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a b s t r a c t

We examine how the estimation error grows with time when a mobile robot estimates its location from
relative pose measurements without global position or orientation sensors. We show that, in both two-
dimensional and three-dimensional space, both the bias and the variance of the position estimation error
grows at most linearly with time asymptotically. Non-asymptotic bounds on the bias and variance are
obtained, which provide insight into the mechanism of error growth. The bias is crucially dependent on
the trajectory of the robot. Conclusions on the asymptotic growth rate of the bias continue to hold even
with unbiased measurements or error-free translation measurements. Exact formulas for the bias and
the variance of the position estimation error are provided for two specific two-dimensional trajectories –
straight line and periodic. Experiments with a P3-DX wheeled robot and Monte Carlo simulations are
provided to verify the theoretical predictions. A method to reduce the bias is proposed based on the
lessons learned.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Localization without GPS is a key capability for autonomous
robots, since there are many situations in which GPS signals
are either unavailable or only intermittently available. These
include operation in urban canyons and tunnels, inside buildings,
under water, and in extra-planetary exploration. In such a
situation, localization with respect to an initial position is typically
performed using a combination of sensors that are used to
measure relative motion between two successive time instants,
and then chaining them together. Inertial sensors (gyroscopes and
accelerometers), vision-based sensors (cameras, LIDARs, etc.) and
joint encoders (in the case of ground vehicles) are examples of
sensors that can be used to obtain suchmeasurements. Apart from
robotic platforms, such localization is also of relevance to human
wearable systems [1], personal navigation devices [2], and robot
end-effector position estimation [3].

In this paper we examine the growth rate of the position
estimation error of a robot that cannot directly measure either its
global position or its global orientation. Specifically, we analyze
the bias and the variance of the error. The robot is equipped with
sensors that allow it to measure the relative pose (position and
orientation) between its coordinate frames at two successive time
instants, but not sensors that can measure its absolute pose with
respect to a global coordinate frame. That is, the robot may have
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sensors such as wheel odometers, IMUs, and cameras, but does not
have sensors such as GPS and compass. The absolute position has
to be estimated from the noisy relative pose measurements.

When relative pose measurements obtained from sensors are
concatenated to form an estimate of the robot’s position in a global
frame, errors in individual measurements accumulate. Over long
time horizons, the resulting location estimates may become quite
poor. Though this is well recognized, a rigorous analysis of the
growth rate is lacking. Both Volpe [4] and Olson et al. [5] present
experimental evidence of the error growing superlinearly with
distance without a global orientation sensor. Volpe [4] provides
error growth analysis of a limited scenario (two-dimensional
straight line with bias-free IMU) and concludes that for that
scenario, the error is quadratic in distance traveled when the
time approaches 0 and linear in distance traveled when the time
approaches ∞. Olson et al. [5] state that the position estimation
error will grow as O(s3/2), where s is the distance traveled. In
fact, a number of papers have cited [5] in order to state that the
error grows superlinearly in the absence of an absolute orientation
sensor [6–10]. A parametric statistical model of the 2-norm of the
position estimation error is proposed in [11], whose parameters
have to be fitted from measured error. In contrast to [11], the
papers [4–10] seem to describe the error in deterministic terms
rather than in statistical measures such as mean and variance.

In this paper we rigorously analyze the bias and the variance
of the position estimation error, and obtain asymptotic as well as
non-asymptotic bounds for them. We show that the asymptotic
growth rates of both the bias and the variance are upper bounded
by linear functions of time. Thus, even without an absolute
orientation sensor, the error growth (for both the bias and the
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variance) is at most linear. We also show that the variance growth
rate is lower bounded by a linear function of time as well, if the
variance of the translation measurement is sufficiently large. A
method for reducing the bias in the localization error is proposed
that is based on the insights obtained. One of the key insights is
that the distance traveled is immaterial in determining either the
bias or the variance of the localization error.

The results mentioned above, which are stated in Theorem 1
of the paper, are for the general d-dimensional case: the robot’s
pose is an element of SE(d), d ∈ {2, 3}. For two special trajectories
in two dimensions, namely straight line and periodic, we provide
exact formulas for the bias and the variance of the position esti-
mation error (Theorems 2 and 3). Analysis of the two-dimensional
case is more tractable than the three-dimensional case since two-
dimensional rotation matrices commute. We see from both the
two-dimensional and three-dimensional results that the bias and
variance do indeed appear to grow faster than linearly with time
for small time intervals. The linear asymptotic trend is visible only
when the time is sufficiently large. These results are verified nu-
merically through Monte Carlo simulations. We also provide ex-
perimental verification of the periodic case through experiments
conducted with a Pioneer P3-DX robot equipped with a vision-
based sensor and a wheel odometer.

The error growth rate results established here provide useful
benchmarks to several localization-related applications. A specific
instance is an analysis of the benefits of various types of measure-
ments for vehicle localization. The advantage of absolute position
and/or orientation measurements, even if intermittently available,
to aid dead-reckoning localization is well established experimen-
tally. However, the utility of other types of absolutemeasurements
in such a scenario, such as intermittent measurements of the dis-
tance to fixed beacons1 or relative orientation between the vehicle
and a fixed frame, does not seem to be have been comprehensively
investigated. If an analysis is carried out to obtain growth rates of
the localization error with various types of measurements, the re-
sults of this paper can be used to compare the benefit of such a
localization scheme with that from dead-reckoning alone. Such a
comparison is useful to determine if the benefits, if any, warrant
the investment required (both hardware and software) to obtain
such measurements.

