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Abstract

We propose a distributed algorithm for estimating the 3-D pose (position and orientation) of multiple robots

with respect to a common frame of reference when GPS is not available. This algorithm does not rely on the

use of any maps, or the ability to recognize landmarks in the environment. Instead we assume that noisy relative

measurements between pairs of robots are intermittently available, which can be any one, or combination, of the

following: relative pose, relative orientation, relative position, relative bearing, and relative distance. The additional

information about each robot’s pose provided by these measurements are used to improve over self-localization

estimates. The proposed method is similar to a pose-graph optimization algorithm in spirit: pose estimates are

obtained by solving an optimization problem in the underlying Riemannian manifold (SO(3)×R
3)n(k). The proposed

algorithm is directly applicable to 3-D pose estimation, can fuse heterogeneous measurement types, and can handle

arbitrary time variation in the neighbor relationships among robots. Simulations show that the errors in the

pose estimates obtained using this algorithm are significantly lower than what is achieved when robots estimate

their pose without cooperation. Results from experiments with a pair of ground robots with vision-based sensors

reinforce these findings. Further, simulations comparing the proposed algorithm with two state of the art existing

collaborative localization algorithms identifies in what circumstances the proposed algorithm performs better then

existing methods. Additionally, the question of trade-offs between cost (of obtaining a certain type of relative

measurement) vs. benefit (improvement in localization accuracy) for the various types of relative measurements is

considered.



1 Introduction

In recent years, interest in utilizing teams of autonomous mobile robots has grown rapidly. Multi-robot teams are

beneficial in many ways. Utilizing a group of low cost robots may be more economical than risking a single, more

costly robot. In search and rescue operations, a group of robots can cover a larger area than a single robot. In

hazardous conditions, the innate redundancy of a group of robots may be necessary to prevent catastrophic loss of

mission capability. Regardless of the application, localization is a crucial task for any autonomous mobile robot team.

Localization, the estimation of an autonomous robot’s global position and orientation, can be accomplished using a

variety of sensors. Some of the more common sensors include Inertial Measurement Units (IMUs), vision based sensors

(cameras, LIDARs), and Global Positioning System (GPS). Of the three, GPS is the only senor capable of providing

global measurements of a robots position. However in many situations, GPS measurements may not be available,

or may only be intermittently available. For example, a group of unmanned aerial vehicles (UAVs) operating in an

urban environment may temporarily lose GPS measurements when the signal is blocked by large buildings. In such a

situation, the global pose (position and orientation) can be obtained by integrating over the relative pose measurements

obtained using IMUs or vision based sensors. This method of localization is referred to as dead reckoning.

Localization through dead reckoning can lead to a rapid growth in localization error (Olson et al., 2003; Knuth and Barooah,

2013). When a team of robots is deployed, relative measurements between pairs of robots may be available. For in-

stance, a robot equipped with a monocular camera can measure another robot’s bearing with respect to itself whenever

the other robot is in its field of view. These measurements, though noisy, provide additional information on the robots’

poses that can be used to improve localization accuracy.

In this paper we propose a method for fusing measurements of various types to perform collaborative localization

that improves localization accuracy over dead-reckoning. We assume all robots are equipped with proprioceptive

sensors (cameras, IMUs, etc.) allowing each robot to measure its change in pose between time steps. We refer to these

noisy measurements as inter-time relative pose measurements. In the absence of any other information, each robot

can perform localization through dead reckoning using these noisy measurements. We further assume that each robot

is equipped with exteroceptive sensors, so that noisy relative measurements between robots may become available

intermittently. These measurements, which we call inter-robot relative measurements, can be one (or a combination)

of the following: relative pose, relative orientation, relative position, relative bearing, and relative distance, between

a pairs of robots. We provide a method to perform collaborative localization by fusing the inter-time and inter-robot

relative measurements to obtain an estimate of the absolute pose of every robot.

We provide both a centralized and distributed algorithm for collaborative localization. In the centralized algorithm,

all the measurements are assumed to be instantly available to a central processor. In the distributed algorithm, each

robot performs localization using measurements from on-board sensors and information exchanged with neighboring



robots. The complexity of the computations performed by a robot is only a function of the number of its neighbors at

any given time, not of the total number of robots. This makes the distributed algorithm scalable to arbitrarily large

groups of robots. In addition, the communication requirements are small. At every update, a pair of neighboring

robots needs to exchange only (i) the relative measurement between them and (ii) their current pose estimates.

Both simulations and experimental results (with a pair of P3-DX robots) are presented. In each case, the Monte-

Carlo method was used to empirically obtain the bias and standard deviation of estimation error by conducting multiple

trials. Results show that the proposed collaborative algorithm substantially improves upon dead-reckoning even when

the team consists of a small number of robots. An examination of improvement vs. measurement type provides a basis

for deciding whether the cost of the sensors required for obtaining certain types of measurements are commensurate

with the localization accuracy they provide.

1.1 Related Work and Contributions

Collaborative localization has been considered in the context of collaborative simultaneous localization and mapping

(C-SLAM). Robots exchange local maps which are aligned and merged to improve robots’ location estimates as well as

to improve the maps; see (Ni et al., 2007; Andersson and Nygards, 2008; Indelman et al., 2011) and references therein.

This requires the ability to identify common features in distinct maps generated by the robots. Recognizing common

landmarks in distinct maps is often challenging. In addition, exchanging image data or maps between robots requires

high bandwidth communication.

A second body of work therefore considers the collaborative localization problem as one in which only relative

measurements (of pose, position, orientation etc.) between pairs of robots are obtained and used to improve localiza-

tion accuracy over self-localization. Our work falls into this category, which we term collaborative localization from

relative measurements. Collaborative localization from relative measurements without map building is potentially

useful to autonomous agents operating over large areas where collaborative mapping may be infeasible due to the large

computation, memory, and communication requirements.

Two features of the problem of collaborative localization from relative measurements make it challenging: (i) the

nonlinear relationship between the variables to be estimated (absolute positions and orientations) and measurements

(relative position, orientation, bearing, distance etc.) and (ii) the non-commutativity of rotations in 3D.

Two distinct approaches to localization of single or multi-robot teams are relevant to the discussion of prior art:

(i) pose-graph optimization methods and (ii) filtering approaches.

The pose-graph based methods (also known as network or view-based representations) have been popular and

successful in SLAM (see (Kummerle et al., 2011) and references therein) and bundle adjustment (Sibley et al., 2009).

A pose graph is a graph consisting of nodes that correspond to the unknown poses of the robots at various time



instants and landmarks, and edges that correspond to observations between robot-landmark pairs. The best set of

pose estimates are estimated by minimizing a cost function that quantifies how well a given set of poses predict the

measurements. Under certain Gaussian assumptions on the measurement noise, the least-square solution obtained

is the maximum likelihood (ML) estimate or of the poses. With additional statistical information on prior belief of

the poses, again involving Gaussianity, the least square solution turns out to be the maximum a-posteriori estimate

(MAP) as well. Pose graph optimization methods used in bundle adjustment and single robot SLAM can be directly

applied to the multi-robot case. A centralized algorithm for ML collaborative localization through pose-graph opti-

mization is presented in (Howard et al., 2002). Distributing the computations among the robots present additional

challenges; (Kim et al., 2010) addresses them by using relative pose graphs. The MAP estimator for 2-D collabora-

tive localization proposed in (Nerurkar et al., 2009) also belongs to this category. In (Knuth and Barooah, 2009) a

pose-graph based algorithm for distributed collaborative localization in 3-D is proposed that uses a linearization of

the relation between the pose measurements involving rotations.

When robots’ absolute orientations are known, the problem of cooperative localization through pose graph opti-

mization becomes a linear estimation problem (Sanderson, 1998; Barooah et al., 2010). The problem we consider, is

however, non linear since orientations are not known. In (Aragues et al., 2011), the authors use a two-phase approach

to solve the 2-D collaborative localization problem where each phase is solved using linear estimation techniques:

first the absolute orientations are estimated using relative orientation measurements, then these are used along with

relative position measurements to obtain absolute position estimates, and finally an improved estimate of the absolute

orientations are obtained from the position estimates. This method is restricted to 2-D localization.

The method proposed here also belongs to the pose graph based approach: the estimation problem is formulated as

an optimization defined by a graph, where nodes represent robot poses at various times and edges represent inter-time

and inter-robot measurements. There is a subtle - but major - distinction between existing pose graph optimization

methods, which we call Euclidean pose graph optimization (EPGO), and our proposed method. While existing methods

use a vector space parameterization of orientation (such as the complex part of the unit quaternion representation) and

then apply vector-space minimization techniques to search for the minima, we perform the optimization directly on the

product Riemannian manifold in which the problem is naturally posed without relying on a specific parameterization.

A gradient-descent method on the Riemannian manifold is then used for searching for the minima. The gradient

descent algorithm is independent of the parameterization as well; any parameterization of the orientations can be used

for numerical implementation without affecting the solution obtained. The advantages of doing so are discussed in

detail in Section 3 (see Remark 1). Simulations show that the proposed method based on Riemannian manifold pose

graph optimization, which we call RPGO, outperforms EPGO, the traditional pose graph optimization performed by

vector-space based methods, when the measurement noise is large.



For Euclidean pose graph optimization in 3D, various tricks have to be employed to ensure that the result from

vector-space optimization leads to accurate results; see (Grisetti et al., 2007) and references therein. Kalman filtering

based approaches require, in addition to a specific vector-space parameterization of rotations, linearization of the

non-linear relationships between variables and measurements. Indeed, most of the papers on collaborative localization

consider the 2D case: a robot’s pose is described by three scalars: x, y coordinate and an angle θ. Rotations in 2D

commute and a vector-space parameterization does not lead to serious difficulties. Though many of these 2D algorithms

can be extended to the 3-D case in principle, the extensions are far from straightforward. In fact, no details are provided

for the extension to 3D case; all simulation and experimental results in (Sanderson, 1998; Roumeliotis and Bekey,

2002; Fox et al., 2000; Howard et al., 2002; Leung et al., 2010; Aragues et al., 2011) are for the 2-D case. The belief

propagation approaches of (Fox et al., 2000; Howard et al., 2002; Leung et al., 2010), though developed without a

specific parameterization, are feasible only if a vector-space parameterization of the orientations is used. Otherwise

belief propagation of orientation estimates requires representation and computation of conditional probability density

functions in SO(3), a particularly challenging problem in itself. Some progress in fusion and propagation of pdfs in

SO(3) has been reported in (Wolfe et al., 2011; Long et al., 2012).

