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Abstract— This paper proposes an aggregation-based model nodes and edges. A node may represent a physical zone (e.g.,
reduction method for thermal models of large buildings. Ushg 3 room, a hallway, or “the outside”), or some point inside a

an electric analogy, the baseline thermal model is represéed \\q)| Edges represent pathways for conductive heat trahspo
as an RC-network. The proposed model reduction methodology The resulting model of the building consists of a large
is used to obtain a simpler (with fewer states) multi-scale 9 9 9

representation of this network. The methodology preserveshe  €lectrical network of resistors and capacitors. Tempeeatu
electrical analogy and retains the physical intuition during the  of a room is analogous to the voltage of the corresponding
m.odel redyction process. The theoretical results are illusated node, and the net flow of heat into a room is analogous to
with the aid of examples. the net current into the corresponding node.

The fundamental problem with such models, which we
will call network modelsis that they quickly explode in

A recent NREL (National Renewable Energy Laboratoryfomplexity. For example, considerdaroom building shown
study identifies the “lack of innovative controls and monito in Fig. 1 (a). A network model of this needs nodes and1
ing systems” as one of the principal bottlenecks in achigvinedges (see Fig. 1 (b) and also see Section V-B for detailed
high energy efficiency in buildings [1]. Real time monitagin descriptions). For a realistic large commercial builditigg
and control is therefore likely to play a more significanthumber of nodes and edges will be on the order of several
role in operating the HVAC (Heating, Ventilation, and Air thousands. For monitoring and control, model reductios thu
Conditioning) equipment in commercial buildings than ishabecomes necessary.
played so far. To be effective, control and monitoring syste  Since the model structure is linear, many approaches to
must be guided by mathematical models of thermal transpatfodel reduction that exist in literature, are potentiajypkx
in large buildings. cable. These include balanced model reduction approaches,

The dynamics of temperature evolution in a building isapproaches based on frequency-domain approximation, mo-
one of the most important aspects of the overall buildingnent matching methods, projection-based methods, SVD de-
dynamics. The complexity in the dynamics of temperatureomposition and Krylov subspace based techniques, etc [6].
evolution comes from the thermal interaction among roomshe focus of this paper is instead @ygregation-based
(and the outside). This interaction can be either throughpproacheshat preserve the electrical analogy interpretation
conduction through the walls, or through convective aiof the original model. The goal is to obtain the super-
exchange among rooms. In this paper, we focus on modelimgdes based upon an aggregation technique, and find the
and model reduction of the thermal interaction among roomsuper-capacitance for each super-node and super-resistan
of a building. The thermal effects of the cooling loads andor each edge between two adjacent super-nodes. The re-
conditioned/exhaust air are ignored here but can be spicifisulting reduced-order model is used to describe the thermal
as an exogenous input to the model. dynamics of the aggregated building.

An extensive literature exists on modeling the conductive The reason for choosing the aggregation based method-
interaction betweertwo spaces through the wall separatingology is two-fold. One, such a methodology is expected
them. The most popular modeling framework consists db reveal the multiple time-scales that are inherent in any
using resistors and capacitors to model this interactiga [2 building model. Understanding and modeling of such scales
[4]. Work by Goudaet. al. showed that a second-order RC-is important for a hierarchical control architecture of HVA
network model with3 resistors an@ capacitors is sufficient where the scheduling of chillers is done on a slow time-scale
to capture the conductive dynamic interaction between twand individual room temperature is controlled using Pl op
spaces connected through a single wall [5]. Thus it is ptessibon a much faster time-scale. The other reason is that zone-
to model the conductive interaction in a mutli-room builglin based models are standard in the HVAC community [7], [8].
by using such simpler RC-networks as building blocks. IMulti-scale models that retain the physical intuition arerm
this formulation, the building is represented bgraphwith  likely to be incorporated as part of standard practice.

