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_Abstract— In this paper, we consider the problem of dis- paramater model for a medium-size commercial building
tributed set-point temperature regulation in a large building.  with about100 zones will have a state dimension close to
With a large number of zones, the problem becomes intractalel 1000 [6].

with standard control approaches due to the large state spac In thi decentralizecbptimal trol
dimension of the dynamic model. To mitigate complexity, n this paper, we proposeaecentralizecoptmal contro

we develop here a mean-field control approach applicable Strategy for the zones of a multi-zone building where model
to large-scale control problems in buildings. The mean-fiel ~complexity is mitigated by using a two pronged approach.
here represents thenet effect of the entire building envelope  First, we use recently developed aggregation-based model
on any individual zone. Rather than solving the large-scale aqyction techniques [7] to construct a reduced-order inode
centralized problem, we explore distributed game-theordt - S .

of the multi-zone building’s thermal dynamics. Second, we

solution approaches that work by optimizing with respect to . o 7 )
the mean-field. The methodology is illustrated with a numercal ~ Use the mean-field intuition from statistical mechanicshso t

example in a simulation environment. the effect of other zones on a particular zone is captured
though amean-fieldnodel [8]. Then the whole model (even
|. INTRODUCTION the reduced model) does not have to be used in computing
Buildings are one of the primary consumers of energyh€ controls over short time scales.
In the United States, buildings are responsible $6% of By using the mean-field idea, we cast the control prob-

energy consumption, an@l% of electricity consumption, €M as a game, whereby each zone has its own control
while accounting for33% of CO, emissions [1]. A large objective modeled as set-point tracking of the local (zpnal
amount of the energy consumed in buildings is wastedemperature. In general, the control problem quickly beesm
A major reason for this wastage isefficienciesin the intractable for even a moderate number of competing ob-
building technologies, particularly in operating the HVACI€ctives. In order to mitigate complexity, we employ the
(heating, ventilation and air conditioning) systems. EhesNash Certainty Equivalence principle to obtain a mean-field
inefficiencies are in turn caused by the manner in whicAescription [9]. The mean-field here representsrtaeeffect
HVAC systems are currently operated. The temperature @f the entire building envelope on any individual zone. A
each zone is controlled by a local controller, without reigar l0cal optimal zonal control is designed based on the local
to the effect that other zones may have on it or the effedpodel of thermal dynamics and its interaction with the

it may have on others. Substantial improvement may Hulilding via the mean-field. A consistency relationship is
possible if inter-zone interactions are taken into accannt USed to enforce the mean-field in a self-consistent manner.

designing control laws for individual zones. The methodology is shown to yield distributed control laws

In fact, there is a growing interest in optimal control methihat can easily be implemented on large-scale problems.
ods to minimize building-wide energy consumption based e compare the performance of the proposed controller
on dynamic models [2]—[5]. Such control techniques requird/th thatlof a Pl controller. Contrqller_s currently used in
a model of the transient thermal dynamics of the buildingommercial buildings use a combination of discrete logic
that relates the control signals to the space temperature &td PID type controllers. Simulations show that the progose
each zone. A challenge in developing such techniques is tieheme achieves comparable temperature tracking perfor-
complexityof the underlying models due to large dimensiof"@nce while reducing energy consumption by reducing the
of state-space and a large number of control objectives. Rass-flow rates entering the zones.
modell OIbased on r:h(; first-princiﬁlles will be éli large shet of Il. BUILDING THERMAL MODEL
coupled PDEs, which is intractable in general. Even the sg- , .
callgd reduced order models that rely %n a lumped resistc()Ar—' Conl_‘|gurat|0|j1 of HVAC system _ _
capacitor analogy of walls and windows lead to models A typical multi-zone HVAC system used in modern build-

with large state space. For example, a reduced order lumplgs is the Variable-Air-Volume (VAV) system. Such a sys-
tem supplies air at a constant temperature. The airflow to the
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s Upstream . The supplied air temperaturB® is usually constant for
- Downstream a VAV system, at least over short intervals of time. All