There is a large body of work on collaborative localization from relative measurements using a filtering-based

approach, in both centralized and distributed settings. Extended Kalman Filter (EKF) - based formulation have been

adopted in (Roumeliotis and Bekey, 2002; Martinelli et al., 2005; Panzieri et al.). Collaborative localization of two

aircrafts from indirect relative measurement (observing common feature points on the ground) using the EKF has

been proposed in (Melnyk et al., 2012). The papers (Fox et al., 2000; Rekleitis et al., 2002; Howard, 2006) propose

particle-filter based methods for collaborative localization. (Leung et al., 2010) proposes a Bayesian framework such

that many filtering based methods can be applied within it. They propose decentralized algorithms to update a robot’s

belief of its own pose that is equivalent to the centralized belief whenever a certain Markovian property holds.

In comparison with the KF-based methods described above, our method offers a distinct advantage. The lineariza-

tion involved in the EKF requires a small angle approximation to hold at all times. Unless the time interval between

two successive inter-vehicle measurements is extremely small, which is unlikely in many practical situations, the small

angle approximation is violated, which is likely to lead to poor covariance updates and poor pose estimates. This is

verified through simulations presented here.

This work, as compared to much of the earlier work on collaborative localization from relative measurements, differs

in a number of novel ways. The proposed approach is (i) directly applicable to 3-D pose estimation, (ii) able to utilize

heterogeneous measurement types (of the relative position, orientation, bearing, distance, or any combination thereof)

between pairs of robots, and (iii) able to handle a time-varying neighbor relationship in the distributed setting. To

the best of our knowledge, though earlier works have some of these features, no existing method has all three features.



Ability to fuse heterogeneous relative measurements provides an important functionality. In particular, many

of the papers mentioned above (Grisetti et al., 2007; Roumeliotis and Bekey, 2002; Fox et al., 2000; Howard et al.,

2002; Aragues et al., 2011) require measurements of relative pose, i.e., position and orientation, between robot pairs.

While relative position can be obtained through stereo vision or laser range finders, obtaining relative orientation

is quite challenging. It requires robots to be equipped with recognizable targets with known geometry; and even

then, orientation measurements can be quite noisy. In fact, obtaining relative position measurements with stereo

vision is also challenging due to small baseline enforced by the size of the robots. Laser range finders have limited

range and therefore are not suitable to, say, UAVs where the distance between two UAVs may be large. However,

even if only one camera of a robot sees a neighboring robot, a bearing measurement can be obtained. Or, radio

frequency-based techniques such as TOA (time of arrival) measurements can be used to measure distance during

wireless communication. With the ability to fuse all types of relative measurements, all available measurements can

be utilized for improvement in localization accuracy. Though (Rekleitis et al., 2002; Martinelli et al., 2005) consider

the case of heterogeneous measurements, their algorithms are limited to the 2-D case. Our work extends to 3-D the

comparison between various measurement types initiated in (Rekleitis et al., 2002; Martinelli et al., 2005).

A third contribution of the paper is the low communication requirements of the proposed algorithm. A crucial

requirement in some of the prior work on collaborative localization is that of constant all-to-all communication among

robots (Roumeliotis and Bekey, 2002; Howard et al., 2002; Caglioti et al., 2006; Martinelli et al., 2005; Nerurkar et al.,

2009; Aragues et al., 2011). In contrast, the proposed distributed algorithm allows the number of neighbors of a robot

(those it can exchange information with) to vary in an arbitrary manner with time. In the extreme case when the

number of neighbors is always 0, the proposed algorithm simply degenerates into dead-reckoning.

Some preliminary aspects of the proposed method were reported in (Knuth and Barooah, 2012). Compared to

that paper, we make several novel contributions here. While the method in (Knuth and Barooah, 2012) required all

inter-robot measurements to be of the relative pose, here we extend the methodology to enable fusion of many types

of measurements. As discussed above, this represents a significant extension. We also present detailed proofs of all the

mathematical results, which were not present in (Knuth and Barooah, 2012). Finally, here we include substantially

more simulation and experimental results than in (Knuth and Barooah, 2012).

The rest of the paper is organized as follows. The problem is precisely stated in Section 2. A centralized estimation

scheme is described in Section 3, and a distributed algorithm that is inspired by the centralized scheme is described

in Section 4. In Section 5 two existing state of the art algorithms are briefly reviewed. Simulation and experimental

results with the proposed algorithms are presented in Sections 6 and 7, respectively. The paper concludes with a

discussion in Section 8.



2 Problem statement

2.1 The Collaborative Localization Problem

Consider a group of r mobile robots indexed by i = 1, . . . , r. Time is measured by a discrete counter k = 0, 1, 2, . . . .

Each robot is equipped with a local, rigidly attached frame of reference, that is, a coordinate system defined in the

robot’s local reference frame. We call the frame of reference attached to robot i at time k frame i(k). Between any

two frames of reference, say frame u and frame v, we denote the Euclidean transformation from v to u by Tuv, where

Tuv is an element of the special Euclidean group SE(3). Specifically, if pu is a point expressed in frame u and pv is

the same point expressed in frame v, then pu = Tuvpv. We call Tuv the relative pose of frame v with respect to frame

u.

Let frame 0 denote some fixed frame of reference that is common to all robots. The absolute pose of frame u is then

given by the transformation T0u. We will often denote the absolute pose simply as Tu. Robot i is said to be localized

at time k when an estimate is known for the absolute pose of frame i(k). We denote such an estimate by T̂i(k).

In this work, we consider the case when measurements of a robot’s absolute pose, perhaps from measurements of a

GPS and compass, are either not available or only rarely available. Instead, each robot is equipped with proprioceptive

sensors such that, at every time k, the robot is able to obtain a relative pose measurement with respect to its previous

pose. That is, a robot i at time k is able to measure the relative pose Ti(k−1)i(k). We refer to these measurements

as inter-time relative pose measurements. Such measurements can be obtained with inertial sensors or vision based

sensors. Additionally, they need not be obtained from a sensor alone. Instead, a measurement could also be the

estimate computed by fusing sensor measurements with predictions of the robot’s motion from a dynamic/kinematic

model.

In addition to the aforementioned proprioceptive sensors, each robot is equipped with exteroceptive sensors so that

occasionally, a robot i is able to obtain a relative measurement of one or more other robots. We call these inter-robot

relative measurements. If a robot i collects a measurement of robot j at time k, it can be one of the following:

• Relative pose: The Euclidean transformation from frame j(k) to frame i(k); denoted by the symbol T.

• Relative orientation: The element of SO(3) that describes the change in orientation from frame j(k) to frame

i(k); denoted by the symbol R.

• Relative position: The vector in R
3 that describes the change in position between the frames i(k) and j(k),

expressed in frame i(k); denoted by the symbol t.

• Relative bearing: The vector of unit length that points from frame i(k) to frame j(k), expressed in frame i(k);

denoted by the symbol τ .
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Figure 1: A time history of three robots up to time k = 3 with inter-time and inter-robot relative measurements.

Each (robot, time) pair is labeled with the corresponding node index from V0(3). Arrows indicate edges in E (3), i.e.,

relative measurements. Each edge is labeled to indicate the type of measurement. Each robot had GPS and compass

measurements at the initial time k = 0. Thereafter, no other GPS or compass measurements were available.

• Relative distance: The distance between frame i(k) and frame j(k); denoted by the symbol δ.

Which pairs of robots will be able to obtain an inter-robot relative measurement will depend on many factors, including

the kind of sensors they have on-board, the range of sensors, etc. An implicit assumption here is that a robot is able

to uniquely identify another robot of which it obtains a relative measurement, so that there is no ambiguity on which

pair of robots a relative measurement corresponds to.

The collaborative localization problem is the problem of estimating the pose of every robot at the current time k

with respect to the common frame of reference by utilizing the inter-time and inter-robot measurements collected up

to time k.

The situation above is best described in terms of a directed, time-varying, fully-labeled graph G(k) = (V0(k), E (k), ℓ(k)),

where nodes V0(k) correspond to variables and edges E (k) to measurements, that shows how the noisy relative mea-

surements relate to the absolute pose of each robot at every time step. The graph is defined as follows. For each

robot i ∈ {1, . . . , r} and each time k′ ≤ k, a unique index (call it u) is assigned to the pair (i, k′). How this indexing

is done is immaterial. The indices {1, . . . , rk} define a set V (k) that is a subset of the node set V0(k) of the graph.

We refer to the frame of reference attached to robot i at time k′ as frame u, where u is the node assigned to the pair

(i,′ ). We introduce another node, denoted by 0, that corresponds to the common frame of reference in which every

robot’s pose is to be determined. The node 0 is called the grounded node. The node set of the graph is then defined

as V0(k) := V (k) ∪ {0}. The relative pose of frame u with respect to frame 0 is denoted simply by Tu. We call the

poses {Tu}u∈V (k) the node variables of G(k).

The set of directed edges at time k, denoted E (k), corresponds to the noisy inter-time and inter-robot measurements



collected up to time k. That is, suppose robot i is able to measure robot j’s relative pose at time k′, and let u, v

be the nodes corresponding to robots i, j at time k′, respectively. Then for all k ≥ k′, there exists a directed edge

e ∈ E (k) corresponding to this measurement. Since robot i measures robot j, the edge e leaves node u and arrives at

v, we denote this by e ⊲ (u, v). Similarly, each inter-time relative pose measurements of a robot also creates an edge

in the graph. To delineate the type of measurement, a label from the set { T (pose), R (orientation), t (position),

τ (bearing), δ (distance) } is attached to each edge. The map from the set of edges to the set of labels is denoted

by ℓ(k). For each edge e ∈ E (k) where e ⊲ (u, v), if ℓ(k)(e) = s that means there is a measurement of type s for

frame v with respect to frame u, where s ∈ {T,R, t, τ , δ}. The noisy relative measurement associated with edge

e ⊲ (u, v) is denoted by T̂u v, R̂u v, t̂u v, τ̂u v, or δ̂u v for ℓ(k)(e) = T (pose), R (orientation), t (position), τ (bearing),

or δ (distance), respectively. A measurement of type T is really two measurements, one of type R and t. We still use

the nomenclature “ measurement of type T” for ease of comparison with prior work, since relative pose measurements

are commonly considered in existing literature.