The approach proposed in this paper is based on model
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Fig. 1. (a) Layout of at-room building and (b) the RC-network representation of shene building.

on the thermal models. Remark 1 (Conservative Property) The row sums ofA
The outline of this paper is as follows. In Section Il,matrix are all zeros, its diagonal entries are all negatiaed

the thermal model is formally defined and its Markov chairits non-diagonal entries are all non-negative. The quantit

representation is presented. In Section Ill, the KL diverge V' (t) = >, CiT;(t) denotes theotal heatof the building

rate and the model reduction method from [9] is brieflithermal model (1) at time. One can justify that

reviewed. In Section IV, the methodology is applied to av dT.

reduce the thermal models. In Section V, two examples are — () = Z C;—=(t) =0.

presented to illustrate the theoretical results. The emiehs dt iEN dt

appear in Section V1. This meand/(¢) = V(0) is invariant with respect to the time

II. BUILDING THERMAL MODEL t. We denotd/ := V(0) = Zie/\/ C;T;(0) as theinvariant

A. RC-network representation guantity of the building thermal model.

The building topology is determined by amdirected B. Goal of model reduction

weighted grapit; = (W, &, V), where := {1,2,...,n} For model reduction, the idea is to a
, ggregate the node
denotes the set afodesf the graph£ c A x N denotes the set\ = {1, " n} into a smaller super-node &l —

set ofedgesbetween two adjacent nodeB,:= {R;; € R, : {1,2,...,m} wherem < n. The relationship betwee

(i,j) € €} denotes the set aesistancedor the edges of. : : . .
The graph is undirected, i.e., the péirj) and (j,i) denote and M is described by gartition function¢:

the same edge. Each node A is assigned a temperature
T; and a capacitancé;. The resistance®;; on edge(i,j) Definiton 1 Let N* = {1,2,....,n} and M =
satisfiesR;; = Rji. {1,2,...,m} be two finite sets _W|thn < n. A partition
Since the thermal model is an RC-network, its dynamics f&inction ¢ : N — M is a surjective function fromV" onto
described by a system of coupled first order linear difféaént M- FOr k € M, ¢~ '(k) denotes the:" group of nodes in
equations of the forn®;dT; /dt = ¢;, whereg; is the net heat
flow into nodei through the resistive elements connected to
it. The net heat flow into nodé from nodej through the
edge(i, j) is simply modeled a$I; — T;)/R;;. This system
of equations can be expressed in the state-space form:

For each super-node € M, we introduce the following
notations: super-temperatuf@, super-capacitanc€, and
super-resistanc&y;. Then a reduced-order model is used to
describe the thermal dynamics for the super-nodes

dT
— (1) = AT(t), @ dT®) I
—g (1) = AT (), 3)
where the column vectdf (t) = [T1(t), Ta(t), ..., T (t)]*
denotes the temperatures at timeand the entries of the where 7)(t) = [T{” (1), T3”(t),..., T\ (t)]” denotes
transition-rate matrixA = (A;;,4,j € N) are given by the super-temperature vector with the partition function
o o at timet, and A(¢) denotes then x m super-transition-rate
ﬁ” _ (1)’/(C-R- ) :; z Zi j’ 8’;3 & @ matrix with the partition functiorp.
al Zz e i i—j (Z’]) The goal of the model reduction is to find the optimal
i1 — G#i 4L — b

partition function and the optimal reduced-order building
The initial temperature is denoted BY0). thermal model (defined by (3)) such that the reduced-order



model is the best approximation of the original model (dewhere

fined by (1)), i.e., the modeling error is minimized between () T .
the original and the reduced-order models. Qi;(¢) = S ™ Qowoiy, i eN
€ (4)
C. Representation via a regular Markov chain wherey(j) = ¢~ o ¢(j) C N denotes the set of states
Based upon the conservative property of the thermdlelonging to the same group as tfie state.
model, we define theheat distributionas a row vector, . .
denoted byf(t) = [f1(£), fa(t), ..., fn(t)], where B. Optimal aggregation problem
C Let (w, P) be a given regular Markov chain ovi. Them-
filt) = VlTi(t), 1eEN (4) partition problem is to find the partition functiom : A —
. . . . i . M and the optimal aggregated Markov chdia, Q) such
andV is the invariant quantity defined in Remark 1. that R (P || Q) is minimized:
Fori € N\, by differentiatingf; and using (1), we have
% — QdTi _ Z QT (5) %171651 R(¢)(P ” @
dt  V dt - vy st D em@Qu=1 keM
JEN Ow >0, kleM
By substituting (2) in (5), we have R
daf, C whereR() (P || Q) = R(P || Q™ (¢)) and constraints arise
i A” “T; + Z c, R VjT = Z fidji, due to stochastic property of the Markov transition matrix.
Ji JEN As shown in Theorem 3 of [9], for a fixed (say an optimal)
where we use the fact th&g” = Rj; in derivation. partition functiong, the qptimal .aggregated Mgrkov chain
The thermal dynamics of the building is now analogoué@(¢); Q(¢)) can be easily obtained as a functiongof
to a time-homogeneous Markov chain defined on the finite Zi@ " 3 co 1) TP
state-spacé\” with the transition matrixP(t) = et Qri(¢) = 5 s — . kileM. (9)
i€p=1(k) "0

Assumption 1 All Markov chains considered in this paper The stationary distribution of)(¢) is given by
are regularchains, i.e., they are irreducible and aperiodic.

