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Abstract— In this paper, we consider the problem of dis-
tributed set-point temperature regulation in a large building.
With a large number of zones, the problem becomes intractable
with standard control approaches due to the large state space
dimension of the dynamic model. To mitigate complexity,
we develop here a mean-field control approach applicable
to large-scale control problems in buildings. The mean-field
here represents thenet effect of the entire building envelope
on any individual zone. Rather than solving the large-scale
centralized problem, we explore distributed game-theoretic
solution approaches that work by optimizing with respect to
the mean-field. The methodology is illustrated with a numerical
example in a simulation environment.

I. I NTRODUCTION

Buildings are one of the primary consumers of energy.
In the United States, buildings are responsible for30% of
energy consumption, and71% of electricity consumption,
while accounting for33% of CO2 emissions [1]. A large
amount of the energy consumed in buildings is wasted.
A major reason for this wastage isinefficienciesin the
building technologies, particularly in operating the HVAC
(heating, ventilation and air conditioning) systems. These
inefficiencies are in turn caused by the manner in which
HVAC systems are currently operated. The temperature in
each zone is controlled by a local controller, without regards
to the effect that other zones may have on it or the effect
it may have on others. Substantial improvement may be
possible if inter-zone interactions are taken into accountin
designing control laws for individual zones.

In fact, there is a growing interest in optimal control meth-
ods to minimize building-wide energy consumption based
on dynamic models [2]–[5]. Such control techniques require
a model of the transient thermal dynamics of the building
that relates the control signals to the space temperature of
each zone. A challenge in developing such techniques is the
complexityof the underlying models due to large dimension
of state-space and a large number of control objectives. A
model based on the first-principles will be a large set of
coupled PDEs, which is intractable in general. Even the so-
called reduced order models that rely on a lumped resistor-
capacitor analogy of walls and windows lead to models
with large state space. For example, a reduced order lumped
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paramater model for a medium-size commercial building
with about100 zones will have a state dimension close to
1000 [6].

In this paper, we propose adecentralizedoptimal control
strategy for the zones of a multi-zone building where model
complexity is mitigated by using a two pronged approach.
First, we use recently developed aggregation-based model
reduction techniques [7] to construct a reduced-order model
of the multi-zone building’s thermal dynamics. Second, we
use the mean-field intuition from statistical mechanics so that
the effect of other zones on a particular zone is captured
though amean-fieldmodel [8]. Then the whole model (even
the reduced model) does not have to be used in computing
the controls over short time scales.

By using the mean-field idea, we cast the control prob-
lem as a game, whereby each zone has its own control
objective modeled as set-point tracking of the local (zonal)
temperature. In general, the control problem quickly becomes
intractable for even a moderate number of competing ob-
jectives. In order to mitigate complexity, we employ the
Nash Certainty Equivalence principle to obtain a mean-field
description [9]. The mean-field here represents thenet effect
of the entire building envelope on any individual zone. A
local optimal zonal control is designed based on the local
model of thermal dynamics and its interaction with the
building via the mean-field. A consistency relationship is
used to enforce the mean-field in a self-consistent manner.
The methodology is shown to yield distributed control laws
that can easily be implemented on large-scale problems.

We compare the performance of the proposed controller
with that of a PI controller. Controllers currently used in
commercial buildings use a combination of discrete logic
and PID type controllers. Simulations show that the proposed
scheme achieves comparable temperature tracking perfor-
mance while reducing energy consumption by reducing the
mass-flow rates entering the zones.

II. BUILDING THERMAL MODEL

A. Configuration of HVAC system

A typical multi-zone HVAC system used in modern build-
ings is the Variable-Air-Volume (VAV) system. Such a sys-
tem supplies air at a constant temperature. The airflow to the
zones is controlled based on room thermal load requirements.
Figure 1 depicts the configuration of a four-zone building
equipped with a VAV system: Upstream, an air handling
unit (AHU) conditions air by passing it across the cooling
coil. A series of ducts is used to supply the cold and dry
air to VAV boxes for each of the downstream zones. Each
VAV box contains a local controller, tasked with maintaining



Fig. 1. The configuration of a four-zone building HVAC system.

the zone temperature at a specified value, by controlling the
mass flow rate of air supplied to the zone using dampers.
The total air flow rate of the entire system therefore varies
with time. Zonal controllers at VAV boxes may also apply
“reheat” (adding heat) or “pre-cooling” (removing heat) to
the conditioned air before supplying it to the zone.

