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Abstract— This paper proposes an aggregation-based model
reduction method for thermal models of large buildings. Using
an electric analogy, the baseline thermal model is represented
as an RC-network. The proposed model reduction methodology
is used to obtain a simpler (with fewer states) multi-scale
representation of this network. The methodology preservesthe
electrical analogy and retains the physical intuition during the
model reduction process. The theoretical results are illustrated
with the aid of examples.

I. I NTRODUCTION

A recent NREL (National Renewable Energy Laboratory)
study identifies the “lack of innovative controls and monitor-
ing systems” as one of the principal bottlenecks in achieving
high energy efficiency in buildings [1]. Real time monitoring
and control is therefore likely to play a more significant
role in operating the HVAC (Heating, Ventilation, and Air
Conditioning) equipment in commercial buildings than it has
played so far. To be effective, control and monitoring systems
must be guided by mathematical models of thermal transport
in large buildings.

The dynamics of temperature evolution in a building is
one of the most important aspects of the overall building
dynamics. The complexity in the dynamics of temperature
evolution comes from the thermal interaction among rooms
(and the outside). This interaction can be either through
conduction through the walls, or through convective air
exchange among rooms. In this paper, we focus on modeling
and model reduction of the thermal interaction among rooms
of a building. The thermal effects of the cooling loads and
conditioned/exhaust air are ignored here but can be specified
as an exogenous input to the model.

An extensive literature exists on modeling the conductive
interaction betweentwo spaces through the wall separating
them. The most popular modeling framework consists of
using resistors and capacitors to model this interaction [2]–
[4]. Work by Goudaet. al. showed that a second-order RC-
network model with3 resistors and2 capacitors is sufficient
to capture the conductive dynamic interaction between two
spaces connected through a single wall [5]. Thus it is possible
to model the conductive interaction in a mutli-room building
by using such simpler RC-networks as building blocks. In
this formulation, the building is represented by agraphwith
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nodes and edges. A node may represent a physical zone (e.g.,
a room, a hallway, or “the outside”), or some point inside a
wall. Edges represent pathways for conductive heat transport.
The resulting model of the building consists of a large
electrical network of resistors and capacitors. Temperature
of a room is analogous to the voltage of the corresponding
node, and the net flow of heat into a room is analogous to
the net current into the corresponding node.

The fundamental problem with such models, which we
will call network models, is that they quickly explode in
complexity. For example, consider a4-room building shown
in Fig. 1 (a). A network model of this needs37 nodes and51
edges (see Fig. 1 (b) and also see Section V-B for detailed
descriptions). For a realistic large commercial building,the
number of nodes and edges will be on the order of several
thousands. For monitoring and control, model reduction thus
becomes necessary.

Since the model structure is linear, many approaches to
model reduction that exist in literature, are potentially appli-
cable. These include balanced model reduction approaches,
approaches based on frequency-domain approximation, mo-
ment matching methods, projection-based methods, SVD de-
composition and Krylov subspace based techniques, etc [6].
The focus of this paper is instead onaggregation-based
approachesthat preserve the electrical analogy interpretation
of the original model. The goal is to obtain the super-
nodes based upon an aggregation technique, and find the
super-capacitance for each super-node and super-resistance
for each edge between two adjacent super-nodes. The re-
sulting reduced-order model is used to describe the thermal
dynamics of the aggregated building.

The reason for choosing the aggregation based method-
ology is two-fold. One, such a methodology is expected
to reveal the multiple time-scales that are inherent in any
building model. Understanding and modeling of such scales
is important for a hierarchical control architecture of HVAC
where the scheduling of chillers is done on a slow time-scale
and individual room temperature is controlled using PI loops
on a much faster time-scale. The other reason is that zone-
based models are standard in the HVAC community [7], [8].
Multi-scale models that retain the physical intuition are more
likely to be incorporated as part of standard practice.