- . . o or(@)= Y, m, keM, (10)
For a regular finite Markov chain, theationary distribu- ico1(k)
tion exists, which is denoted by by a row vector - :
! X whieh | oy WV Then them-partition problem becomes to obtaamly the
= tlggo f@). optimal partition functionp* such that
It is also theinvariant measureof the Markov chain, i.e., ¢* € argmin R (P || Q(¢)), (11)
¢ N—M
wP(t) =m, Vt>0. (6)

where Q(¢) is the optimal aggregated Markov transition
Substituting P(t) = e4* into (6), we haverA = 0. Then matrix (9) with the partition functionp.

the stationary distribution can be explicitly computed thoe In [9], a spectral partitioning algorithm is proposed to ob-
building thermal model tain a suboptimal solution of (11): For bi-partition protsle
C; ¢* is given by the sign-structure of the second eigenvector
(S Pron i€N. (") of the symmetric matrix? = (112 PIT~% + 12 PT1I7),
JeN wherell = diag(w). The sub-optimal solution of the multi-
IIl. AGGREGATION OF AREGULAR MARKOV CHAIN partition problem is obtained via recursive applicatiorttuf

In this section, we summarize the main results of oubi-partition algorithm.
recent work [9], in which KL divergence rate is used to
aggregate a regular discrete-time Markov chain. The rootati
(m,P) is used to denote a regular Markov chain with the In this section, we apply the aggregation methodology
transition matrixP and the stationary distribution. for Markov chains to obtain a reduced-order model for the

building thermal model (1).

IV. THERMAL INTERPRETATION OFAGGREGATION

A. KL divergence rate for Markov chains

For model reduction problems, it is of interest to compar@' Optimal reduced-order model
two Markov chains(, P) and (w, Q) defined on different By letting t — 0, we obtain the Markov transition matrix
state spaces\V' and M, respectively. Let¢ denote the for the full-order building thermal model (1) defined oA
partition function fromN to M and = be the invariant At 2
measure onV such thatr P = 7. The KL divergence rate is P(t) =e™ =1+ At +0(t), (12)
defined for two Markov chains odifferent state spacess: wherel is then x n identity matrix andA is the transition-
rate matrix defined in (2). The stationary distribution of
( ) (8) P(t) is m, which can be explicitly obtained in terms of the
Q(r )(¢) capacitances of building thermal system (see (7)).

R(P Q™ (¢)) = Y mPylog

i,jEN



TABLE |

Similarly, we have the aggregated Markov transition ma-
NUMERICAL VALUES FOR THEFULL-ORDERMODEL

trix for the reduced-order model (3) defined an:

Qt) = e = T + At + O(#2), (13) | C1=01]Cy=015] C3=02 | C4=0.25 |
| Ri2 =015 | Rss =015 | Rpg =15 |

where is the m x m identity matrix andA is the super-
transition-rate matrix. The stationary distribution @ft) is

denoted byw, which can be obtained in terms of the supersupstituting (19) into (20), we have, for any partition func

capacitances tion ¢
G em 14 V(<z>)=kZ.Zj CiT,(0) = V.
Zle/\/l G SMucoTi k)
Substituting (12) into (9), we obtain the formula for theThis means that the aggregation does not change the invarian

optimal aggregated Markov transition matrix for a fixedquantit}" (“?ta' rleat) of the th_ermal system. . .
partition functiong, for k, 1 € M: The “optimal” model described so far is for a given fixed

partition function¢. The optimal partition functiony* is
obtained via recursive application of the spectral panitig

Wk

Yies— 1) 2jes—r @ Tillgi=jy + At + O(t))

Qri(t, ¢) = ., method.
Yieo—tt) ™ . . .
S ieo-1 ) Djeotqp Tidis ) B. Modeling error defined as KL divergence rate
_ v J
= Lge=iy + Yot T t+0). We denote the full-order building thermal model s