l‘”‘ © m g "y other inputs are time varying. In this paper we assume that
B4 4 (estimates of) the outside temperatdieand the heat gains
@ . . QM Q¢ are available based on historical data, weather
predictions, and various sensors.
reEdiPe The thermal dynamics of a multi-zone building, described
%? by a graphG, is represented by the following coupled
Zone 3 Zone 4 differential equations: For eache V,
R my = Zximt CiTy(t) = Qi(t) + AHi(t) + Y (T5(t) = Tu(t))/ Ry
"g'<—@ JEN

whereN; := {j € Vo : j # 4,(i,j) € £} denotes the set
of neighborsof the nodei. The heat gain; is the rate of
thermal energy entering the nodefrom external sources,
r%her than ventilation air and conduction from neighboring

Fig. 1. The configuration of a four-zone building HVAC system

the zone temperature at a specified value, by controlling t

mass flow rate of air supplied to the zone using dampergpqes ) . )
The total air flow rate of the entire system therefore varies Qi(t) = QF (t) + Q"' (t) + Q™ (1), i=1,...,N
with time. Zonal controllers at VAV boxes may also apply Qi(t) =0, i=N+1,...,n.

reheat _(addlng heat) or pre-co_olln_g (removing heat) toThe ventilation heat exchang& H; is the rate of thermal
the conditioned air before supplying it to the zone.

energy entering the nodedue to ventilation:

AH;(t) = Cpamni™(t)(T* — T;(1)), i=1,...,N

A building thermal model is constructed by combining el- Hi(t) =0 i= N+1 n
emental models of conductive interaction between two zones ~ * ’ T
separated by a solid surface (e.g., walls, windows, cailingwhere Cp, is the specific heat capacitance of the supplied
and floors). A lumped parameter model of conduction acrogdl at constant pressure. In the following, the mass flow rate
a surface is assumed to be a RC-network, with current aid”" is the control inputu, i.e.,u; = ;" fori=1,..., N.
voltage being analogs of heat flow and temperature [10]. ¢, Reduced building thermal model

The resulting model can be described by wamdirected
graph G = (W, £), where), := {0} UV denotes the set of
nodesof the graph. The nodf0} denote the outside and the
setV := {1,...,n} denotes the building nodes. The node
are so indexed that the firéf nodes ofV correspond to the
zonesl,..., N, and these are called ttmone nodesThe
next (n — N) nodes of) correspond to the internal points
of the surfaces. These are called thiernal nodesAn edge

(i,7) exists between nodesand j if there is a resistance partition functione : V — ¥, whereV := {1,...,m} such

connecting them directly. The sét C Vy x V), is the set . ;
of all edges Therefore each edg@, j) has an associated that ¢ is onto but possibly many-to-one. The elements of

thermal resistance?;; € R. Since the graph is undirected,Vj1re the s_uper-nodes, and fo_r evary V’. the node set
R;; = Ri; by convention. Each nodec 1 has an associated ¢~ (k) C Vincludes the nodes in the baseline model that are
thjelrmal léapacitancé‘- ' aggregated into théth super-node. Similar to the baseline

The states and inputs of the building thermal model armodel, we let{0} denote the outside node and define the set

. _ Po == {0} U V.
summarized below. Given a fixedm-partition function¢, we introduce the

States : T1, . .., T Ty T following quantities for the reduced model:
Inputs : Ty, T%;m!™, QF, Q™ Q™ i =1,...,N « Thesuper-capacitancef the kth partition is the combi-
nation of all capacitances of the nodeskitn partition:

B. Baseline building thermal model

In this section, we describe a reduced-order building
thermal model by using an aggregation technique [7]. The
reduced models will be used in Section Il to develop
?he mean field control strategies. To obtain the reduced
model, we aggregate a subset of nodes istiper-nodes
Mathematically, suppose we want to reduce the state space
dimension fromn to m, wherem < n is the (user-specified)
number of super-nodes. The first step is to determine a

whereT1, ..., T denote the space temperature of the zones,
Tni1,-- ., T, denote the temperature of the points internal @licb) — Z C,, kev.
to the surface element$}, denotes the outside temperature, )