B. Baseline building thermal model

A building thermal model is constructed by combining el-
emental models of conductive interaction between two zones
separated by a solid surface (e.g., walls, windows, ceilings,
and floors). A lumped parameter model of conduction across
a surface is assumed to be a RC-network, with current and
voltage being analogs of heat flow and temperature [10].

The resulting model can be described by anundirected
graphG = (V0, E), whereV0 := {0}∪ V denotes the set of
nodesof the graph. The node{0} denote the outside and the
setV := {1, . . . , n} denotes the building nodes. The nodes
are so indexed that the firstN nodes ofV correspond to the
zones1, . . . , N , and these are called thezone nodes. The
next (n − N) nodes ofV correspond to the internal points
of the surfaces. These are called theinternal nodes. An edge
(i, j) exists between nodesi and j if there is a resistance
connecting them directly. The setE ⊂ V0 × V0 is the set
of all edges. Therefore each edge(i, j) has an associated
thermal resistanceRij ∈ R+. Since the graph is undirected,
Rji = Rij by convention. Each nodei ∈ V has an associated
thermal capacitanceCi.

The states and inputs of the building thermal model are
summarized below:

States : T1, . . . , TN , TN+1, . . . , Tn

Inputs : T0, T
s; ṁin

i , Q̇r
i , Q̇

int
i , Q̇ext

i , i = 1, . . . , N

whereT1, . . . , TN denote the space temperature of the zones,
TN+1, . . . , Tn denote the temperature of the points internal
to the surface elements,T0 denotes the outside temperature,
T s denotes the temperature of the air supplied by the AHU,
ṁin

i denotes the mass flow rate of the supply air entering
the ith zone,Q̇r

i denotes the rate of heat due to reheat,Q̇int
i

denotes the rate of heat generated by occupants, equipments,
and lights in theith zone, andQ̇ext

i denotes the rate of solar
radiation entering theith zone.

The supplied air temperatureT s is usually constant for
a VAV system, at least over short intervals of time. All
other inputs are time varying. In this paper we assume that
(estimates of) the outside temperatureT0 and the heat gains
Q̇r

i , Q̇
int
i , Q̇ext

i are available based on historical data, weather
predictions, and various sensors.

The thermal dynamics of a multi-zone building, described
by a graphG, is represented by the following coupled
differential equations: For eachi ∈ V ,

CiṪi(t) = Q̇i(t) + ∆Hi(t) +
∑

j∈Ni

(Tj(t)− Ti(t))/Rij

whereNi := {j ∈ V0 : j 6= i, (i, j) ∈ E} denotes the set
of neighborsof the nodei. The heat gainQ̇i is the rate of
thermal energy entering the nodei from external sources,
other than ventilation air and conduction from neighboring
nodes:

Q̇i(t) = Q̇r
i (t) + Q̇int

i (t) + Q̇ext
i (t), i = 1, . . . , N

Q̇i(t) = 0, i = N + 1, . . . , n.

The ventilation heat exchange∆Hi is the rate of thermal
energy entering the nodei due to ventilation:

∆Hi(t) = Cpaṁ
in
i (t)(T s − Ti(t)), i = 1, . . . , N

∆Hi(t) = 0, i = N + 1, . . . , n

whereCpa is the specific heat capacitance of the supplied
air at constant pressure. In the following, the mass flow rate
ṁin is the control inputu, i.e., ui = ṁin

i for i = 1, . . . , N .

C. Reduced building thermal model

In this section, we describe a reduced-order building
thermal model by using an aggregation technique [7]. The
reduced models will be used in Section III to develop
the mean field control strategies. To obtain the reduced
model, we aggregate a subset of nodes intosuper-nodes.
Mathematically, suppose we want to reduce the state space
dimension fromn to m, wherem ≤ n is the (user-specified)
number of super-nodes. The first step is to determine a
partition functionφ : V → V̄ , whereV̄ := {1, . . . ,m} such
that φ is onto but possibly many-to-one. The elements of
V̄ are the super-nodes, and for everyk ∈ V̄, the node set
φ−1(k) ⊂ V includes the nodes in the baseline model that are
aggregated into thekth super-node. Similar to the baseline
model, we let{0} denote the outside node and define the set
V̄0 := {0} ∪ V̄.