The approach proposed in this paper is based on model
reduction of Markov chains that has recently been developed
by the authors of this paper [9]. In this work, Kullback-
Leibler (KL) divergence rate (or relative entropy rate) is
proposed to reduce regular Markov chains via aggregation.
The idea of this paper is to connect the thermal models to
Markov chains and replicate the model reduction procedure
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Fig. 1. (a) Layout of a4-room building and (b) the RC-network representation of thesame building.

on the thermal models.
The outline of this paper is as follows. In Section II,

the thermal model is formally defined and its Markov chain
representation is presented. In Section III, the KL divergence
rate and the model reduction method from [9] is briefly
reviewed. In Section IV, the methodology is applied to
reduce the thermal models. In Section V, two examples are
presented to illustrate the theoretical results. The conclusions
appear in Section VI.

II. BUILDING THERMAL MODEL

A. RC-network representation

The building topology is determined by anundirected
weighted graphG = (N , E ,W), whereN := {1, 2, . . . , n}
denotes the set ofnodesof the graph,E ⊂ N×N denotes the
set ofedgesbetween two adjacent nodes,R := {Rij ∈ R+ :
(i, j) ∈ E} denotes the set ofresistancesfor the edges ofG.
The graph is undirected, i.e., the pair(i, j) and(j, i) denote
the same edge. Each nodei ∈ N is assigned a temperature
Ti and a capacitanceCi. The resistanceRij on edge(i, j)
satisfiesRij = Rji.

Since the thermal model is an RC-network, its dynamics is
described by a system of coupled first order linear differential
equations of the formCidTi/dt = qi, whereqi is the net heat
flow into nodei through the resistive elements connected to
it. The net heat flow into nodei from nodej through the
edge(i, j) is simply modeled as(Tj−Ti)/Rij . This system
of equations can be expressed in the state-space form:

dT

dt
(t) = AT (t), (1)

where the column vectorT (t) = [T1(t), T2(t), . . . , Tn(t)]
T

denotes the temperatures at timet, and the entries of the
transition-rate matrixA = (Aij , i, j ∈ N ) are given by





Aij = 0, if i 6= j, (i, j) /∈ E ;
Aij = 1/(CiRij), if i 6= j, (i, j) ∈ E ;
Aii = −

∑
j 6=iAij , if i = j, (i, j) ∈ E .

(2)

The initial temperature is denoted byT (0).

Remark 1 (Conservative Property) The row sums ofA
matrix are all zeros, its diagonal entries are all negative,and
its non-diagonal entries are all non-negative. The quantity
V (t) =

∑
i∈N CiTi(t) denotes thetotal heatof the building

thermal model (1) at timet. One can justify that

dV

dt
(t) =

∑

i∈N

Ci
dTi
dt

(t) = 0.

This meansV (t) = V (0) is invariant with respect to the time
t. We denoteV := V (0) =

∑
i∈N CiTi(0) as theinvariant

quantityof the building thermal model.

B. Goal of model reduction

For model reduction, the idea is to aggregate the node
setN = {1, 2, . . . , n} into a smaller super-node setM =
{1, 2, . . . ,m} wherem ≤ n. The relationship betweenN
andM is described by apartition functionφ:

Definition 1 Let N = {1, 2, . . . , n} and M =
{1, 2, . . . ,m} be two finite sets withm ≤ n. A partition
function φ : N 7→ M is a surjective function fromN onto
M. For k ∈ M, φ−1(k) denotes thekth group of nodes in
N .

For each super-nodek ∈ M, we introduce the following
notations: super-temperaturēTk, super-capacitancēCk and
super-resistancēRkl. Then a reduced-order model is used to
describe the thermal dynamics for the super-nodes

dT̄ (φ)

dt
(t) = Ā(φ)T̄ (φ)(t), (3)

where T̄ (φ)(t) = [T̄
(φ)
1 (t), T̄

(φ)
2 (t), . . . , T̄

(φ)
m (t)]T denotes

the super-temperature vector with the partition functionφ
at timet, andĀ(φ) denotes them×m super-transition-rate
matrix with the partition functionφ.

The goal of the model reduction is to find the optimal
partition function and the optimal reduced-order building
thermal model (defined by (3)) such that the reduced-order



model is the best approximation of the original model (de-
fined by (1)), i.e., the modeling error is minimized between
the original and the reduced-order models.