T denotes the temperature of the air supplied by the AHU,
mi" denotes the mass flow rate of the supply air entering
the ith zone,Q7 denotes the rate of heat due to rehé}t:*
denotes the rate of heat generated by occupants, equipments
and lights in theith zone, and@fwt denotes the rate of solar R ._ 1 k£leV
radiation entering theth zone. e Y o) jes—ry L/ Rij’ '

icp—1(k
o The super-resistancédetweenkth andith partitions is

the parallel-equivalence of all resistances connectiag th
nodes between two partitions:




« The super-loadof the kth partition is the combination
of all thermal loads for the zones in tti¢h partition:

QM= > Qi

i€gp=1(k)

keV.

with T_; := (T}j);+;. The control problem for théth zone
is to minimize the finite-horizon cost function

The reduced-order model is also a RC-network defined omhere

super-nodes with super-edges connecting these supes-node
Its thermal dynamics is represented by the following codiple

differential equations: For eadhc V,
Q)+ AH (1)

+ > (D)

lENk

COTu(t) =

t)/Ry L)

whereT}, is the temperature of thigh super-nodeV; C V,
denotes the set of neighbors of thiéh super-node, and the
ventilation heat exchange for thi¢h super-node is given by

>

i€p—1(k)N{1,...,N}

>

1(k)N{1,...,N}

The initial condition of the reduced model (1) at initial #m
to is defined as

AH;(t)

Cpatiti™ ()(T* = Ti(1)).

€D

Tu(to) = Y (Ci/CY)Tilto), keV.
icp—1(k)

Note that the reduced model (1) requires for its inputs

the mass flow raten!" and the zone temperatutg for

. = 1,.

measured.

The reduced model described so far depends on the choice

of the partition functiong. We should note that anyn-
partition functiong induces a reduced model with super-
states. In [7], we proposed a recursive bi-partition aktponi
to search for the sub-optimat-partition functiong*. How-
ever, one can also directly choose a sub-optigfdbased on
physical intuition (e.g., floors in a multi-zone building)t

some kind of expert-based heuristics. The goodness of the

reduced model (1) with* can be verified in practice. In this

paper, we will not discuss the algorithms for choosing the

optimal partition functiong*. In the following, we assume

that¢* has already already properly specified, and we mainly
focus on how to design optimal control laws by taking

advantage of the reduced building model.

I1l. M EAN-FIELD CONTROL

We considetV zones, each with its local set-point tracking

control objective. The dynamics of thi¢h zone is given by

Ti = 15 (Ty; T—s) + by(Th)u; + d; 2
where
(T To) == > (T; = T))/(CiRij),
JEN:
bi(Ty) := Cpu(T* — T3)/Cs, di == Qi/Ci,

,N. These are assumed to be available, or are 0]

ty
Ji (ugsu—sy) :/ (T, ui)dt (3
to
1 2 2
(T, ui) == =AT” + —rus, 4)
2 2
with the tracking errorAT; := T, — 77", and a given

scalarr > 0 as control penalty. ANash equilibriumin
control policies is given by{u?} ¥, such that; minimizes
JI? (ug; u* )forz—l ,N.

We denoteR (de/\/i 1/R;;)~! and define the time
constant for thez‘th zone ast; = C;R;. The individual
zones are distinguished by their initial conditidfig0), set-
point T, loadsd; and the time-constants. We introduce
a parametew := (7'(0),7*“,7,d), and consider a large
number N of zones, wherew is sampled from a given
distribution p(w). For each zonei, the parametew; is
assumed to be i.i.d., with common distribution ~ p(w).

We seek a control solution that is decentralized and of
the following form: For eachi € V andty, < ¢t < ty,
the control inputu,(t) depends only orocal information
{Ti(s) : to < s < t}, and perhaps somaggregate
information This amounts to a dynamic game, whose exact
solution is infeasible for largev.