Given a fixedm-partition functionφ, we introduce the
following quantities for the reduced model:

• Thesuper-capacitanceof thekth partition is the combi-
nation of all capacitances of the nodes inkth partition:

C̄
(φ)
k :=

∑

i∈φ−1(k)

Ci, k ∈ V̄.

• The super-resistancebetweenkth and lth partitions is
the parallel-equivalence of all resistances connecting the
nodes between two partitions:

R̄
(φ)
kl :=

1∑
i∈φ−1(k)

∑
j∈φ−1(l) 1/Rij

, k 6= l ∈ V̄ .



• The super-loadof the kth partition is the combination
of all thermal loads for the zones in thekth partition:

˙̄Q
(φ)
k (t) :=

∑

i∈φ−1(k)

Q̇i(t), k ∈ V̄ .

The reduced-order model is also a RC-network defined on
super-nodes with super-edges connecting these super-nodes.
Its thermal dynamics is represented by the following coupled
differential equations: For eachk ∈ V̄,

C̄
(φ)
k

˙̄Tk(t) =
˙̄Q
(φ)
k (t) + ∆H̄

(φ)
k (t)

+
∑

l∈N̄k

(T̄l(t)− T̄k(t))/R̄
(φ)
kl

(1)

whereT̄k is the temperature of thekth super-node,̄Nk ⊂ V̄0

denotes the set of neighbors of thekth super-node, and the
ventilation heat exchange for thekth super-node is given by

∆H̄
(φ)
k (t) :=

∑

i∈φ−1(k)∩{1,...,N}

∆Hi(t)

=
∑

i∈φ−1(k)∩{1,...,N}

Cpaṁ
in
i (t)(T s − Ti(t)).

The initial condition of the reduced model (1) at initial time
t0 is defined as

T̄k(t0) =
∑

i∈φ−1(k)

(Ci/C̄
(φ)
k )Ti(t0), k ∈ V̄ .

Note that the reduced model (1) requires for its inputs:
the mass flow rateṁin

i and the zone temperatureTi for
i = 1, . . . , N . These are assumed to be available, or are
measured.

The reduced model described so far depends on the choice
of the partition functionφ. We should note that anym-
partition functionφ induces a reduced model withm super-
states. In [7], we proposed a recursive bi-partition algorithm
to search for the sub-optimalm-partition functionφ∗. How-
ever, one can also directly choose a sub-optimalφ∗ based on
physical intuition (e.g., floors in a multi-zone building),or
some kind of expert-based heuristics. The goodness of the
reduced model (1) withφ∗ can be verified in practice. In this
paper, we will not discuss the algorithms for choosing the
optimal partition functionφ∗. In the following, we assume
thatφ∗ has already already properly specified, and we mainly
focus on how to design optimal control laws by taking
advantage of the reduced building model.

III. M EAN-FIELD CONTROL

We considerN zones, each with its local set-point tracking
control objective. The dynamics of theith zone is given by

Ṫi = l◦i (Ti;T−i) + bi(Ti)ui + di (2)

where

l◦i (Ti;T−i) := −
∑

j∈Ni

(Ti − Tj)/(CiRij),

bi(Ti) := Cpa(T
s − Ti)/Ci, di := Q̇i/Ci,

with T−i := (Tj)j 6=i. The control problem for theith zone
is to minimize the finite-horizon cost function

J◦
i (ui;u−i) =

∫ t1

t0

c(Ti, ui)dt (3)

where

c(Ti, ui) :=
1

2
∆T 2

i +
1

2
ru2

i , (4)

with the tracking error∆Ti := Ti − T set
i , and a given

scalar r > 0 as control penalty. ANash equilibriumin
control policies is given by{u∗

i }
N
i=1 such thatu∗

i minimizes
J◦
i (ui;u

∗
−i) for i = 1, . . . , N .

We denoteRi := (
∑

j∈Ni
1/Rij)

−1 and define the time
constant for theith zone asτi := CiRi. The individual
zones are distinguished by their initial conditionsTi(0), set-
point T set

i , loadsdi and the time-constantsτi. We introduce
a parameterω := (T (0), T set, τ, d), and consider a large
number N of zones, whereω is sampled from a given
distribution ρ(ω). For each zonei, the parameterωi is
assumed to be i.i.d., with common distributionωi ∼ ρ(ω).