C. Representation via a regular Markov chain

Based upon the conservative property of the thermal
model, we define theheat distribution as a row vector,
denoted byf(t) = [f1(t), f2(t), . . . , fn(t)], where

fi(t) =
Ci
V
Ti(t), i ∈ N (4)

andV is the invariant quantity defined in Remark 1.
For i ∈ N , by differentiatingfi and using (1), we have

dfi
dt

=
Ci
V

dTi
dt

=
∑

j∈N

Aij
Ci
V
Tj . (5)

By substituting (2) in (5), we have

dfi
dt

= Aii
Ci
V
Ti +

∑

j 6=i

1

CjRji

Cj
V
Tj =

∑

j∈N

fjAji,

where we use the fact thatRij = Rji in derivation.
The thermal dynamics of the building is now analogous

to a time-homogeneous Markov chain defined on the finite
state-spaceN with the transition matrixP (t) = eAt.

Assumption 1 All Markov chains considered in this paper
are regularchains, i.e., they are irreducible and aperiodic.

For a regular finite Markov chain, thestationary distribu-
tion exists, which is denoted by by a row vector

π := lim
t→∞

f(t).

It is also theinvariant measureof the Markov chain, i.e.,

πP (t) = π, ∀t ≥ 0. (6)

SubstitutingP (t) = eAt into (6), we haveπA = 0. Then
the stationary distribution can be explicitly computed forthe
building thermal model

πi =
Ci∑
j∈N Cj

, i ∈ N . (7)

III. A GGREGATION OF AREGULAR MARKOV CHAIN

In this section, we summarize the main results of our
recent work [9], in which KL divergence rate is used to
aggregate a regular discrete-time Markov chain. The notation
(π, P ) is used to denote a regular Markov chain with the
transition matrixP and the stationary distributionπ.

A. KL divergence rate for Markov chains

For model reduction problems, it is of interest to compare
two Markov chains(π, P ) and (̟,Q) defined on different
state spacesN and M, respectively. Letφ denote the
partition function fromN to M and π be the invariant
measure onN such thatπP = π. The KL divergence rate is
defined for two Markov chains ondifferent state spacesas:

R(P ‖ Q̂(π)(φ)) =
∑

i,j∈N

πiPij log

(
Pij

Q̂(π)(φ)ij

)
, (8)

where

Q̂
(π)
ij (φ) =

πj∑
k∈ψ(j) πk

Qφ(i)φ(j), i, j ∈ N

whereψ(j) = φ−1 ◦ φ(j) ⊂ N denotes the set of states
belonging to the same group as thejth state.

B. Optimal aggregation problem

Let (π, P ) be a given regular Markov chain onN . Them-
partition problem, is to find the partition functionφ : N 7→
M and the optimal aggregated Markov chain(̟,Q) such
thatR(φ)(P ‖ Q) is minimized:

min
φ,Q

R(φ)(P ‖ Q)

s.t.
∑

l∈MQkl = 1, k ∈ M
Qkl ≥ 0, k, l ∈ M

whereR(φ)(P ‖ Q) = R(P ‖ Q̂(π)(φ)) and constraints arise
due to stochastic property of the Markov transition matrix.

As shown in Theorem 3 of [9], for a fixed (say an optimal)
partition functionφ, the optimal aggregated Markov chain
(̟(φ), Q(φ)) can be easily obtained as a function ofφ

Qkl(φ) =

∑
i∈φ−1(k)

∑
j∈φ−1(l) πiPij∑

i∈φ−1(k) πi
, k, l ∈ M. (9)

The stationary distribution ofQ(φ) is given by

̟k(φ) =
∑

i∈φ−1(k)

πi, k ∈ M. (10)

Then them-partition problem becomes to obtainonly the
optimal partition functionφ∗ such that

φ∗ ∈ arg min
φ:N 7→M

R(φ)(P ‖ Q(φ)), (11)

where Q(φ) is the optimal aggregated Markov transition
matrix (9) with the partition functionφ.

In [9], a spectral partitioning algorithm is proposed to ob-
tain a suboptimal solution of (11): For bi-partition problem,
φ∗ is given by the sign-structure of the second eigenvector
of the symmetric matrixP̂ = 1

2 (Π
1

2PΠ− 1

2 + Π− 1

2PTΠ
1

2 ),
whereΠ = diag(π). The sub-optimal solution of the multi-
partition problem is obtained via recursive application ofthe
bi-partition algorithm.

IV. T HERMAL INTERPRETATION OFAGGREGATION

In this section, we apply the aggregation methodology
for Markov chains to obtain a reduced-order model for the
building thermal model (1).