If the absolute pose in global GPS coordinates of at least one robot is known at time 0 through the use of a GPS

and compass, then node 0 can be associated with a Terrestrial Reference Frame. When such measurements are not

available, node 0 could correspond to the initial frame of reference of one of the robots. In either case, estimating the

node variables is equivalent to determining the robots’ poses with respect to frame of the grounded node 0. Without

the grounded node, the problem of localization from relative measurements is indeterminate up to a rotation and a

translation.

The graph G(k) is called the measurement graph at time k. Figure 1 shows an example of the graph corresponding

to the measurements collected by 3 robots up to time index 3. Because each robot may be equipped with more than

one sensor, multiple distinct edges may exist between a pair of nodes.

To ensure at least one estimate exists for every robot at each time k, we make the following assumption.

Assumption 1. Each robot has access to an estimate of its absolute pose at time 0.

Due to Assumption 1, an estimate of the pose of robot i at any time k (equivalently, the node variable Tu, where

node u corresponds to the pair (i, k)) can be computed by composing the inter-time relative pose measurements

obtained by the robot i up to time k. This estimate is equivalent to robot i performing dead-reckoning. In practice,

Assumption 1 holds if all robots have a GPS and compass measurement at time 0. If no GPS measurement is available,

but each robot can obtain a relative pose measurement with respect to, say, robot 1, then again the assumption holds.

Often many more edges are present in the graph G(k) than those necessary to form a single estimate of the node

variables; robots can benefit from collaborative localization in such a scenario. As an illustrative example, consider

the scenario shown in Figure 1. The path (0, 1, 4, 7, 10) provides the dead-reckoning estimate of robot 1 at time 3,

or equivalently an estimate of T10. Similarly, the path (0, 2, 5, 8, 11) provides as estimate for the node variable T11.



Additionally, the three edges between nodes 10 and 11 corresponding to relative position, orientation, and distance

measurements all provide additional information about how T10 and T11 relate. Because there is noise in each relative

measurement, by incorporating the information found in these three edges, we expect to get a better estimate of both

T10 and T11. The goal of collaborative localization is to utilize all edges in the graph G(k) to improve over any estimates

of the node variables that are obtained using only a single path. When the measurements are linearly related to the

node variables, this can be accomplished by using the Best Linear Unbiased Estimator, as done in (Aragues et al.,

2011; Barooah et al., 2010). In our case, the relationship between the measurements and node variables is nonlinear.

The discussion above also shows that Assumption 1 is not necessary, but merely sufficient for localization. For

robot i to be localized, all that is needed is that there exists a time k so that there is an undirected path from node u

(where u corresponds to i, k) to node 0 such that the edges along this path are of type T. In that case, an estimate

of tu can be obtained by concatenating the relative pose measurements along the path from 0 to u, and hence robot i

is localized at time k. After that, even if no inter-robot relative measurements are available, robot i can perform dead

reckoning. Assumption 1 is taken in order to simplify the presentation.

2.2 The Distributed Collaborative Localization Problem

The problem stated above does not put any restriction on the access to the measurements collected up to time k.

In particular, a method that assumes that all measurements collected by all the robots up to time k are instantly

available to a central computer is allowed. However, when a large number of robots are involved, with communication

accomplished through the use of low-bandwidth wireless links with limited range, such a centralized scheme is not

feasible. In addition, retaining past measurements indefinitely will quickly exhaust both available memory and available

processing capabilities of a centralized computing unit.

We now modify the problem by including constraints on communication and computation. In particular, a robot

is now required to localize itself by using information that is available from on-board sensors and data it can collect

from its neighbors. Two robots i and j are said to be neighbors at time k if they can communicate at time k.

The distributed collaborative localization problem is the following: each robot is to localize itself by using measure-

ments collected by on-board sensors and information it can obtain by communicating with its neighbors. To simplify

the development of the distributed algorithm, the following assumption is made:

Assumption 2. If robot i can obtain a relative measurement of a robot j at time k, then i and j can communicate at

that time.

Though this assumption may seem strict, it can, in fact, always be satisfied: robot i simply drops any measurements

involving j if it cannot communicate with j.



3 Centralized Collaborative Localization Algorithm

In this section we present a solution to the collaborative localization problem where all the relative measurements

are instantly available to a central processor at each time k. To distinguish this algorithm from others pose-graph

methods discussed in the sequel, we will refer to it as the Riemannian Pose Graph Optimization (RPGO) algorithm.

The centralized solution naturally leads to a distributed scheme, which will be described in the next section.

3.1 Localization through optimization over a graph

Instead of addressing the problem of estimating the robots’ current poses at time k, we examine the more general

problem of estimating all the node variables
{

Tu

}

u∈V (k)
of the measurement graph G(k), using the noisy relative

measurements,
{

M̂e

}

e∈E (k)
, where fore each (u, v) ⊳ e ∈ E(k), M̂e is a measurement from node u to node v of one of

the following: relative pose, orientation, position bearing, or distance.

In the following, we will interchangeably refer to both the absolute pose Tu and its corresponding orientation and

position, Ru and tu respectively, as node variables. Similarly, a pose measurement T̂u v will be identified with its

corresponding orientation and position measurements, R̂u v and t̂u v.

We pose the collaborative localization problem as an optimization of a cost function over the set of node variables,

where the cost function measures how well a given set of absolute poses explains the noisy measurements collected

up to time k. The initial condition for each node variable Tu = (Ru, tu), u ∈ V (k) is given by the dead-reckoning

estimate, whose existence is assured by Assumption 1.

Given a measurement M̂e between nodes u and v, let ce(Ru,Rv, tu, tv | M̂e) ∈ R+ denote the cost of the measure-

ment M̂e as a function of the node variables. A suitable cost function must be chosen for each of the 4 measurements

types (excluding pose measurements and instead considering a orientation/position pair) such that a higher cost in-

dicates more disagreement between the observed measurements and the estimated node variables. This is done by

considering the following fact. When the node variables and measurements are know exactly, each measurement can

be given as a function of the node variables as follows:

R̂u v = RT
uRv

t̂u v = RT
u (tv − tu)

τ̂u v = RT
u (tv − tu)/‖tv − tu‖

δ̂u v = ‖tv − tu‖

(1)

Since noise is present in the measurements, how much a noisy measurement differs from its value given as a function

of the node variables provides a suitable cost.

In (1), t̂u v, τ̂u v, and δ̂u v are all elements of a real vector space (R3 or R) and so the standard Euclidean norms can

be used to measure the distance between the noisy measurements and the equivalent node variable representations. In

contrast, R̂u v and RT
uRv are both elements of the manifold SO(3) and are thus considered to be abstract operators and



not equated to any particular parameterization (such as rotation matrices). To this end, a suitable distance function

on the manifold SO(3) must chosen to measure their relative distance. Such a function is given by the Riemannian

distance

d : SO(3) × SO(3) → R+, (p, q) 7→

√

−
1

2
Tr

(

log2(pT q)
)

(2)

where Tr denotes the trace function. More details on this distance function can be found in Appendix A.

The cost function at each time k is chosen as a sum of edge-costs over all edges (measurements):

f(
{

Tu

}

u∈V (k)
) :=

∑

(u,v)⊳e∈E (k)

ce(Ru, tu,Rv, tv | M̂e) (3)

where ce(Ru, tu,Rv, tv | M̂e), the cost for edge e ⊲ (u, v), is given by

ce(Ru, tu,Rv, tv) :=
1

2
×



































































d2(R̂u v,RT
uRv) +‖t̂u v − RT

u (tv − tu)‖2 if ℓ(k)(e) = T

d2(R̂u v,R
T
uRv) if ℓ(k)(e) = R

‖t̂u v − RT
u (tv − tu)‖2 if ℓ(k)(e) = t

‖
(

τ̂u v‖tv − tu‖
)

− RT
u (tv − tu)‖2 if ℓ(k)(e) = τ

‖
(

δ̂u v − ‖tv − tu‖
)

‖2 if ℓ(k)(e) = δ

(4)

and ‖ · ‖ indicates the standard Euclidean norm on R
3.

If the relative measurements were completely error free, the minimum value of the cost function would be 0. By

minimizing the cost function, we expect to find an improved estimate for the absolute pose of each robot over what can

be determined through dead reckoning alone. The cost function in (3) is similar to one proposed in (Tron and Vidal,

2009) for a static camera network; here the cost function changes with time.

3.2 Optimization over the product manifold

Finding the minimum of a function defined over a vector space has been studied extensively. However the function

f( · ) in (3) is defined on a curved surface, specifically, the product Riemannian Manifold (SO(3) × R
3)n(k) where

n(k) = |V (k)|, the cardinality of the set V (k). Though it is possible to parameterize the product manifold and

thus utilize standard vector space optimization techniques, such a parameterization will inevitably introduce either

an increase in dimensionality, and thus introduce constraints, or the parameterization will fail to be bijective over

the entire domain. See (Yershova et al., 2010) for a discussion of the relevant parameterizations of SO(3) and their

associated problems.



In contrast, we desire a method that allows us to solve an unconstrained optimization problem in which the solution

remains on the manifold during all intermediate steps. We accomplish this through use of a gradient descent algorithm

on the product manifold.

Gradient descent in a Riemannian manifold is analogous to gradient descent in a vector space in the following sense.

Given a smooth real valued function f defined on a manifold M , the gradient of f at p ∈ M , denoted grad f(p), is a

vector in the tangent space of M at p, which is denoted by TpM . Just as in Euclidean space, grad f(p) points in the

direction of greatest rate of increase of f . An explicit expression for the gradient of the cost function (3) is provided

in the next proposition; the proof is in Appendix C.

Proposition 1. The gradient of the cost function shown in (3) at p = (R1, t1, . . . ,Rn(k), tn(k)) ∈
(

SO(3) × R
3
)n(k)

is

grad f(p) =
(

grad f(R1), grad f(t1), . . . , grad f(Rn(k)), grad f(tn(k))
)

,

where, for u = 1, . . . , n(k),

grad f(Ru) =
∑

e∈E (k)

grad ce(Ru) grad f(tu) =
∑

e∈E (k)

grad ce(tu)

The gradients of the edge cost ce with respect to each manifold, grad ce(Ru) and grad ce(tu) for all u ∈ V (k), are

provided in Appendix D

Consider a function f : S → R for some set S. When S is a vector space, the function S is minimized using

gradient descent by iteratively updating an estimate pt ∈ S such that pt+1 = pt−ηtgrad f(pt) where ηt ∈ R+ is chosen

so that f(pt+1) < f(pt) (Boyd and Vandenberghe, 2004). An analogous update law can be defined when S is instead

a Riemannian manifold. The key difference is that, in general, the addition operator is not defined on the manifold.