We seek a control solution that is decentralized and of
the following form: For eachi ∈ V and t0 ≤ t ≤ t1,
the control inputui(t) depends only onlocal information
{Ti(s) : t0 ≤ s ≤ t}, and perhaps someaggregate
information. This amounts to a dynamic game, whose exact
solution is infeasible for largeN .

Instead we construct an approximation of the form de-
scribed in [11]. This approximation is based on the aggre-
gated models described in Sec. II-C with the following steps:

(i) We identify a small number of super-nodes that
describe the slow evolution of the thermal dynamics
of the building. To simplify the introduction of the
mean-field control method, we consider here only
the simplest case: we use a single super-node to
represent the entire building.

(iii) We consider an approximation of the interaction
between a single zone and the entire building. Moti-
vated by the consideration of the physics of thermal
interactions (large time constants for interactions)
and the separable nature of the control objectives
(e.g., (3)), we consider an approximation based on
replacingT−i(t) byF (t), a known function of time.
In particular,l◦i (Ti(t);T−i(t)) in (2) is replaced by

l̄i(Ti(t);F (t)) := −
Ti(t)− F (t)

τi
. (5)

Comparison ofl◦i and l̄i suggests the following
approximation

F (t) ≈ T̄ (t). (6)

(iii) For the local model (2) withl◦i (Ti;T−i) replaced
by l̄i(Ti;F ), the game reduces to decentralized
optimal control problems. The individual zones are
“oblivious” to the state of the entire system and
make their control decisions based only on local
state variables.



(iv) A form of self-consistencyis required: oblivious
actions of individual zones reproduce the evolution
of T̄ as described by the aggregated model.

In the following subsection we develop the “oblivious”
solution described in (iii). We then turn to the self-consistent
aggregated model in (i) that defines the approximate inter-
action (6) in (ii). Mathematically, we obtain a fixed-point
problem.

A. Local optimal control of a single zone

Suppose the interaction functionF (t) is given, possibly
in a time-dependent form fort ∈ [t0, t1]. We consider the
following dynamics for the single-zone:

Ṫi = l̄i(Ti;F ) + bi(Ti)ui + di

where l̄i is given by (5).
The control problem for single zone model is to choose

the control lawui so as to minimize the finite-horizon cost
function

Ji(ui;F ) =

∫ t1

t0

c(Ti, ui)dt.

The solution of the optimal control problem with the cost
function Ji(ui;F ) is standard. It is given in terms of the
optimal cost-to-go functionor value function:

J∗
i (Ti, t) = min

ui

{∫ t1

t

ci(Ti, ui)dt

}
.

The value functionJ∗
i is known to satisfy the Hamilton-

Jacobi-Bellman (HJB) equation

∂J∗
i

∂t
+min

ui

{
Hi

(
Ti, ui,

∂J∗
i

∂Ti

)}
= 0 (7)

with the boundary conditionJ∗
i (Ti, t1) = 0. The Hamilto-

nian in (7) is defined forλ ∈ R

Hi(Ti, ui, λ) := ci(Ti, ui) + λ (li(Ti;F ) + bi(Ti)ui)

with

li(Ti;F ) := l̄i(Ti;F ) + di.

The optimal control in (7) is explicitly obtained as

u∗
i (Ti;F ) = −

bi(Ti)

r

(
∂J∗

i

∂Ti

(Ti;F )

)
. (8)

Substituting (8) into (7), we obtain the HJB equation for
J∗
i (Ti, t):

∂J∗
i

∂t
=

1

2

b2i (Ti)

r

(
∂J∗

i

∂Ti

)2

− li(Ti;F )

(
∂J∗

i

∂Ti

)
−

1

2
∆T 2

i .

(9)

B. Coupled model

We now provide a complete description of thecoupled
model that is intended to approximate the game model for
large N . This model is based on the interaction function
F (t) introduced in the preceding section. A value function
function J∗(T, t;ω) for the largeN model is defined by
the following differential equation identical to the HJB
equation (9) for the single-zone model.

∂J∗

∂t
=

1

2

b2(T )

r

(
∂J∗

∂T

)2

− l(T ;F )

(
∂J∗

∂T

)
−

1

2
∆T 2.

The associated optimal feedback control law is then defined
by

u∗(T ;F ) = −
b(T )

r

(
∂J∗

∂T
(T ;F )

)
. (10)

Given the feedback control law (10), the differential equation
that defines the evolution of the super-temperatureT̄ is given
by

C̄ ˙̄T (t) = (T0(t)− T̄ (t))/R̄0 + Ū(t)

where

Ū(t) =

N

∫
(Q̇(t;ω) + Cpau

∗(T (t;ω);F )(T s − T (t;ω)))ρ(ω)dω.