A. Optimal reduced-order model

By letting t → 0, we obtain the Markov transition matrix
for the full-order building thermal model (1) defined onN :

P (t) = eAt = I +At+O(t2), (12)

whereI is then×n identity matrix andA is the transition-
rate matrix defined in (2). The stationary distribution of
P (t) is π, which can be explicitly obtained in terms of the
capacitances of building thermal system (see (7)).



Similarly, we have the aggregated Markov transition ma-
trix for the reduced-order model (3) defined onM:

Q(t) = eĀt = I + Āt+O(t2), (13)

whereI is them ×m identity matrix andĀ is the super-
transition-rate matrix. The stationary distribution ofQ(t) is
denoted by̟ , which can be obtained in terms of the super-
capacitances

̟k =
C̄k∑
l∈M C̄l

, k ∈ M. (14)

Substituting (12) into (9), we obtain the formula for the
optimal aggregated Markov transition matrix for a fixed
partition functionφ, for k, l ∈ M:

Qkl(t, φ) =

∑
i∈φ−1(k)

∑
j∈φ−1(l) πi(1l{i=j} + Aijt + O(t2))

∑
i∈φ−1(k) πi

,

= 1l{k=l} +

∑
i∈φ−1(k)

∑
j∈φ−1(l) πiAij

∑
i∈φ−1(k) πi

t + O(t2).

(15)

By comparing (13) and (15), we obtain the optimal super-
transition-rate matrix with the partition functionφ:

Ākl(φ) =

∑
i∈φ−1(k)

∑
j∈φ−1(l) πiAij∑

i∈φ−1(k) πi
, k, l ∈ M. (16)

By substituting (7) into (10), we obtain the stationary
distribution of the optimal aggregated Markov chain

̟k(φ) =
∑

i∈φ−1(k)

πi =

∑
i∈φ−1(k) Ci∑

l∈M

∑
j∈φ−1(l) Cj

. (17)

By comparing (14) and (17), we obtain the formulae for
super-capacitances

C̄k(φ) =
∑

i∈φ−1(k)

Ci, k ∈ M. (18)

Using (16) and (18), we obtain the formulae for super-
resistances

R̄kl(φ) =
1

C̄k(φ)Ākl(φ)
, k 6= l ∈ M.

Thus, after the aggregation of states/nodes, the reduced-order
model is also an RC-network for any fixed partition function
φ.

Comparing the full-order model and the optimal reduced-
order model with Ā(φ) given in (16), we find that the
relationship between the super-temperature vector and the
temperature vector is defined by a linear transformation:

T̄
(φ)
k (t) =

∑

i∈φ−1(k)

(Ci/C̄k)Ti(t), ∀t ≥ 0, k ∈ M. (19)

Since the row sums of̄A(φ) are also all zeros, then the
optimal reduced thermal model is also conservative. The
invariant quantity for the reduced thermal model is denoted
by

V̄ (φ) :=
∑

k∈M

C̄kT̄
(φ)
k (0). (20)

TABLE I

NUMERICAL VALUES FOR THEFULL -ORDERMODEL

C1 = 0.1 C2 = 0.15 C3 = 0.2 C4 = 0.25

R12 = 0.15 R34 = 0.15 R23 = 1.5

Substituting (19) into (20), we have, for any partition func-
tion φ

V̄ (φ) =
∑

k∈M

∑

i∈φ−1(k)

CiTi(0) = V.

This means that the aggregation does not change the invariant
quantity (total heat) of the thermal system.

The “optimal” model described so far is for a given fixed
partition functionφ. The optimal partition functionφ∗ is
obtained via recursive application of the spectral partitioning
method.

B. Modeling error defined as KL divergence rate

We denote the full-order building thermal model asΥ
and the optimal reduced-order model withm super-states
as Ῡ(m).