Rather, the parallel transport map can be used to traverse the manifold in the direction of −grad f .

The parallel transport map on the product manifold (SO(3) × R
3)n(k) at a point

p := (R1, t1, . . . ,Rn(k), tn(k)) ∈ (SO(3) × R
3)n(k), (5)

denoted by expp, is given by

expp(ξ) =
(

R1 exp(RT
1 ξR1), t1 + ξt1 , . . . ,Rn(k) exp(RT

n(k)ξRn(k)
), tn(k) + ξtn(k)

)

(6)

where ξ = (ξR1 , ξt1 , . . . , ξRn(k)
, ξtn(k)

) is an element of the tangent space Tp

[

(SO(3) × R
3)n(k)

]

= TR1SO(3) × · · · ×

Ttn(k)
R

3, and the exp( · ) function appearing in the right hand side of (6) is the map exp : L(R3) → L(R3) defined by

exp(X) =
∑

∞

k=0
Xk

k! for x ∈ L(R3). The derivation of (6) is provided in Appendix B. The gradient descent law is

pt+1 = exppt
(−ηtgrad f(pt)), t = 0, 1, . . . ,



Algorithm 1: Centralized Riemannian Pose Graph Optimization

Input: G(k), all noisy measurements on E (k), an initial guess for each node variable (Ru, tu), u ∈ V (k).

Output:
{

(R̂u, t̂u)
}

u∈V (k)

p̂ → initial guess (p defined in (5));

repeat

foreach u ∈ V (k) do

Compute grad f(R̂u) and grad f(t̂u) for the cost f in (3) (as shown in Appendix D);

end

Determine η(A), the Armijo step size from (7) (with p̂ for pt);

foreach u ∈ V (k) do

R̂u → R̂u exp
(

−η(A)R̂T
u grad f(R̂u)

)

;

t̂u → t̂u − η(A) grad f(t̂u);

end

until ‖grad f

(

{

(R̂u, t̂u)
}

u∈V (k)

)

‖ > ε ;

where ηt ≥ 0 is the step size for iteration t. The parameter ηt is chosen as the Armijo step size η
(A)
t = βNtα, where

Nt is the smallest nonnegative integer such that

f(pt) − f(exppt
(βNtα grad f(pt))) ≥ σβNtα‖grad f(pt)‖, (7)

for scalar tuning parameters α > 0, β, σ ∈ (0, 1). The norm ‖ · ‖ defined on the vector space Tp

[

(SO(3) × R
3)n

]

is

given by

‖(ξR1 , ξt1 , . . . , ξRn(k)
, ξtn(k)

)‖2 =

n(k)
∑

u=1

(1

2
Tr

(

ξT
Ru

ξRu

)

+ ξT
tu

ξtu

)

.

which comes from the Riemannian Metric. More details on the Riemannian metric can be found in Appendix A.

Theorem 4.3.1 in (Absil et al., 2008) grantees that the iterates pt converges to a critical point of the cost function f

defined in (3) as t → ∞.

The pseudo-code of the centralized RPGO algorithm is given in Algorithm 1, where ǫ > 0 is a user-specified

accuracy threshold. Correctness of the RPGOalgorithm (convergence to a critical point of the cost function f in (3))

follows from (Absil et al., 2008, Theorem 4.3.1).

It should be noted that a chose of parameterization is necessary to explicitly compute the updates in the proposed

gradient descent algorithm. However, because the gradient descent is carried out on the manifold, this chose does not

impact the particular value of the node variables found at any step.



4 Distributed Collaborative Localization Algorithm

In this section we propose an algorithm for solving the distributed localization problem. The algorithm requires limited

memory, processor power, and communication bandwidth for its execution. To distinguish this algorithm from the

centralized RPGO algorithm presented in the previous section, we will refer to it as the Distributed Riemannian Pose

Graph Optimization algorithm, or D-RPGO.

For each robot i, let N
(+)
i (k) denote the set of all robots j ∈ {1, . . . , r} such that, at time k, robot i can obtain a

relative measurement with respect to j. Similarly, let N
(−)
i (k) denote the set of all robots j ∈ {1, . . . , r} such that,

at time k, robot j can obtain a relative measurement with respect to i. The neighbors of robot i at time k are then

given by the set Ni(k) = N
(+)
i (k)∪N

(−)
i (k). Due to Assumption 2, robot i can communicate with its neighbors Ni(k)

during time k.

Consider the local measurement graph Gi(k) = (V i(k), E i(k), ℓi(k)) of robot i, whose node set is simply the neighbors

of i at time k along with the grounded node 0 and i itself: V i(k) = Ni(k) ∪ {0, i}. The edges of Gi(k) correspond to

the inter-robot measurements at time k between i and its neighbors, along with an edge e ⊲ (0, j) for each j ∈ V i(k)

(see Figure 2 for an example). Each node in the local measurement graph Gi(k) is associated with an absolute pose

of a robot at time k. No past poses belong to this graph. An edge (p, q) ⊳ e ∈ Gi(k) (where i = p or q) corresponds

to an inter-robot relative measurement between robots p and q at time k. The additional edges e ⊲ (0, j), j ∈ V i(k)

correspond to the “initial” estimate robot j’s absolute pose at time k, denoted T̂0 j(k). Each robot j obtains the

estimate T̂0 j(k) at time k by concatenating its pose estimate obtained at time k− 1 with the noisy inter-time relative

pose measurement describing its motion from k − 1 to k. The estimate T̂0 j(k) is then used as the measurement

associated with edge e ⊲ (0, j). The graph Gi(k) is a now a measurement graph since each edge has an associated noisy

relative measurement. The edges (0, j) ⊳ e ∈ E i(k) for j ∈ V i(k) ensures that Assumption 1 is satisfied for the local

measurement graph Gi(k) for each i.

1

2

0

T

T

T R δ

(a)

30 T

(b)

Figure 2: The local measurement graphs for the robots of Figure 1: (a) G1(3) and G2(3) (in this example they are the

same) and (b) G3(3).

The distributed algorithm works as follows. At each time k, every robot i ∈ {1, . . . , r} forms an initial estimate



T̂0 i(k) of its absolute pose as described above and obtains inter-robot relative measurements of each of its neighbors

j ∈ N
(+)
i (k). Robot i then transmits to each j ∈ V i(k) its initial estimate of its absolute pose T̂0 i(k), along with

all inter-robot relative measurements between itself and j that it obtained at time k. Robot i receives in turn robot

j’s estimate of its current absolute pose T̂0 j(k), along with relative measurements involving itself that j collected at

that time. Robot i then executes Algorithm 1 on the local measurement graph Gi(k). The unknown node variables

in this graph consist of its own pose and the poses of its neighbors (all at time k). After the computation, only the

estimate of i’s own current pose is retained in its local memory; all other computed values are discarded. Since the

distributed algorithm is simply Algorithm 1 applied to a local measurement graph, it inherits the correctness property

of Algorithm 1. Note that if robot i has no neighbors at time k, the distributed collaborative localization algorithm is

equivalent to performing self-localization from inter-time relative measurements.

The local measurement graphs G1(3), G2(3) and G3(3) corresponding to the example of Figure 1 are shown in

Figure 2. At time k = 3, robot 3 can see no other robots, so it will update its absolute pose using the inter-time

relative pose measurement alone, without the aid of any inter-robot relative measurements. Robots 2 and 1, in contrast,

will use the relative measurements between them obtained at time k = 3 to update their pose estimates.

4.1 Communication requirements

In the distributed algorithm, all the past data is truncated and replaced by the current estimate. As a result, the

size of the problem data for each robot i at time k (encoded in the local subgraph Gi(k)), is bounded - and small

- for all i and k. Specifically, for a robot i with Ni neighbors, the communication requirement of the distributed

algorithm is O(Ni). This can be seen as follows. A robot has to store current estimates of the node variables in its

local measurement graph, and the number of nodes in that graph is Ni + 1. Each node variable can be represented

by 6 numbers (3 for position and 3 for orientation). The robot also has to store the relative measurements between

itself and its neighbors. The maximum memory requirement is when a robot is able to obtain measurements of all

four type of relative measurements in the same time instant, (relative position, orientation, bearing, and distance). In

that case, each neighbor causes a requirement of 3 + 3 + 2 + 1 = 9 numbers to represent the inter-robot measurements

(2 for orientation in 3D, and 1 for distance). Thus, the total memory (storage) requirement for robot i is at most

6(Ni + 1) + 9Ni. At every time step, a pair of neighboring robots has to exchange (i) the relative measurement(s)

between them and (ii) their current pose estimates: at most 15 numbers. If information is broadcast to all neighbors,

a likely scenario with autonomous robots communicating wirelessly, a robot only has to transmit 15Ni numbers.



4.2 Computational Complexity

Just as the communications requirements scaled with the number of neighbors for a given robot i, so too does the

computational complexity for a given robot’s implementation of the D − RPGO algorithm. Consider a robot i at

time k, and let Ni(k) indicate the number of neighbors for robot i at time k. The dimensionality of the optimization

problem is then equal to Ni + 1. Additionally, the number of operations necessary to find the gradient for robot i is

O(Ni(k)3). This follows from the fact that the gradient is a Ni(k) + 1 dimensional vector found by summing over the

number of edges between neighbors, at most, Ni(k)2.

5 Existing Methods of Collaborative Localization

In this section we briefly introduce two existing state-of-the-art methods for collaborative localization. The first algo-

rithm we consider is based on standard pose graph optimization methods, see (Kummerle et al., 2011) and references

therein. The second algorithm utilizes an Indirect Extended Kalman filter (IEKF) to perform collaborative localiza-

tion, similar to the method used in (Melnyk et al., 2012). These two algorithms will be compared with the proposed

algorithm through simulations in Section 6.3.

5.1 Pose Graph Optimization

Unlike the algorithm presented in 3, standard pose graph optimization techniques require a suitable parameterization

of SO(3) to be used. For use in this paper, unit quaternions were chosen for this parameterization Breckenridge (1999).

