Olshevsky and J. N. Tsitsiklis, “Convergence rates in distributed
consensus and averaging,” in 45th IEEE Conference on Decision and

Control, December 2006.
[15] P. Barooah, “Estimation and control with relative measurements: Algo-

rithms and scaling laws,” Ph.D. dissertation, University of California,
Santa Barbara, July 2007.

[16] P. G. Doyle and J. L. Snell, “Random walks and electric networks,”
Math. Assoc. of America, 1984.

[17] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Math-

ematical Sciences, ser. Computer Science and Applied Mathematics.
Academic Press, 1979.

[18] A. Frommer and D. Szyld, “On asynchronous iterations,” Journal of

Comp. Appl. Math., 123, pp. 201–216, 2000.
[19] W.-K. Chen, Applied Graph Theory, H. A. Lauwerier and W. T. Koiter,

Eds. North Holland Publishing Company, 1971.

APPENDIX

In the following, we will use A � 0(> 0) for a matrix A

to denote entry-wise non-negativity (positivity).

Proof of Theorem 1. When L̃ is a Dirichlet Laplacian of a

connected graph, it follows from straightforward application

of Kirchhoff’s current and voltage laws that the unique

solution of L̃x = e1 is a vector of node potentials with

1 Ampere current injected at node 1 and extracted from the

nodes that are grounded; see [15] for a proof.

Since L̃ is a Dirichlet Laplacian of the connected undirected

graph Gelec (that is, it is a principal submatrix of the graph

Laplacian of Gelec), it is a non-singular M -matrix, so that

L̃−1 ≻ 0 [17]. As a result, for a connected graph, x = L̃−1e1

is entry-wise positive.

Since A � 0, we get L̃−1A � 0 [17]. Since L̃ = (D+I)−A

with D + I and L̃ invertible and H � 0 where H := (D +
I)−1A , from Theorem 5.2 of [17, Chapter 7] it follows that

ρ(H) < 1 and also

ρ(H) = 1 −
1

1 + ρ(L̃−1A)
(8)

Moreover, since H is entry-wise non-negative, it also follows

from the above that ρ(|H |) < 1, where |H | is a matrix

obtained by replacing every entry of H with its absolute

value. It follows from standard results that the synchronous

iterations x(i + 1) = Hx(i) as well as the corresponding

asynchronous iterations converges [18]. The first statement

of the theorem follows.

After a cut occurs, in every component Gi of the graph

that does not contain the source, the nodes of Gelec
i run an

average consensus algorithm, but with the fictitious nodes

in Gelec
i holding their states at 0 at al times. The second

statement follows now from standard results in consensus

algorithms [13].

Proof of Lemma 1. Since A = D + I − L̃, we have that

ρ(L̃−1A) = ρ(L̃−1(D + I)) − 1. Define M := D + I and

note that the spectrum of L̃−1M is the same as the spectrum

of M
1

2 L̃−1M
1

2 , and the latter being a symmetric positive

definite matrix, its spectral radius is equal to its 2-norm.

Therefore,

ρ(L̃−1M) = ‖M
1

2 L̃−1M
1

2 ‖ = max
x 6=0

xT M
1

2 L̃−1M
1

2 x

xT x

= max
yT L̃−1y

yT M−1y
(y := M

1

2 x)

≤ max(Mii)max
y

yT L̃−1y

yT y
= (dmax + 1)

1

λmin(L̃)

Since L̃ = D − A + I = L + I where L is the Laplacian

matrix of G, the smallest eigenvalue of L is 0 since G is

connected [19]. So λmin(L̃) = 1. Combining the above

with (8), we get

ρ(H) ≤ 1 −
1

2 + dmax
,

from which the result follows immediately.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB14.4

1102