Instead we construct an approximation of the form de-
scribed in [11]. This approximation is based on the aggre-
gated models described in Sec. II-C with the following steps

We identify a small number of super-nodes that
describe the slow evolution of the thermal dynamics
of the building. To simplify the introduction of the
mean-field control method, we consider here only
the simplest case: we use a single super-node to
represent the entire building.

We consider an approximation of the interaction
between a single zone and the entire building. Moti-
vated by the consideration of the physics of thermal
interactions (large time constants for interactions)
and the separable nature of the control objectives
(e.g., (3)), we consider an approximation based on
replacingl’_;(t) by F'(t), a known function of time.

In particular,l?(T;(t); T—;(¢)) in (2) is replaced by

Ti(t) — F(t)

Ti

(iii)

L(Ti(t); F (1) = — (5)
Comparison ofi¢ and I; suggests the following
approximation

~
~

F(t) = T(t). (6)
For the local model (2) withi(T;;T_;) replaced
by I;(T;; F), the game reduces to decentralized
optimal control problems. The individual zones are
“oblivious” to the state of the entire system and
make their control decisions based only on local

state variables.

(iii)



(iv)

A form of self-consistencys required: oblivious

B. Coupled model

actions of individual zones reproduce the evolution \we now provide a complete description of theupled

of T  as described by the aggregated model.

modelthat is intended to approximate the game model for

In the following subsection we develop the “oblivious”large N. This model is based on the interaction function

solution described in (iii). We then turn to the self-cotesig

F(t) introduced in the preceding section. A value function

aggregated model in (i) that defines the approximate intefunction J*(T’#;w) for the large N model is defined by
action (6) in (ii). Mathematically, we obtain a fixed-pointthe following differential equation identical to the HJB

problem.

A. Local optimal control of a single zone

Suppose the interaction functiafi(¢) is given, possibly
in a time-dependent form for € [tg,t1]. We consider the
following dynamics for the single-zone:

Ty = Li(T5; F) + bi(T)us + d;

wherel; is given by (5).

equation (9) for the single-zone model.

9" _ 10(T) (8J*)2 Ly (ai) _ %AT?

ot 2 r oT oT
The associated optimal feedback control law is then defined

” (o
(Grn)

Given the feedback control law (10), the differential equrat
that defines the evolution of the super-temperaiuie given

u (T, F) = (10)

The control problem for single zone model is to choos8Y

the control lawu; so as to minimize the finite-horizon cost

function

t1

to

The solution of the optimal control problem with the cost

CT(t) = (To(t) = T(t))/Ro + U(t)
where
U(t)

N / (Q(t: ) + Cpatr™ (Tt w); F) (T — T(t0)))plw)des

function J;(u;; F') is standard. It is given in terms of the The only difference thus far is notational; (T, ¢) is the

optimal cost-to-go functiolr value function

{/ ' T}

The value functionJ; is known to satisfy the Hamilton-
Jacobi-Bellman (HJB) equation

oJ;

e B T QY

oT; ) }

{Hl (1111 Us,

with the boundary conditiow;(7;,t;) = 0. The Hamilto-
nianin (7) is defined for\ € R

JI (T;,t) = min

Us

oJ;

2

+ min

Usg

(@)

Hi(Ti,ui, N) := ci(Ti,uq) + AN(1(Ti; F) 4 b (T)uyq)
with
1i(Ty; F) := 1;(T3; F) + d;.
The optimal control in (7) is explicitly obtained as

bi(T;) (OJF
r

ui (T3 F) = — T

@n).  ®

value function for a single zone with parametey, and
J*(T,t;w) is the value function for a large number of zones,
distinguished by their ow. Such is the case because we
have assumedF'(¢) is a known deterministic function that

is consistent across the population. All that remains is to
specify F(t) in a self-consistent manner. The consistency
enforced here is inspired by the approximation given in (6).
The two PDEs are coupled through this integral that defines
the relationship between the interaction functiBrand the
mean temperaturg’:

F(t) =T(t).