For each node u ∈ V (k), let qu denote the unit quaternion corresponding to the node variable Ru. Similarly, given a

orientation measurement R̂u v, let q̂u v denote the corresponding unit quaternion. Estimates for the node variables at

time k are determined by minimizing the cost function

f({qu, tu}u∈V (k)) :=
∑

(u,v)⊳e∈E (k)

ge(qu, tu,qv, tv)
T Pege(qu, tu,qv, tv) (8)

where Pe > 0 is a scaling matrix and ge(qu, tu,qv, tv) is a suitable vector edge error defined for each measurement

type. Though standard pose graph optimization is able to handle all measurement types considered thus far, for ease

of exposition, only measurements of the relative position and orientation will be considered in the following discussion.

No no canonical vector edge error exists for a parameterization; many choices are possible. One suitable choice,

which is the vector edge error used in the subsequent comparisons, is given as follows:

ge(qu, tu,qv, tv) =















q−1
u ⊗ qv ⊗ q̂−1

u v − 1 if ℓ(k)(e) = R

C(qu)T (tv − tu) − t̂u v if ℓ(k)(e) = t

(9)



where e ⊲ (u, v), ⊗ denotes quaternion multiplication (Breckenridge, 1999), and C denote the map that takes a unit

quaternion to its corresponding 3× 3 rotation matrix representation. Many vector-space optimization algorithms can

be used to search for the (9). One common choice is to use Levenberg-Marquadt, as was done in (Kummerle et al.,

2011). To implement Levenberg-Marquadt, a minimal parameterization is utilized, e.g., the first three components of

the 4-element unit quaternion. More details of the EPGO algorithm used for comparison with the RPGO algorithm

can be found in Knuth (2013).

Remark 1. The orientations (R( · )) that appear in our problem formations and through out the development of the

RPGO algorithm are abstract rotation operators, or elements of SO(3). No particular parameterization (rotation matri-

ces, quaternions, etc.) is assumed during the development. In contrast, the cost function for the EPGO algorithm, (9)

utilizes a specific parameterization in the form of unit quaternions. A different parameterization would necessarily lead

to a different cost function, and possibly a different estimate delivered by the corresponding algorithm. The estimates

found using the EPGO algorithm are a function of both the measurements and the chosen parameterization, rather

then a function of the measurements alone.

5.2 Indirect Extended Kalman Filter

We next consider an algorithm based on the Indirect Extended Kalman Filter (IEKF), similar to that used in (Melnyk et al.,

2012). The two primary differences between the algorithm used in (Melnyk et al., 2012) and the IEKF algorithm given

blow are as follows. (i) Inter-time relative measurements are of the relative pose, rather then measurements of the

linear and angular velocities. This is motivated by the idea that measurements are captured by a camera, rather then

an inertial measurement unit. (ii) The IEKF algorithm presented here utilizes measurements of the relative position

between robots, where as the algorithm presented in (Melnyk et al., 2012) uses measurements of the bearing with

respect to a time varying set of feature points. Under these two changes, the IEKF algorithm is able to function under

the same circumstances as the RPGO algorithm presented in Section 3.

As with the EPGO algorithm, and in contrast to the RPGO algorithm, the IEKF algorithm requires a suitable

parameterization of SO(3) to be used. Unit quaternions are again chosen for this parameterization. A complete

description of the resulting filtering equations are available in Knuth (2013); we omit the details here due to lack of

space.

6 Simulation Results

In this section we present simulations comparing the centralized and distributed algorithms and study the effect of

collaboration on localization accuracy using each of the inter-robot measurement types.



First, in section 6.1, we consider the case that all inter-robot relative measurements are of the relative pose. We

examine the difference in localization accuracy between the centralized and distributed algorithms, as well as the effect

of increasing number of robots on localization accuracy. In Section 6.2 we consider the heterogeneous measurement

case in which the inter-time relative measurements are of relative pose, but the inter-robot relative measurements may

be of relative pose, orientation, position, bearing, or distance. We examine the effects these various measurement types

have on the accuracy of the location estimates.

To study the change in localization accuracy, we consider the following metrics. The position (estimation) error of

robot i is ei(k) := t̂i(k) − ti(k), where ti(k) is its global position at time k and t̂i(k) is the estimate of this position.

The bias in the position estimation error of robot i is defined as ‖E[ei(k)]‖, where E[ · ] denotes expectation and ‖ · ‖

refers to 2-norm, and the standard deviation as
√

Tr (Cov(ei(k), ei(k))), where Cov( · , · ) denotes covariance.

6.1 Centralized RPGO vs. DRPGO

To compare the centralized and distributed algorithms, we examine the localization of a group of 5 robots. All inter-

robot relative measurements were of the relative pose. Each of the 5 robots travels along a distinct zig-zag path in

3-D, shown in Figure 3(a). Two robots could obtain relative pose measurements at time k if the Euclidean distance

between them at that time was less than 7m. Due to assumption 2, communication between robots is possible between

at least those pairs with a distance less than 7m. Furthermore, 25% of these potential measurements were dropped

to simulate random failure. A plot of the number of neighbors of robot 1 over time is shown in Figure 3(b). The

orientation measurements for each relative pose (both inter-robot and inter-time) were corrupted by independent

identically distributed (i.i.d.) unit quaternions drawn from a Von Mises-Fisher distribution (Mardia and Jupp, 2000)

centered around the zero-rotation quaternion and with a concentration parameter of 10, 000. Noise in the relative

translation measurements was simulated by adding i.i.d zero-mean normal random variables with covariance matrix

I3×3 × 10−6.

Figure 4 shows the bias and standard deviation in position error of a single robot acting in a 5 robot team, estimated

using a 100-iteration Monte Carlo simulation. The group of robots performed localizing using either the centralized

or distributed collaborative localization algorithms with all inter-robot measurements being of the relative pose. The

plots indicate that the improvement in localization accuracy with the distributed algorithm is quite close to that with

the centralized algorithm. This is promising since the distributed algorithm is applicable to large teams of robots in

highly dynamic scenarios that can lead to arbitrary time variation in neighbor relationships. The centralized algorithm

is not applicable in a realistic setting, but it provides a measure of the best possible performance. From this point

forward, we will only study the distributed algorithm.
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Figure 3: The (a) 3D trajectories for robots 1 through 5, used in all simulations and (b) the number of neighbors of

robot 1 as a function of time.
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Figure 4: The (a) bias and (b) standard deviation in position error for a robot acting in a group of 5 localizing

using either the centralized or distributed algorithm. This estimate was obtained using a 100-iteration Monte-Carlo

experiment.

We next conduct a series of Monte Carlo simulations with the distributed algorithm and compute means and

variances of the resulting localization errors. One goal of this study is to verify that the accuracy improvements

observed above are not a chance occurrence. Another goal is to examine how the localization accuracy varies with the

number of robots in the team.

In each of the sample runs of the Monte Carlo simulation, the robots traveled the same paths - those shown

in Figure 3(a). Measurement noise was introduced in the same manner as in the previous simulations, and varied

randomly from run to run. Neighbor relations were again determined as described earlier, and kept the same from run

to run to preclude that from being an additional source of randomness. Simulations for robot teams of size 1, 2, 3, 4

and 5 were carried out. In each case 1, 000 iterations were performed. When only one robot is present in the team,

collaborative localization is equivalent to self-localization without the aid of any inter-robot relative pose measurement.

As the number of robots in the team increases, the number of neighbors for a robot at any given time will tend to
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Figure 5: The (a) bias and (b) standard deviation in the position estimation error for robot 1 utilizing the distributed

algorithm. The curves correspond to the number of robots in the group: 1, 2, 3, 4, or 5.

increase and so greater improvement in localization accuracy is expected.

The bias and standard deviation in the position estimation error ei(k) for robot 1 (i = 1) are shown in Figure 5.

Both bias and standard deviation show significant improvement with distributed collaborative localization over self-

localization. This is evident even for a team of only two robots. As the number of robots in the team increases,

the localization error of robot 1 decreases. The improvement in accuracy however, shows a diminishing return with

increasing team size.

6.2 Effect of measurement type

We now perform simulations for the case when inter-robot relative measurements are of various types (pose, orientation,

position, bearing, and distance). To examine the effect that measurement type has on localization accuracy, in each

experiment, we let all inter-robot relative measurements be of the same type. Monte Carlo simulations were conducted

in which we again consider 5 robots traveling in the zig-zag paths shown in Figure 3(a). Errors in the pose, orientation

and position measurements are introduced as described in section 6.1. Noise in the bearing measurements is induced

by rotating the true bearing through the application of a unit quaternion generated from an i.i.d. Von Mises-Fisher

distribution. The noise in the distance measurements is normally distributed. The bias and standard deviation of

position error for robot 1 are shown in Figure 6.

We see from the plots that improvement over self-localization occurs for all measurement types, with the exception

of distance measurements. While distance measurements improve the standard deviation of the position estimates, they

have little or no effect on the bias. That distance has little effect on the accuracy is consistent with the conclusions in the

study (Martinelli et al., 2005) for 2-D localization. The fact that bearing measurements lead to higher improvement

over distance or position measurements was also observed in (Martinelli et al., 2005) for the 2-D case. While the
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Figure 6: Simulation: The (a) bias and (b) standard deviation in position error for robot 1 when the distributed algo-

rithm is applied to a group of 5 robots utilizing inter-robot relative measurements. The labels “Pose”, “Orientation”,

“Position”, “Bearing” and “Distance” indicate the group of robots used inter-robot measurements of the respective

types to perform collaborative location using the distributed algorithm.

conclusions in (Martinelli et al., 2005) were based on single simulations, ours are based on Monte Carlo simulations.

Trade-offs between cost of sensors and the resulting benefit in localization can be analyzed from these empirically

observed trends. Though full pose provides the most benefit to localization accuracy, it is clear that any of the

considered inter-robot measurement types can be used to improve localization accuracy over dead-reckoning. In

particular, after relative pose, relative position seems to be the most valuable types of inter-robot measurements,

leading to significant reduction in both bias and variance over dead reckoning. This means that the cost of having

sensors capable of measuring relative position (stereo vision, laser range finder, or monocular camera based bearing

sensor along with a RF-based distance measurement) may very well be justified by the localization accuracy they

lead to. On the other hand, it is also apparent that the improvement due to inter-robot bearing measurements is

quite comparable to that due to inter-robot relative position measurements. Yet, only a single camera is necessary to

measure the bearing, where as (in general) stereo vision is necessary to measure the full relative position, which is still

quite prone to large errors unless large baseline stereo is used. Thus, given cost, payload, and reliability constraints,

monocular cameras might be a better choice than stereo vision. These conclusions come with the caveat that they

have been drawn from one set of Monte Carlo simulations; more extensive studies are needed to establish how general

these trends are.