(15) and the optimal reduced-order model with super-states
ST,

We define the modeling error betweéh and T(™ in
terms of the KL divergence rate. By following the method-

By comparing (13) and (15), we obtain the optimal super"fl
transition-rate matrix with the partition functiaft

Dico1(k) 2ujep—1 (1) Tidkis

Aa(6) = ke M. (16) ology presented in Section Ill, we obtain the KL divergence
Dico-1(k) i rate as
By substituting (7) into (10), we obtain the stationary R(Y || T(™)) = Z mi(Aijlog(Agj) — Agj)
distribution of the optimal aggregated Markov chain 1,JEN i)
Uy -
Diep1(k) Ci - midijlog ( =———A(i)s(i)
wk(¢) = Z T = S " (17) ijeN¢Z(;)¢¢(j) (Zkew(j) Tk )
o 2emgesrn Co o . 7
. . - Z Ti(Ag(iye() — Aiilog =———),
By comparing (14) and (17), we obtain the formulae for i JEN S D=d() Zk@p(j) T,
super-capacitances T (21)
= _ _ wherer is the stationary distribution of the full-order model
Crle) = _eq;(k) Cir kEM. (18) T, A denotes the transition-rate matrix ¥f ¢ = ¢* is the

_ _ optimal m-partition function,A = A(¢*) denotes the super-
Using (16) and (18), we obtain the formulae for supertransition-rate matrix for the optimal reduced mod&I™.
resistances
- 1 V. EXAMPLE AND DISCUSSION
R = k#leM. - - -
) Cro(0) A (9) 7 In this section, we apply the model reduction method

X developed in the previous section to two examples.
Thus, after the aggregation of states/nodes, the reduckst-o P P P

model is also an RC-network for any fixed partition functionA. Model reduction of &@-adjacent-room building

. First, we consider the model reduction problem for the
Comparing the full-order model and the optimal reducedhasic element of any building thermal model: two adjacent
order model with A(¢) given in (16), we find that the rooms without other thermal interactions (see Fig. 2). The
relationship between the super-temperature vector and tharmal dynamics can be represented by an equivalent RC-
temperature vector is defined by a linear transformation: network as also shown in Fig. 2, whefg and 7, are the

() 1\ AT temperatures for Roorh and Room2 respectively, 7> and

Tt = ie;(k)(cl/ck)ﬂ(t)’ vtz 0.keM. (19) Ty are the internal temperatures for the connecting walls.

~ The building thermal model is defined in (1), where the

Since the row sums ofi(¢) are also all zeros, then the transition rate matrix for this example is given by

optimal reduced thermal model is also conservative. The 1

1 _1
invariant quantity for the reduced thermal model is denoted CyFaz iRy (1) 0
by A= C2Ro2:1 - 021?1 Ra3 }%‘2112% ?
_ N 32 34 !
V(o) = E CkT]gd))(O). (20) 0 C3R32 _0351’4321‘334 033134

keM 0 0 CaRys3 " C4Rus



reduced-order model

A:

C2R21 _C2R21

CiR12 CIR112 ,

where numerical values of the super-capacitances and the
super-resistance are summarized in Table Il. The RC-n&twor

Room 1 Wall Room 2

representation of the reduced-order model is shown in Fig. 3
Fig. 2. The RC-network representation of the full-ordemtha model for This example also ShPWS tha_t the propos_,ed meth_Od yields
a 2-adjacent-room building without other thermal interantio a reduced model that is physically meaningful. Since the
resistance R, or Rs4) between the two capacitor€'{ and
T R T Cs, or C3 and Cy) is small, then the two capacitors are
1 12 2 . . . . . .
- - combined into one. Since the internal resistaitg is the
1 VVWA _ L predominant one, it is retained in the reduced model. Binall
:l: C, G, T the reduced model is also an RC-network just as the original

model was.

Fig. 3. The RC-network representation of the reduced-atiienmal model B. Model reduction of the-room building

for the 2-adj t- building. . - . .
or fne Zradjacent-room BUlding We consider thet-room building as shown in  Fig. 1

(a). There are four rooms inside the building. Rooms are

where numerical values of the capacitances and resistan&@§inected with each other through the internal walls, and
are given in Table I. also with the outside through ceilings, floors, windows and

By choosing the sampling time\¢ = 0.01, we can external walls. To simplify the model, we assume virtually

approximate the continuous model (1) by a discrete-tim@0 &r éxchange between rooms occur through the doors.