In summary, the coupled PDE model is given by: Far
[to, t1],

aJ*  103(T) (9J*\? _ oI\ 1. .,
3 <a¢r) _Z(T’F)<6T>_§AT

(12)
CT(t) = (To(t) — T(t))/Ro + U(2) (12)
F(t) =T(t) (13)

with boundary conditions/*(T,t1;w) = 0 and T'(t)

21 (Ci/C)Ti(to)-
Numerically, the optimal control may be obtained by

Substituting (8) into (7), we obtain the HIB equation foiteratively solving the equations (11) and (12) over a suffi-

Ji* (Tlv t):

aJr  1bX(Ty) (0J7\° oI\ 1.,
at 2 7 (8TZ—) _li(T”’F)<an)_§ATi‘
)

ciently long time-horizon. A waveform relaxation algorith

for solving such equations appear in our earlier paper [h2].
the following, we propose an approximate solution based on
the observation that the value function is known to approxi-
mately become a constant for large terminating times [13].



C. Approximate local optimal control 2‘2‘ 4

In this section, we propose an approximation approacs s,
to the solution of coupled PDE (11)—(13) by considering th@ 28
the equilibrium solutionsBy settingd.J* /0t ~ 0 and letting =26

F =T in (11), we consider the equilibrium solution to (11): 2*
22

Q (KJ/sec)

*\ 2 B * ot ity il b
K(T) (‘ZLT) —2m(T, T) (%) —n(AT)=0 @4 ° ° fepen T Tmepen
(@) (b)

where we define
_ — Fig. 2. Exogenous inputs for 24 hour period in Gainesville, FL: (a)
k(T) = b? (T), m(T,T) :=rl(T;T), n(AT) := rAT?. outside temperature and (b) heat gains of each zone.
SinceT” (the temperature of supplied air) is always strictly
less/more thanl’ (the temperature of zone) when cool-
ing/heating, then we always have
A. Basic setup

k(T) = (Cpa(T* —T)/C)* > 0. _ _ : .
_ (T) = (Chal )/ _) _ Simulations are carried out for the four-zone building
Thus (14) is a second order equation, whose solutions asRown in Fig. 1: All four zones/rooms have an equal floor

IV. SIMULATION AND DISCUSSION

given by, area of5m x 5m and each wall i$m tall, which provides
9T m(T,T)  /m2(T,T) + k(T)n(AT) a vqumetrig area of5m? for each.ro.om. The RC—net_work
( 9T > = k(T i) . representation of the four-zone building has tot&lybuild-
* ing nodes plusl outside node [7]. Each building node is
For anyT, AT, andT, we can check assigned with a thermal capacitance, two adjacent nodes
9.J* 9T are connected with a thermal resistance. The windows are
(6T> >0, ( > <0 modeled as single resistors since they have relativelg litt
+ capacitance. The values of the capacitances and resistance
We would like to construct a “value function™ such that are obtained from Carrier's Hourly Analysis Program [14].
it is approximately convex with respect # with minimum The HVAC system used for simulation is designed to
achieved atAT = T — T°° = 0. One possible choice is  supply maximal mass flow rate 0f25 kg/s per zone. The

-, . . mass flow rateni” for i = 1,...,4 for four zones can be

Bi - { (BJ*/aT)+’ !f AT 20 (15) adjusted based on designed control laws. The supplied air
oT (9" /0T) _, if AT <0. temperature is fixed daf* = 12.8°C. Here we assume there

However, such a choice 0¢3j*/3T) is not a smooth IS no return air and00% of the outside air is sent to chiller.