6.3 Comparison with alternate methods of distributed collaborative localization

We now present simulations that provide some insight into how the D-RPGO algorithm performs when compared with

two state-of-the-art collaborative localization algorithms. All inter-robot relative measurements are of the relative pose
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Figure 7: Simulation: comparison between D-RPGO and D-EPGO algorithms when (a) inter-robot orientation mea-

surements are less noisy (k = 10, 000) and (b) inter-robot orientation measurements are more noisy (k = 100) where k

is the concentration parameter for the Von-Mises Fisher distribution from which the noisy measurements are drawn.

The bias in position estimation error of robot 1 (in a group of 5 robots utilizing noisy inter-robot relative pose

measurements), computed with both algorithms, averaging over the same graph, is shown.

for these simulations.

The first alternative we consider is the standard pose graph implementation presented in Section 5.1, referred to as

the EPGO algorithm. To maintain comparability, we provide the same local measurement graph to both the D-RPGO

algorithm as well as a EPGO algorithm, which we call the D-EPGO algorithm.

A group of 5 robots are simulated to move along the 3-D path described above. Error in the pose measurements

were induced as in simulations in Section 6.2. Simulations were performed varying the concentration parameter K

in the Von Mises-Fisher distribution from which the noisy rotations (quaternions) used to corrupt the inter-robot

orientation measurements are drawn. These simulations show that, when K is very large, that is, the variance is very

low, D-EPGO does very well, even outperforming the D-RPGO algorithm. However, when K is small, that is, the

noise variance is large, D-RPGO outperforms D-EPGO. Due to a lack of space, only the results for K = 10, 000 and

K = 100 are shown; see Figure 7. It is clear that the proposed D-RPGO algorithm outperforms the D-EPGO algorithm

when K = 100 (more noise), while the D-EPGO algorithm outperforms the D-RPGO algorithm when K = 10, 000

(less noise). The standard deviation is shown in Figure 8. In case of the standard deviation, the difference between

the two algorithms is small.

Next, we consider the IEKF algorithm presented in Section 5.2. A pair of robots is simulated traveling along distinct

sinusoidal paths in 3-D space. Measurements are generated as described earlier. The trends observed from extensive

simulations can be summarized as follows. When the time interval between successive inter-robot measurements, call

it ∆T , is small, the IEKF performs as well, or better than, the D-RPGO algorithm. However, when the time between
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Figure 8: Simulation: comparison between D-RPGO and D-EPGO algorithms when (a) inter-robot orientation mea-

surements are less noisy (k = 10, 000) and (b) inter-robot orientation measurements are more noisy (k = 100) where k

is the concentration parameter for the Von-Mises Fisher distribution from which the noisy measurements are drawn.

The standard deviation in position estimation error of robot 1 (in a group of 5 robots utilizing noisy inter-robot relative

pose measurements), computed with both algorithms, averaging over the same graph, is shown.

measurements is large, the D-RPGO algorithm provides significantly better estimates of the robots’ poses compared

to the IEKF algorithm. Figure 9 provides numerical results for the case of a large ∆T (30 seconds in this example),

when IEKF performs poorly, and small ∆T (0.1 seconds), when the IEKF performs well. How small ∆T has to be

for IEKF to perform well depends on many factors, including the motion of the robots, noise in the measurements,

etc. For the parameters used in the simulations mentioned above, ∆T has to be smaller than 0.1 sec for the IEKF to

perform as well as the D-RPGO algorithm.

We believe the reason for this behavior of the IEKF is the error introduced by the linearization involved in

covariance propagation. The linearized state equations rely on the assumption that the angle between the true and

estimated orientation is very small. When the time interval between inter-robot measurements is sufficiently small,

this approximation holds. In that case the error in the covariance matrix due to linearization is small enough that

it does not out weigh the added benefit of using covariance information. However, the small angle approximation is

violated for large time intervals, leading to quite poor covariance estimates, which in turn lead to poor pose estimates.

6.4 Application to randomized paths

Thus far the D-RPGO algorithm has only been applied to a single deterministic set of paths, which is necessary for

the careful evaluation of the algorithm’s performance. To address any concerns about possible dependency on paths,

we now present a simulation in which the paths of the robots are random. The random paths were generated such
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Figure 9: Simulation: comparison between D-RPGO and IEKF algorithms with two different sampling periods for

inter-robot measurements. The bias in position estimation error of robot 1 (in a group of 2 robots utilizing noisy

inter-robot relative pose measurements), computed with both algorithms.

that each robot tended to follow the same moving set point. The probability of moving towards that point was scaled

by the distance from it. One particular realization of such a path for each of the 5 robots is found in Figure 10(a).

The number of neighbors for robot 1 during the given path is shown in Figure 10(b).

We again consider the case when all inter-robot measurements are of the relative pose. A 500−iteration Monte

Carlo simulation was conducted and the rms localization error estimated for both the self localization (dead reckoning)

and D-RPGO algorithm cases. The RMS position estimation error is shown in Figure 11.

Comparing these results with those presented in Figure 5, we observe that the improvement in localization accuracy

by using the D-RPGO algorithm appears to be largely independent of the path. In addition, the results seen in

Figure 11 are indicative of an observation made early in this work; that the average number of neighbors, not the total

number of robots, is the dominant factor determining localization improvement in the application of the D-RPGO

algorithm. In contrast to our previous simulations, the average number of neighbors here proves to be ≪ 1 and so we

see improvements more akin to the r = 1 case in Section 6.1, rather then the r = 5 case.

7 Experimental results

In this section we present results for experiments conducted with two Pioneer P3-DX robots; they are shown in

Figure 12. Each robot was equipped with a calibrated monocular Prosillica EC 1020 camera and wheel odometers.

Measurements from these sensors were fused to obtain the noisy inter-time relative pose measurements. Each robot is

additionally equipped with a target allowing the on-bard cameras to measure the inter-robot relative pose by exploiting

the known geometry of each target. The true pose of each robot was determined using an overhead camera capable

of tracking each robot’s target. The sensor suite was polled every 0.2 seconds with the noisy inter-robot relative pose
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Figure 10: The (a) 3D trajectories for robots 1 through 5 corresponding to one particular realization of the random

path and (b) the number of neighbors of robot 1 as a function of time for the given paths.

measurements available at most, but not all, times.

All robots moved in straight lines with their paths approximately parallel. Six different pose estimates of the

robots were obtained at each time. The first was a dead-reckoning estimate, obtained from the inter-time relative

pose measurements alone. The remaining 5 estimates were obtained by using the distributed collaborative localization

algorithm with the inter-robot noisy relative measurements being of full pose, orientation only, position only, bearing

only, or distance only, respectively. These measurements were obtained by projecting the relative pose measurements.

The resulting global position estimates, along with the true positions, for robot 1 are reported in Figure 13. Simulations

presented in section 6 indicate that we should see a significant improvement in localization accuracy even in this small

team and the experimental results are consistent with that conclusion. As in the simulations, distinct improvement

in localization accuracy is seen when collaborative localization is performed irrespective of the type of inter-robot

measurement though the improvement varied depending on the measurement type.

To show that the improvements seen in the previous experiments are not just a random occurrence, the previous

experiment was repeated 24 times to produce an empirical estimate of the bias and standard deviation in position

estimation error (by taking appropriate averages) for each type of inter-robot measurement. The results are reported
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Figure 11: Simulation: The root-mean-square position error for robot 1 when the distributed algorithm is applied to

a group of 5 robots utilizing inter-robot relative measurements over random paths.

Figure 12: Two Pioneer P3-DX robots equipped with cameras and targets. Robot 1 is shown on the left, while robot

2 is on the right.

in Figure 14. The experimental results again show that all measurement types lead to an increase in localization

accuracy, with relative pose measurements leading to the maximum improvement, as expected. This is also the same

trend that was observed in the simulations. In contrast to the simulations, here we see that distance measurements

do lead to a non-negligible improvement in the bias of localization accuracy. As in the simulations, we see that both

bearing and position measurements lead to similar improvement in the bias. However, in contrast to the simulations,

in the experiments orientation measurements seem to improve the bias more than bearing or position measurements.

The trend of the standard deviation improvement with orientation, position and orientation measurements are similar

in both simulation and experiments. The most significant difference between the trends observed in simulations and

experiments are in the standard deviation improvement between pose, orientation, and position measurements: they

are much closer in the experiments than in the simulations. In fact, the standard deviation with position or orientation

measurements seem to be a little smaller than that with pose measurements. We believe this is an artifact of the small

number of experimental samples averaged to estimate the bias and standard deviation empirically, which limits the

accuracy of the estimates.
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Figure 13: Experimental: A plot of the location of robot 1 in the overhead camera frame of reference when both robots

move in a straight line. The true path (determined using the overhead camera), estimated path using self localization,

and estimated path using the distributed collaborative localization algorithm are all reported. The various curves

correspond to the type of inter-robot relative measurement used.

In short, the experiments verify that the proposed algorithm for distributed collaborative localization leads to

statistically significant improvement in localization accuracy even with a small number of robots. Several trends seen

in the experiments about the relative merits of the different types of measurements are consistent with those in the

simulations. However, there are a few noticeable differences as well. Though the exact cause of these differences is

not clear, one should note that the simulations and experiments differ in a number of ways. The biggest difference

is that the bias and standard deviations estimated from the experiments are likely to have higher error than in the

simulations due to the small number of experimental samples, which in turn is due to the difficulty associated with

conducting repeated experiments. The other significant difference comes from the measurement noise distributions.

In the simulations, measurement noise was drawn from distributions that were somewhat arbitrarily chosen, while the

noise distributions in the experiments are unknown. The third potential source of difference is the paths of the robots.

In (Knuth and Barooah, 2013), which examined the growth of dead-reckoning error, we showed that the path a robot

traverses plays a crucial role in the bias and standard deviation of the localization error. In particular, the bias grows

without bound if the robot moves in a straight line, but stays uniformly bounded by a constant if the robot stays inside

a bounded region. Similar effects are likely in collaborative localization. Therefore, the difference between the paths

used in the simulation and experiments might be another source of the difference in localization accuracy observed.
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Figure 14: Experimental: The (a) bias and (b) standard deviation in position error for robot 1 with collaborative

localization when both robots move in a straight line. The bias and standard deviation were empirically estimated by

averaging over 24 repeated trials.