The only difference thus far is notational:J∗
i (T, t) is the

value function for a single zone with parameterωi, and
J∗(T, t;ω) is the value function for a large number of zones,
distinguished by their ownω. Such is the case because we
have assumedF (t) is a known deterministic function that
is consistent across the population. All that remains is to
specify F (t) in a self-consistent manner. The consistency
enforced here is inspired by the approximation given in (6).
The two PDEs are coupled through this integral that defines
the relationship between the interaction functionF and the
mean temperaturēT :

F (t) = T̄ (t).

In summary, the coupled PDE model is given by: Fort ∈
[t0, t1],

∂J∗

∂t
=

1

2

b2(T )

r

(
∂J∗

∂T

)2

− l(T ;F )

(
∂J∗

∂T

)
−

1

2
∆T 2

(11)

C̄ ˙̄T (t) = (T0(t)− T̄ (t))/R̄0 + Ū(t) (12)

F (t) = T̄ (t) (13)

with boundary conditionsJ∗(T, t1;ω) = 0 and T̄ (t0) =∑n

i=1(Ci/C̄)Ti(t0).
Numerically, the optimal control may be obtained by

iteratively solving the equations (11) and (12) over a suffi-
ciently long time-horizon. A waveform relaxation algorithm
for solving such equations appear in our earlier paper [12].In
the following, we propose an approximate solution based on
the observation that the value function is known to approxi-
mately become a constant for large terminating times [13].



C. Approximate local optimal control

In this section, we propose an approximation approach
to the solution of coupled PDE (11)–(13) by considering the
theequilibrium solutions. By setting∂J∗/∂t ≈ 0 and letting
F = T̄ in (11), we consider the equilibrium solution to (11):

k(T )

(
∂J∗

∂T

)2

− 2m(T, T̄ )

(
∂J∗

∂T

)
− n(∆T ) = 0 (14)

where we define

k(T ) := b2(T ), m(T, T̄ ) := rl(T ; T̄ ), n(∆T ) := r∆T 2.

SinceT s (the temperature of supplied air) is always strictly
less/more thanT (the temperature of zone) when cool-
ing/heating, then we always have

k(T ) = (Cpa(T
s − T )/C)2 > 0.

Thus (14) is a second order equation, whose solutions are
given by,
(
∂J∗

∂T

)

±

=
m(T, T̄ )

k(T )
±

√
m2(T, T̄ ) + k(T )n(∆T )

k(T )
.

For anyT , ∆T , and T̄ , we can check
(
∂J∗

∂T

)

+

≥ 0,

(
∂J∗

∂T

)

−

≤ 0.

We would like to construct a “value function”̂J∗ such that
it is approximately convex with respect toT with minimum
achieved at∆T = T − T set = 0. One possible choice is

∂Ĵ∗

∂T
=

{
(∂J∗/∂T )+ , if ∆T ≥ 0
(∂J∗/∂T )− , if ∆T < 0.

(15)

However, such a choice of(∂Ĵ∗/∂T ) is not a smooth
function ofT , and neither is the associated control law (10).
Note that the mass flow rate (the control) is usually varied
continuously to regulate the zone temperature for a building.
To obtain a smooth control law, here we consider a smooth
approximation to the sign function,

sgn(x) ≈ tanh(cx) =
1− e−2cx

1 + e−2cx
, for c ≫ 1. (16)

Then we modify (15) to obtain the following smooth approx-
imation:

∂Ĵ∗

∂T
=

m(T, T̄ )

k(T )
+ tanh(c∆T )

√
m2(T, T̄ ) + k(T )n(∆T )

k(T )

The approximate local optimal control law is chosen as

û∗(T ; T̄ ) = −
b(T )

r

(
∂Ĵ∗

∂T
(T ; T̄ )

)
. (17)

By setting ˙̄T ≈ 0 in (12) and substituting (17) into (12),
we can obtain the equilibrium solution̄T s > 0 by solving
a second order equation (we omit the details here). Finally,
the stationary local optimal control law is given by

û∗,s(T ) = −
b(T )

r

(
∂Ĵ∗

∂T
(T ; T̄ s)

)
. (18)
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(a) (b)

Fig. 2. Exogenous inputs for a24 hour period in Gainesville, FL: (a)
outside temperature and (b) heat gains of each zone.