Markov chain, where the probability transition matrix is BY inter-connecting the RC-network models for individual
approximated by walls, floors and ceilings, we represent the entire building

a large RC-network as shown in Fig. 1 (b). There are t&ifal
nodes of this RC-network, associated with temperatures:

o {T1,T>,T5,T,} for the4 room nodes;

0.3333 0.6667 0.0000 0.0000
0.4444 0.5111 0.0444 0.0000

PIAD ~ THAME =10 0000 0.0333 0.6333 03333

o {T5,Ts,...,T12} for the 8 internal wall nodes;
0.0000 0.0000 0.2667 0.7333 {15, T, ..., Th : ;

_ o _ _ o {T13,T14,...,To0} for the 8 internal floor nodes;
whose stationary distribution is given byr = o {T51,Tss,...,Tog} for the 8 internal ceiling nodes;

[0.1429,0.2143,0.2857,0.3571]. The following symmetric o {Th9,T30,..., T3¢} for the8 external wall nodes;
matrix is then obtained for solving the eigenvalue problem o {73} for the 1 outside node.

0.3333 0.5443 0.0000 0.0000 Generally, each nodé is assigned a capacitancg, two

. 0.5443 0.5111 0.0385 0.0000 adjacent nodes andj are connected with a resistanf;.

P= 0.0000 0.0385 0.6333 0.2981] "’ The windows are modeled as single resistors since they have
0.0000 0.0000 0.2981 0.7333 relatively little capacitance. The outside air has a muohea

capacitance than the air inside the rooms. So, we assign a
very large value to its capacitance, i.€37 = 10'°.

The transition-rate matrix4A for the building thermal
u® = [—0.5251, —0.6049, +0.3628, +-0.4762]. model is a37 x 37 matrix obtained according to the building
topology and associated capacitances and resistances) whi
are calculated for a specific wall material and insulatigrety

function ¢* = [1, 1’2’.2]' That is, the stategl, 2} should be as explained in Section I. By choosing the sampling time
aggregated as the first group and the stdisi} should At = 0.01, we obtain the transition matriR = 44 for the
be aggregated as the second group. This optimal partitionl\lf !

| ! ith the f hat the Markov ch&in P i arkov chain representation of the building thermal model.
also consistent with the fact that the Markov chgin P) is Then the recursive bi-partition algorithm [9] is employed
nearly completely decomposable

’ ; . . . .. to solve them-partition problem and obtain the optimal
U5|ng_(16) with the op_t|_mal bl-part|t|pn functior ' reduced-order model witln super-nodes. Withn = 1, all
we obtain the super-transition-rate matrix for the Opt'mql]odes belong to the same group. The modeling error is given

by R(Y || Y(M) = 3.67 x 10~
TABLE Il The bi-partition divides the node set into two groups: the
NUMERICAL VALUES FOR THEREDUCED-ORDERMODEL first group contains all non-outside noded:, 2,...,36},
and the second group contains only the outside nae}.
Such an aggregation makes sense because with a large time-
scale, the temperatures of nodes inside the building will

whose second largest eigenvaldg = 0.9605 and the
corresponding eigenvector is given by

The sign-structure oi(? suggests the optimal bi-partition

Ci1=C1+Cy=0.25 Co=C3+Cy =0.45
Ria =Rz1 = Rz =15




@) (b)

Fig. 4. The group information of building nodes for (a) theartition, (b) the5-partition, and (c) thed-partition. Note that the red region (the third
group) is corresponding to a single “outside” noB¥} in the graph.
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nodes leads to only a small amount of reduction for the
modeling error.
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VI. CONCLUSIONS

In this paper, a building thermal model is reduced via the
aggregation of states. The original model is an RC-network,
with a large number of coupled linear differential equasgion
9 The conservative nature of the thermal model is used to draw

an analogy to regular Markov chains. The KL divergence rate
serves as a metric for the modeling errors. A key advantage
Fig. 5. Depicts the modeling error as a function of the nunathgrartitions.  of the proposed technique is that reduced model retains the
physical intuition of the original model: it is also an RC-
network model. An additional advantage of the method is
all asymptotically approach the outside temperature. In that the degree of reduction can be controlled by the user.
Markov chain representation, the outside node is a nearly
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absorbing state and all other states are nearly transient. ACKNOWLEDGMENT
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