8 Summary

In this paper we introduce a novel distributed algorithm (D-RPGO) for estimating the 3-D pose of multiple robots when

noisy inter-robot measurements of various types (relative pose, orientation, position, bearing, or distance) between

pairs of robots are intermittently available. The distributed algorithm is inspired by a centralized algorithm for solving

a least-squares type problem. The cost function is chosen to measure how well the estimates explain the relative

measurements. A gradient-descent in a product Riemannian manifold is used to solve the optimization problem.

The proposed method is close in spirit to the pose graph optimization problems commonly uncounted in mapping

and localization. The primary distinction is that our cost function is defined on a Riemannian manifold and is minimized

on that surface without converting the problem to a vector space optimization problem. The estimator is thus naturally

independent of the choice of parameterization of SO(3) utilized to carry out the numerical computation. While

Euclidean pose graph algorithms may require careful choice of design variables for a specific rotation parameterization

for it to perform well, the Riemannian pose graph algorithm does not. In addition, the Riemannian version can

achieve better performance in some cases. In particular, the D-RPGO algorithm outperforms a distributed version of

the traditional pose graph optimization (that uses a specific Euclidean parameterization of the robot orientations) in

terms of accuracy when the noise in the inter-robot measurements is large.

It was found that the computation time of the D-RPGO algorithm is comparable to that of the D-EPGO algorithm

in the simulations we performed. However, there are many ways to speed up the computations involved in Euclidean

optimization that are not currently available for Riemannian optimizations. We suspect when applied to large graphs,

Riemannian optimization will be slower than Euclidean optimization. Fortunately the measurement graphs that appear



in distributed computation are small, since their size scales with the number of neighbors of a robot.

The IEKF has been a popular tool in past work on collaborative localization as well as mapping. Simulation

comparison of the proposed D-RPGO algorithm with the IEKF showed that the IEKF performs poorly compared

to the proposed D-RPGO algorithm unless the time interval between successive inter-robot relative measurements

is quite small. This has important implications for many practical applications, since it is more likely that inter-

robot measurements will be available infrequently. However, in those special cases when inter-robot measurements

arrive frequently, the IEKF performs better then the D-RPGOalgorithm due to the consideration of the estimation

covariance. One such scenario is the one considered in (Melnyk et al., 2012), where robots observe common feature

points on the ground. In such a scenario the IEKF maybe preferable over the proposed method.

The focus of this paper has been on relative localization with an arbitrary origin or with GPS fixes available only

in the beginning. The algorithm is readily applicable to scenarios where global position or orientation measurements

may become available over time, such as intermittent GPS or landmarks with known position/orientation detected by

robots. For instance, when a landmark with a known position or orientation is detected, a new node is introduced in

the graph corresponding to the landmark, whose node variable(s) enter the optimization as known values instead of

variables to optimize over. The landmarks are effectively grounded nodes.

A limitation of the proposed method over the IEKF (and other filtering methods) is that the latter also provides

a covariance estimate while the proposed method does not. A method to estimate the covariance, or some measure of

estimation error, is an important future task. Although simulations reported here provide an indication of when the

proposed method performs over existing state-of-the art methods, a more thorough study needs to be conducted to

obtain a better understanding of the relative merits of the proposed method over alternatives. Future studies will also

address issues such as identification of the neighboring robots, and rejection of outliers in the relative measurements.
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Appendix

A Riemannian Manifolds

In this section we provide greater detail on the building blocks of Algorithm 1, including Riemannian manifolds. A full

introduction to the study of Riemannian geometry is outside the scope of this paper; the interested reader is referred

to (Gallot et al., 2004; Absil et al., 2008).

A manifold M of dimension d is a topological space that can locally be represented by R
d. The set of all linear

operators on the vector space R
3 is denoted by L(R3). Elements of L(R3) can be represented by 3 × 3 matrices. We

can then describe the manifold of 3-D rotations, denoted SO(3), by the set
{

R ∈ L(R3) : RT R = id, det(R) = 1
}

. The

symbol id denotes the identity operator. Given a point p ∈ SO(3), the tangent space of SO(3) at p, denoted TpSO(3)

is given by

TpSO(3) =
{

pv̂ : v̂ ∈ L(R3), v̂T = −v̂
}

.

A Riemannian metric on a manifold M is given by defining ∀p ∈ M gp : TpM × TpM → R such that

• ∀p ∈ M , gp is an inner product

• given two vector fields X and Y on M , the map g : M → R, p 7→ gp(Xp, Yp) is smooth.

The Riemannian metric g gives rise to an inner-product norm on the tangent space TpM for each p ∈ M . That is,

for ξ ∈ TpM , ‖ξ‖2 = gp(ξ, ξ). A Riemannian manifold is a manifold equipped with a Riemannian metric. The first

Riemannian manifold we consider is (SO(3), g) were g is the Riemannian metric given by

gp(A, B) =
1

2
Tr

(

AT B
)

(10)

for all p ∈ SO(3), A, B ∈ TpSO(3). From this point on, when we refer to SO(3) we mean this Riemannian manifold.

To further simplify the notation, when the argument p ∈ SO(3) is clear, we will denote gp(Xp, Yp) by g(Xp, Yp).

For a Riemannian manifold, the analog to a straight line in Euclidean space is given by a geodesic. For two points

p and q on a manifold M , a geodesic from p to q, denoted γpq, is a “shortest” path from p to q. More precisely, if

we consider the set of all parameterized paths from p to q, given by Γ = {γ : [0, 1] → M : γ(0) = p, γ(1) = q} then a

geodesic γpq is given by a path that minimizes

∫ 1

0

‖γ′(t)‖dt

over all paths in Γ, and γ′(t) is the derivative of γ(t) with respect to t, which is defined by the following relationship:

γ′(t0)f =
d(f(γ(t))

dt
|t0



for all f : M → R. Note that the derivative γ′(0) is an element of the tangent space Tγ(0)M . For the manifold SO(3),

the geodesic from p to q (∈ SO(3)) is given by

γpq(t) = p exp(tv), t ∈ [0, 1]

where v = log(p−1q), the map exp : L(R3) → L(R3) is given by exp(X) =
∑

∞

k=0
Xk

k! and log is the inverse map of

exp1.

For an arbitrary Riemannian manifold, the Riemannian metric defines a corresponding distance function on the

manifold as follow. For a Riemannian manifold M , the distance between two points p, q ∈ M is given by

dM (p, q) =

∫ 1

0

‖γpq(t)‖dt

In particular, for the manifold SO(3),

dSO(3)(p, q) =

√

−
1

2
Tr

(

log2(pT q)
)

.

The subscript SO(3) on the distance function will be omitted when the arguments make it clear what manifold the

distance refers to. The second manifold we consider is (R3, < · , · >), standard Euclidean 3-space with the Riemannian

metric given by the inner product on R
3. Given points p, q ∈ R

3 the (unique) geodesic connecting p and q is the straight

line from p to q and d(p, q) = ‖p − q‖ := < p − q, p − q >1/2, the standard Euclidean inner product norm.

In addition to the distance function, the Riemmanian metric also specifies a parallel transport function. Let M be

an arbitrary Riemmanian manifold. For p ∈ M and ξ ∈ TpM , the parallel transport function, denoted expp, finds a

new point q ∈ M given by moving along a geodesic beginning at p and with initial velocity ξ. More precisely,

q = expp(ξ) = γ(1)

where γ is a parameterized geodesic with γ(0) = p and ξ being the tangent to γ(t) at t = 0. In the case of SO(3),

expp(ξ) = p exp(pT ξ).

Finally, we consider the gradient for real value functions defined on the manifold. Given a Riemannian manifold

M and a scalar, real-valued function f : M → R, the gradient of f at p ∈ M , denoted by grad f(p), can be defined

by the following relation:

gp(grad f(p), ξp) = (f ◦ γ)′(0) ∀p ∈ M. (11)

where γ : [0, 1] → M is any curve with γ(0) = p, and (f ◦γ)′(0) := d(f◦γ)(t)
dt |0. For an example of a gradient calculation

that will be useful later, consider the following function

f1 : SO(3) → R, p 7→
1

2
d2(p, q) (12)

1 This use of log(p) for p ∈ SO(3) is only valid on the region where exp is a diffeomorphism, which it is at least on the open ball about

I ∈ SO(3) of radius π (Grove et al., 1974, Proposition 1.4).



for some fixed q ∈ SO(3). For an arbitrary p ∈ SO(3), we consider the geodesic γpq(t) = p exp(tv) where v = log(p−1q).

It can be shown that

(f1 ◦ γ)(t) =
1

2
(1 − t)2d2(p, q)

and thus

(f1 ◦ γ)′(0) = −d2(p, q) =
1

2
Tr

(

v2
)

.

The corresponding tangent vector to γ(t) at p is given by ξp := γ′(0) = pv. It follows from (10) that

gp(grad f1(p), ξp) =
1

2
Tr

(

(grad f1(p))T pv
)

.

Applying (11) we have

grad f1(p) = −pv = −p log(p−1q) ∀p ∈ SO(3). (13)

For a function f : SO(3) → R the gradient at R ∈ SO(3) is given by (Ma et al., 2001):

grad f(R) = fR − RfT
RR (14)

where fR ∈ L(R3) is the linear operator whose matrix representation (using the canonical basis vectors for R
3) is

given by: (fR)ij = ∂f
∂Rij

, where Rij represents the (i, j)-th entry of the 3 × 3 matrix representation of R. Gradient

calculation for a function f : R
3 → R is straightforward.

Apart from SO(3) and R
3, the other Riemannian manifold that is useful in this study is SE(3). Instead of SE(3),

however, we consider the equivalent manifold SO(3)×R
3. There exists a natural way to define the Riemannian metric

on this manifold, based on the Riemannian metrics in SO(3) and R
3 so that we can deal with geodesics and gradients.

This has to do with the fact that SO(3) × R
3 is a product manifold, which is the topic of the next section.

B Product Manifold

Let
{

(Mi, g
(i))n

i=1

}

be a set of n Riemannian manifolds. We define the product Riemannian manifold (M, g) as follows:

M := M1 × · · · × Mn

gp(ξ, ζ) :=
n

∑

i=1

g(i)
pi

(ξi, ζi)
(15)

for all p = (p1, . . . , pn) ∈ M and all ξ = (ξ1, . . . , ξn), ζ = (ζ1, . . . , ζn) ∈ TpM . We first restrict our considerations to

product Riemannian manifolds of the form M = M1 × M2 (i.e. n = 2). The extension to any finite combination is

straight forward. The following lemma will be useful in the sequel. The proof of the lemma can be found in (Ma et al.,

2001).