We define the modeling error betweenΥ and Ῡ(m) in
terms of the KL divergence rate. By following the method-
ology presented in Section III, we obtain the KL divergence
rate as

R(Υ ‖ Ῡ(m)) =
∑

i,j∈N ,i6=j

πi(Aij log(Aij) −Aij)

−
∑

i,j∈N ,φ(i) 6=φ(j)

πiAij log
( πj∑

k∈ψ(j) πk
Āφ(i)φ(j)

)

−
∑

i,j∈N ,φ(i)=φ(j)

πi(Āφ(i)φ(j) −Aii log
πj∑

k∈ψ(j) πk
),

(21)
whereπ is the stationary distribution of the full-order model
Υ, A denotes the transition-rate matrix ofΥ, φ = φ∗ is the
optimalm-partition function,Ā = Ā(φ∗) denotes the super-
transition-rate matrix for the optimal reduced modelῩ(m).

V. EXAMPLE AND DISCUSSION

In this section, we apply the model reduction method
developed in the previous section to two examples.

A. Model reduction of a2-adjacent-room building

First, we consider the model reduction problem for the
basic element of any building thermal model: two adjacent
rooms without other thermal interactions (see Fig. 2). The
thermal dynamics can be represented by an equivalent RC-
network as also shown in Fig. 2, whereT1 andT4 are the
temperatures for Room1 and Room2 respectively,T2 and
T3 are the internal temperatures for the connecting walls.

The building thermal model is defined in (1), where the
transition rate matrix for this example is given by

A =





− 1
C1R12

1
C1R12

0 0
1

C2R21

− R21+R23

C2R21R23

1
C2R23

0

0 1
C3R32

− R32+R34

C3R32R34

1
C3R34

0 0 1
C4R43

− 1
C4R43



 ,



Fig. 2. The RC-network representation of the full-order thermal model for
a 2-adjacent-room building without other thermal interactions.

Fig. 3. The RC-network representation of the reduced-orderthermal model
for the 2-adjacent-room building.

where numerical values of the capacitances and resistances
are given in Table I.

By choosing the sampling time∆t = 0.01, we can
approximate the continuous model (1) by a discrete-time
Markov chain, where the probability transition matrix is
approximated by

P (∆t) ≈ I+A∆t =





0.3333 0.6667 0.0000 0.0000
0.4444 0.5111 0.0444 0.0000
0.0000 0.0333 0.6333 0.3333
0.0000 0.0000 0.2667 0.7333



 ,

whose stationary distribution is given byπ =
[0.1429, 0.2143, 0.2857, 0.3571]. The following symmetric
matrix is then obtained for solving the eigenvalue problem

P̂ =





0.3333 0.5443 0.0000 0.0000
0.5443 0.5111 0.0385 0.0000
0.0000 0.0385 0.6333 0.2981
0.0000 0.0000 0.2981 0.7333



 ,

whose second largest eigenvalueλ2 = 0.9605 and the
corresponding eigenvector is given by

u(2) = [−0.5251,−0.6049,+0.3628,+0.4762].

The sign-structure ofu(2) suggests the optimal bi-partition
functionφ∗ = [1, 1, 2, 2]. That is, the states{1, 2} should be
aggregated as the first group and the states{3, 4} should
be aggregated as the second group. This optimal partition is
also consistent with the fact that the Markov chain(π, P ) is
nearly completely decomposable.

Using (16) with the optimal bi-partition functionφ∗,
we obtain the super-transition-rate matrix for the optimal

TABLE II

NUMERICAL VALUES FOR THEREDUCED-ORDERMODEL

C̄1 = C1 + C2 = 0.25 C̄2 = C3 + C4 = 0.45

R̄12 = R̄21 = R23 = 1.5

reduced-order model

Ā =

[
− 1
C̄1R̄12

1
C̄1R̄12

1
C̄2R̄21

− 1
C̄2R̄21

]
,

where numerical values of the super-capacitances and the
super-resistance are summarized in Table II. The RC-network
representation of the reduced-order model is shown in Fig. 3.

This example also shows that the proposed method yields
a reduced model that is physically meaningful. Since the
resistance (R12 or R34) between the two capacitors (C1 and
C2, or C3 and C4) is small, then the two capacitors are
combined into one. Since the internal resistanceR23 is the
predominant one, it is retained in the reduced model. Finally,
the reduced model is also an RC-network just as the original
model was.

B. Model reduction of the4-room building

We consider the4-room building as shown in Fig. 1
(a). There are four rooms inside the building. Rooms are
connected with each other through the internal walls, and
also with the outside through ceilings, floors, windows and
external walls. To simplify the model, we assume virtually
no air exchange between rooms occur through the doors.