function of 7', and neither is the associated control law (10)Number of people in each zone is uniformly generated
Note that the mass flow rate (the control) is usually varie@S @ random integer ranging betweeénand 4. Outside
continuously to regulate the zone temperature for a bugldin temperature and outside solar radiation data is obtained fo
To obtain a smooth control law, here we consider a smoofh SUmmer day (/24/1996) of Gainesville, FL [15]. The

approximation to the sign function, outside temperature and the heat gains (due to solar raliati
| — o2z and people occupancy) of each zone are depicted in Fig. 2
sgn(z) ~ tanh(cr) = ————, for ¢>1. (16) (a) and Fig. 2 (b), respectively.
L4em=er Numerical results presented in the following are obtained
Then we modify (15) to obtain the following smooth approx-using ode45 function in Matlab for24 hours with the time
imation: step size chosen a#) minutes. All temperatures of the
oT* m(T,T) Vm2(T, T) + k(T)n(AT) building nodes are initialized a24°C, respectively. The
T k(T) + tanh(cAT) k(T) desired zone temperaturég® for i = 1,...,4 are varying
. . . with time and are depicted as solid lines in Fig. 3.
The approximate local optimal control law is chosen as
- B. Simulation results
. o(T) [ oJ* - )
u(TT) = - " ( 9T (T;T)> : 17) To compare performance of the proposed controller with
existing control algorithms commonly used in commercial
By settingT ~ 0 in (12) and substituting (17) into (12), buildings, we consider the following decentralized PI coht
we can obtain the equilibrium solutigh* > 0 by solving law: Fori=1,....4,
a second order equation (we omit the details here). Finally, _ t
the stationary local optimal control law is given by m;" (t) = KpATi(t) + Ki/o AT;(s)ds (19)
T(T) = _b(T) <8J* (T; T5)> (18) where the tuned proportional gaffj, = —0.00005, the tuned
r or "’ ’ integration gaink; = 0.0001, and the temperature tracking

error AT; := TFet — T;.
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Fig. 3. Comparison of (a) zone temperatures and (b) zone-fltwgsates obtained by using PI control law and mean-fieldtrobriaw with » = 10.

The mean-field control is implemented based on the staoensumption in the operation of HVAC systems. Moreover,
tionary nonlinear policy (18). For the four-room buildinge the tradeoff between tracking performance and the energy
only consider the reduced model with one super-node. Thsavings can be made by adjusting the control penalty pa-

control performance becomes slightly better by adding momam
super-nodes into the reduced model. One may expect larger
performance improvement by considering more super-nodes
for more complex building topologies. (1]
In this paper, we take = 10 in the individual cost func- 3
tion (4), and we take = 5 for smooth approximation of sign
function in (16). We apply mean-field control law (18) and PI
control law (19) to each zone, respectively. The comparisory;
results of simulated zone temperatures are depicted in3Fig.
(a). The comparison results of mass-flow rates associated
with two control laws are depicted in Fig. 3 (b). We observey
that the mean-field control has better temperature tracking
performance than that for Pl control (see Fig. 3 (a)). [ !
The total energy consumption of each zone can be com
puted based on the mass-flow rate entering each zone [6].
Here the total energy consumption is the combination of farf]
power and the chiller power consumptions. For PI control
law, the energy consumption (kWh) for each zones9s3,
72.5, 45.2, and55.9, and the total energy consumption for
all four zones is242.9; For mean-field control law, the
energy consumption for each zone58.6, 38.9, 34.0, and
47.7, and the total energy consumption for all four zones isf®!
179.2. In this case, the mean-field control thus reduces total
energy consumption b5% over the PI control. One could
expect more energy savings (but worse temperature trackiHg!
performance) by increasing the control penalty parameter
[11]

(7]

(8]

V. CONCLUSIONS

In this paper, we develop the mean-field methodology
as a means to mitigate complexity associated with larggt2]
scale control problems in buildings. Rather than solving
the large-scale centralized problem, we explore disteidbut [13]
game-theoretic solution approaches that work by optirgizin
with respect to the mean-field. Simulation results show4l
that the proposed mean-field scheme achieves comparaﬁg?
temperature tracking performance while reducing energy

eter in the mean-field scheme.
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