IV. SIMULATION AND DISCUSSION

A. Basic setup

Simulations are carried out for the four-zone building
shown in Fig. 1: All four zones/rooms have an equal floor
area of5m× 5m and each wall is3m tall, which provides
a volumetric area of75m3 for each room. The RC-network
representation of the four-zone building has totally36 build-
ing nodes plus1 outside node [7]. Each building node is
assigned with a thermal capacitance, two adjacent nodes
are connected with a thermal resistance. The windows are
modeled as single resistors since they have relatively little
capacitance. The values of the capacitances and resistances
are obtained from Carrier’s Hourly Analysis Program [14].

The HVAC system used for simulation is designed to
supply maximal mass flow rate of0.25 kg/s per zone. The
mass flow ratemin

i for i = 1, . . . , 4 for four zones can be
adjusted based on designed control laws. The supplied air
temperature is fixed atT s = 12.8◦C. Here we assume there
is no return air and100% of the outside air is sent to chiller.
Number of people in each zone is uniformly generated
as a random integer ranging between0 and 4. Outside
temperature and outside solar radiation data is obtained for
a summer day (05/24/1996) of Gainesville, FL [15]. The
outside temperature and the heat gains (due to solar radiation
and people occupancy) of each zone are depicted in Fig. 2
(a) and Fig. 2 (b), respectively.

Numerical results presented in the following are obtained
using ode45 function in Matlab for24 hours with the time
step size chosen as10 minutes. All temperatures of the
building nodes are initialized at24◦C, respectively. The
desired zone temperaturesT set

i for i = 1, . . . , 4 are varying
with time and are depicted as solid lines in Fig. 3.

B. Simulation results

To compare performance of the proposed controller with
existing control algorithms commonly used in commercial
buildings, we consider the following decentralized PI control
law: For i = 1, . . . , 4,

min
i (t) = Kp∆Ti(t) +Ki

∫ t

0

∆Ti(s)ds (19)

where the tuned proportional gainKp = −0.00005, the tuned
integration gainKi = 0.0001, and the temperature tracking
error∆Ti := T set

i − Ti.
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Fig. 3. Comparison of (a) zone temperatures and (b) zone mass-flow rates obtained by using PI control law and mean-field control law with r = 10.

The mean-field control is implemented based on the sta-
tionary nonlinear policy (18). For the four-room building,we
only consider the reduced model with one super-node. The
control performance becomes slightly better by adding more
super-nodes into the reduced model. One may expect larger
performance improvement by considering more super-nodes
for more complex building topologies.

In this paper, we taker = 10 in the individual cost func-
tion (4), and we takec = 5 for smooth approximation of sign
function in (16). We apply mean-field control law (18) and PI
control law (19) to each zone, respectively. The comparison
results of simulated zone temperatures are depicted in Fig.3
(a). The comparison results of mass-flow rates associated
with two control laws are depicted in Fig. 3 (b). We observe
that the mean-field control has better temperature tracking
performance than that for PI control (see Fig. 3 (a)).

The total energy consumption of each zone can be com-
puted based on the mass-flow rate entering each zone [6].
Here the total energy consumption is the combination of fan
power and the chiller power consumptions. For PI control
law, the energy consumption (kWh) for each zone is69.3,
72.5, 45.2, and55.9, and the total energy consumption for
all four zones is242.9; For mean-field control law, the
energy consumption for each zone is59.6, 38.9, 34.0, and
47.7, and the total energy consumption for all four zones is
179.2. In this case, the mean-field control thus reduces total
energy consumption by25% over the PI control. One could
expect more energy savings (but worse temperature tracking
performance) by increasing the control penalty parameterr.

V. CONCLUSIONS

In this paper, we develop the mean-field methodology
as a means to mitigate complexity associated with large-
scale control problems in buildings. Rather than solving
the large-scale centralized problem, we explore distributed
game-theoretic solution approaches that work by optimizing
with respect to the mean-field. Simulation results show
that the proposed mean-field scheme achieves comparable
temperature tracking performance while reducing energy

consumption in the operation of HVAC systems. Moreover,
the tradeoff between tracking performance and the energy
savings can be made by adjusting the control penalty pa-
rameter in the mean-field scheme.
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