By inter-connecting the RC-network models for individual
walls, floors and ceilings, we represent the entire buildingby
a large RC-network as shown in Fig. 1 (b). There are total37
nodes of this RC-network, associated with37 temperatures:

• {T1, T2, T3, T4} for the 4 room nodes;
• {T5, T6, . . . , T12} for the 8 internal wall nodes;
• {T13, T14, . . . , T20} for the 8 internal floor nodes;
• {T21, T22, . . . , T28} for the 8 internal ceiling nodes;
• {T29, T30, . . . , T36} for the 8 external wall nodes;
• {T37} for the 1 outside node.

Generally, each nodei is assigned a capacitanceCi, two
adjacent nodesi andj are connected with a resistanceRij .
The windows are modeled as single resistors since they have
relatively little capacitance. The outside air has a much larger
capacitance than the air inside the rooms. So, we assign a
very large value to its capacitance, i.e.,C37 = 1010.

The transition-rate matrixA for the building thermal
model is a37×37 matrix obtained according to the building
topology and associated capacitances and resistances, which
are calculated for a specific wall material and insulation type
as explained in Section I. By choosing the sampling time
∆t = 0.01, we obtain the transition matrixP = eA∆t for the
Markov chain representation of the building thermal model.
Then the recursive bi-partition algorithm [9] is employed
to solve them-partition problem and obtain the optimal
reduced-order model withm super-nodes. Withm = 1, all
nodes belong to the same group. The modeling error is given
by R(Υ ‖ Ῡ(1)) = 3.67 × 10−4.

The bi-partition divides the node set into two groups: the
first group contains all non-outside nodes:{1, 2, . . . , 36},
and the second group contains only the outside node:{37}.
Such an aggregation makes sense because with a large time-
scale, the temperatures of nodes inside the building will



(a) (b) (c)

Fig. 4. The group information of building nodes for (a) the3-partition, (b) the5-partition, and (c) the9-partition. Note that the red region (the third
group) is corresponding to a single “outside” node{37} in the graph.
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Fig. 5. Depicts the modeling error as a function of the numberof partitions.

all asymptotically approach the outside temperature. In a
Markov chain representation, the outside node is a nearly
absorbing state and all other states are nearly transient.
The Modeling error for the bi-partition is given byR(Υ ‖
Ῡ(2)) = 2.15 × 10−4.

The 3-partition divides the node set into three groups by
further partitioning the set of nodes inside the building: the
first group consists of all (wall, ceiling and floor) nodes as-
sociated with Room3: {3, 6, 9, 10, 11, 15, 19, 23, 27, 31, 35},
the second group contains all other nodes associated with
Rooms1, 2, 4, and the third group contains only the outside
node:{37} (see Fig. 4 (a)).

By recursively applying the bi-partition algorithm, we
can partition the node set into more groups. Figure 4 (b)
illustrates the5-partition results. After the5th partition, we
have the following five groups: one group containing only
the outside node, and the other four groups with each group
containing the nodes associated with one of the four rooms.
A partition with more than5 super-states (i.e.,m > 5) will
partition the nodes inside individual rooms. For example,
Figure 4 (c) depicts the partition results for the9-partition
problem.

Fig. 5 depicts the modeling errorR(Υ ‖ Ῡ(m)) as a
function ofm (the number of super-nodes) for the first nine
partitions. The modeling error decreases rapidly fromm = 1
to m = 6. For m > 6, the modeling error decreases more
gradually. The modeling error plot suggests that the model
with 6 super-nodes is the “most-appropriate” reduced-order
model: Reducing a super-node causes the modeling error to
increase by a large amount, while adding additional super-

nodes leads to only a small amount of reduction for the
modeling error.

VI. CONCLUSIONS

In this paper, a building thermal model is reduced via the
aggregation of states. The original model is an RC-network,
with a large number of coupled linear differential equations.
The conservative nature of the thermal model is used to draw
an analogy to regular Markov chains. The KL divergence rate
serves as a metric for the modeling errors. A key advantage
of the proposed technique is that reduced model retains the
physical intuition of the original model: it is also an RC-
network model. An additional advantage of the method is
that the degree of reduction can be controlled by the user.
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