Lemma 1 (Ma et al. (2001)). Let M = M1 × M2 be a product Riemannian manifold as defined in (15) and consider

a smooth function f : M → R. Then for any parameterized path γ = (γ1, γ2) : [0, 1] → M ,

d

dt
f(γ(t))|t0 =

d

dt
f(γ1(t), γ2(t0))

∣

∣

t0
+

d

dt
f(γ1(t0), γ2(t))

∣

∣

t0

where t0 ∈ [0.1].

Theorem 1. Let M = M1 × M2 be a product Riemannian manifold, as defined in (15). Consider a smooth function

f : M → R and for all (p, q) ∈ M (p ∈ M1, q ∈ M2), define

f q
1 : M1 → R, a 7→ f(a, q)

fp
2 : M2 → R, b 7→ f(p, b).

Then for all (p, q) ∈ M

grad f(p, q) = (grad f q
1 (p), grad fp

2 (q)) .

Proof. Fix (p, q) ∈ M and consider an arbitrary tangent vector ξ = (ξ1, ξ2) ∈ T(p,q)M . Choose a parameterized path

(γ1, γ2) = γ : [0, 1] → M such that ξ1 is tangent to γ1(t) at p = γ1(t0) and ξ2 is tangent to γ2(t) at q = γ2(t0) (and

thus ξ is tangent to γ(t) at (p, q) = γ(t0)). Using lemma 1, we have

(f ◦ γ)′(t0) =
d

dt
(f q

1 ◦ γ1)|t0 +
d

dt
(fp

2 ◦ γ2)|t0 .

From this relation and (11), we find that

g(grad f(p, q), ξ) = g(1)(grad f q
1 (p), ξ1) + g(2)(grad fp

2 (q), ξ2). (16)

Let grad f(p, q) = (A, B) ∈ T(p,q)M for some unknown A ∈ TpM, B ∈ TqM . Using the definition of g given in (15),

we can rewrite (16) as

g(1)(A, ξ1) + g(2)(B, ξ2) = g(1)(grad f q
1 (p), ξ1) + g(2)(grad fp

2 (q), ξ2).

Since this equality holds for all ξ1 ∈ TpM and all ξ2 ∈ TqM , we have A = grad f q
1 (p), B = grad fp

2 (q), which completes

the proof.

As the number of manifolds increases, the notation grad f q
1 (p) becomes more cumbersome. We will therefore

simplify the notation by writing grad f(p) (to mean grad f q
1 (p)) whenever the manifold the gradient found with

respect to is made obvious by the argument p and q is clear from context.

The following corollary is a direct consequence of Theorem 1.



Corollary 1. Given a set of n Riemannian manifolds {(Mi, gi)}
n
i=1, if the product Riemannian metric on the product

manifold (M, g), where M = M1 × · · · × Mn, is defined as

gp(X, Y ) = g1(X1, Y1) + · · · + gn(Xn, Yn)

for p = (p1, . . . , pn) ∈ M and X = (X1, . . . , Xn), Y ∈ TpM = Tp1M1 × . . . Tpn
Mn, then

grad f(p) = (grad f(p1), . . . , grad f(pn)) .

We next consider what geodesics look like on the product manifold.

Theorem 2. If M is a product Riemannian manifold as defined in (15), then a geodesic between p = (p1, p2) and

q = (q1, q2) ∈ M can be obtained by the product of geodesics between p1 and q1, and p2 and q2, on M1 and M2,

respectively.

Proof. Let γpq, γp1q1 , γp2q2 denote the geodesics on M , M1, and M2 respectively. By definition, γpq =: (γ(1), γ(2)) is

the path that minimizes

γpq = arg min
γ∈Γpq

∫ 1

0

‖γ′(t)‖2dt

where Γpq denotes the set of all paths on M from p to q and, for γ ∈ Γpg, γ(t) denotes a parameterization of path γ

such that γ(0) = p and γ(1) = q. Using the definition of the inner-product norm on the product manifold, we see that

γpq = arg min
(γ(1),γ(2))∈Γpq

∫ 1

0

(‖γ(1)′(t)‖2 + ‖γ(2)′(t)‖2)dt

=

(

arg min
γ∈Γp1q1

∫ 1

0

‖γ′(t)‖2dt, arg min
γ∈Γp2q2

∫ 1

0

‖γ′(t)‖2dt

)

= (γp1q1 , γp2q2).

That parallel transport on M is given by parallel transport on each individual Mi immediately follows. Thus

proving (6).

C Proof of Theorem 1

proof. The cost function (3) is a function from M to R where M is the product manifold

M :=
(

SO(3) × R
3
)n

, where n := |V (k)|.



We define the Riemannian metric on this product manifold as follows. For p = (R1, t1, . . . ,Rn, tn) ∈ M and X, Y ∈

TpM, where X ∈ TpM is expanded as (XR1 , Xt1 , . . . , XRn
, Xtn

),

gp(X, Y ) :=
∑

i∈n

(

gRi
(XRi

, YRi
)+ < Xti

, Yti
>

)

This meets the conditions of Corollary 1 and so for p = (R1, t1, . . . ,Rn, tn) ∈ M, we have

grad f(p) = (grad f(R1), grad f(t1), . . . , grad f(Rh), grad f(th)) .

All that remains is to determine grad f(Ru) and grad f(tu) for u = 1, . . . , n. Using linearity of the gradient operator,

we have

grad f(Ru) =
∑

e∈E (k)

grad ce(Ru), and grad f(tu) =
∑

e∈E (k)

grad ce(tu).

First define f2 := 1
2d2(RT

uRv, R̂u v), f3 := 1
2‖t̂u v − RT

u (tv − tu)‖2, so that for e ⊲ e(u, v), ce = f2 + f3. For h = u or

h = v, we therefore have

grad ce(Rh) = grad f2(Rh) + grad f3(Rh) (17)

grad ce(th) = 0 + grad f3(th). (18)

The Riemannian distance d(p, q) is bi-invariant, meaning that for arbitrary R, R̄ ∈ SO(3), d(p, q) = d(RpR̄, RqR̄).

Using bi-invariance, we obtain d2(RT
uRv, R̂u v) = d2(Rv,RuR̂u v), which implies grad f2(Rv) = grad f1(Rv|q) where

f1 : SO(3) → R is given by (12) and q = RuR̂u v. Applying formula (13), we obtain

grad f2(Rv) = −Rv log(RT
v RuR̂u v).

The expression for grad f2(Ru) is similarly obtained; by thinking of f2 as a function of Ru and keeping Rv, R̂u v

fixed. These gradients are compactly represented as:

grad f2(Rh) =



































−Rh log
(

RT
h Rv R̂T

u v

)

if h = u

−Rh log
(

RT
h Ru R̂u v

)

if h = v

0 otherwise

The gradient of the function f3 : SO(3) → R (thinking of f3 only as a function of Ru while tu, tv,t̂u v are fixed) can be

obtained using (14) with straightfrward but tedious calculations; which turn out to be grad f3(Ru) = −(tv − tu)t̂T
u v +

Rut̂u v(tv − tu)T Ru. The gradient of f3 : R
3 → R is simply (∂f3(x)

∂x )T , which is

grad f3(th) =



































(

th + Rh t̂u v − tv

)

if h = u

(

th − Ru t̂u v − tu

)

if h = v

0 o.w.



These formulae completely specify the gradient of the edge cost, grad ce( · ) in (17). The expressions for grad f(Ru)

and grad f(tu) for u = 1, . . . , n that are provided in the theorem are obtained simply by adding the components of

the gradients that are derived above.

D Gradient of the Cost Function (3) for Heterogeneous Measurements

As in the proof of Proposition 1, the gradient of the function f in (3) at a point p = (R1, t1, . . . ,Rn, tn) ∈
(

SO(3)×R
3
)n

is given by

grad f(p) =
∑

e∈E (k)

grad ce(p) =: (grad f(R1), . . . , grad f(tn)) (19)

where grad ge(p) is the gradient of the edge cost function for edge e = (u, n). Finding the gradient of the cost

function (3) then reduces to finding the gradients of the edge costs ce (specified in (4)) for each edge e ∈ E (k).

It follows from Corollary 1 that the gradient of the cost function ce in (4) for the edge e = (u, v) ∈ E (k) is

grad ce(p) =
(

grad ce(R1), grad ce(t1), . . . , grad ce(Rn), grad ce(tn)
)

For ℓ(k)(e) = T (pose), the gradients have already been computed in the previous section, which can be compactly

represented as (e ⊲ (u, v))

grad ce(Rh) =














































−2Rh

(

log(RT
h RvR̂

T
u v)

+RT
h (tv − tu)t̂T

u v − t̂u v(tv − tu)TRh

)

if h = u

−2Rh log(RT
h RuR̂u v) if h = v

0 o.w.

grad ce(th) = 2Iuv(h)(tu + Rut̂u v − tj)

where Iuv(h) = 1 if h = u, −1 if h = v and 0 otherwise. If ℓ(k)(e) = R (orientation) or ℓ(k)(e) = t (position), we have

the following expressions for the gradient from the previous section. If ℓ(k)(e) = R,

grad ce(Rh) =



































−2Rh

(

log(RT
h RvR̂

T
u v) if h = u

−2Rh

(

log(RT
h RuR̂u v) if h = v

0 otherwise

grad ce(th) = 0.



and if ℓ(k)(e) = t, then

grad ce(Rh) =















−2Rh

(

RT
h (tv − tu)t̂T

u v − t̂u v(tv − tu)T Rh

)

if h = u

0 otherwise

grad ce(th) = 2Iuv(h)(tu + Rut̂u v − tv).

If ℓ(k)(e) = τ (bearing) or ℓ(k)(e) = δ (distance), the gradient grad ce(Rh) can be computed by using formula (14).

The gradient grad ce(th) is obtained by differentiation. We obtain, for ℓ(k)(e) = τ (bearing)

grad ce(Rh) =















−2Rh

(

RT
h (tv − th)τ̂T

u v‖tu − tv‖ − τ̂u v‖tv − tu‖(tv − tu)T Rh

)

if h = u

0 otherwise

grad ce(th) = −4Iuv(h)[(tv − tu) − ‖tv − tu‖Ruτ̂u v]

and if ℓ(k)(e) = δ (dist)

grad ce(Rh) = 0

grad ce(th) = −2Iuv(h)
(δ̂u v − ‖tv − tu‖)

‖tv − tu‖
(tv − tu).

The gradient grad f(p) can now be computed by using these formulas.
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