Another applicationwhere our results can serve as a benchmark
is collaborative localization of multiple robots, in which robot-
to-robot measurements are fused with dead-reckoning measure-
ments of individual robots to improve the localization accuracy of
all the robots. Imagine the following hypothetical scenario. A par-
ticular collaborative localization algorithm is proved to have an
O(s/N) asymptotic growth rate of the, say, bias of the error, where s
is the distance traveled andN is the number of robots.When exam-
ined compared to the prior belief that the error grows as O(s3/2) in
the single robot case, such a result would indicate that the collab-
orative localization algorithm is more beneficial than it actually is.

The results in the paper also have more practical implications.
These contributions come from the lessons learned in performing
the analysis of error growth. First, our analysis provides insight into
the mechanism of error growth, particularly its bias. Specifically,
we show that the expected value of the robot’s estimated position
always converges to a point. This occurs because themeasurement
of the translation during a time step, when transformed into the
global frame to add to the previous position estimate, decays
in magnitude geometrically with time. This geometric decay
occurs due to the norm of the rotation error being less than one
(Proposition 1). As a result, the growth of the bias depends crucially

1 Weexclude simultaneous distancemeasurement to three ormore beacons from
this discussion, since that is equivalent to an absolute position measurement.
on the type of path the robot traverses even though the robot does
not have – and does not use – information about its trajectory. The
bias will be bounded or unbounded depending only on whether
the robot stays within a bounded region or not. In addition, the
asymptotic trends for the bias hold even if the measurements of
relative translation and rotation are unbiased. In fact, they hold
even if the relative translationmeasurements are completely error
free. The bias in the translation measurements that arise from
vision-based sensors has been a topic of research [12,13]. However,
the fact that large position estimation bias may occur even when
all measurements are unbiased has not been emphasized in the
literature.

An important insight to be gained from the analysis is that the
distance traveled by the robot is immaterial in determining the bias
and variance of the position estimation error; but the magnitude
of the displacement vector (current position with respect to the
starting point) is a key determinant of the bias. It is only when the
robot moves in an approximately straight path that the distance
traveled and the displacement are similar. It is common in the
literature to characterize the performance of a localization scheme
in terms of the error expressed as a percentage of the distance
traveled. Our results indicate this can be misleading, especially
when the robot stays in a bounded region.

A second practical contribution is the proposed method for re-
ducing the bias in the localization error. The challenge in bias
reduction is that the bias in the absolute translation estimate
involves unknown quantities such as the true translation. Other-
wise one could simply compute this bias and subtract it from the
translation estimate before combining with the previous position
estimate. Instead, the proposedmethod for bias reductionmodifies
the relative rotation estimates to slow down the geometric reduc-
tion of the translation estimate that occurs otherwise. It is observed
in simulations that the method is able to reduce the bias to close
to zero. Preliminary results are included in the paper, with a more
thorough investigation of the method planned for the future.

The rest of the paper is organized as follows. Section 1.1
discusses some related work. Section 2 precisely formulates the
problemunder study, and Section 3 states themain results. Most of
the proofs are in the Appendix at the end of the paper. Simulation
verification is presented in Section 4 and experimental verification
is presented in Section 5. A method to reduce the bias in position
error is given in Section 6. The paper ends with a discussion of the
results in Section 7.

1.1. Related work

The papers by Smith and Cheeseman [3], Su and Lee [14],
and Wang and Chirikjian [15] derived recursive expressions for
the covariance of the pose estimation error by assuming that the
errors are small, so that a first-order approximation of the BCH
(Baker–Campbell–Hausdorff) formula is valid. Recently, Wang and
Chirikjian [16] developed a recursive formula for the covariance
of the pose estimation error that retains the second-order terms
in the BCH formula. The paper [17] examines the dead-reckoning
error’s probability density function for non-holonomic robots in
two dimensions. The works that come close to ours in spirit are
[11,4]. In [11], a parametric statistical model of the 2-norm of the
position estimation error is proposed. Someof the parameters have
to be fitted frommeasured error. Some analysis of the error growth
due to IMU integration is provided in [4]. It is shown that for the
specific scenario examined (two-dimensional motion in a straight
line without change in orientation, bias-free IMU measurement,
etc.), the position error is proportional to distance traveled for
large values of time. However, the works mentioned above do not
analyze the rate at which the error’s mean and variance growwith
time.
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A related body of literature deals with the problem of develop-
ing state estimation techniques for systems whose states, as well
as the noisy measurements, are in SO(3) or SE(3) (see [18,19] and
references therein). The problem of position estimation of amobile
robot with noisy relative pose measurements between successive
frames – one that is central to this paper – falls into this category.
However, our aim is not to develop an estimation technique, but
to examine the growth of error in the position estimate when suc-
cessive noisy relative pose measurements are chained together to
obtain a global pose estimate.

2. Problem statement

We measure time with a discrete index k = 0, 1, . . . . Sensors
used for relative localization of autonomous vehicles yield an
estimate of the position and orientation of the vehicle at time k
relative to that in the previous time instant, k − 1. That is, they
produce an estimate of the relative pose between frames attached
to the robot at two successive time instants. Let Rk

k+1 be the
rotation between the local frames attached to the robot’s body
at time k and k + 1. That is, if uk is a vector expressed in the
vehicle’s frame at time k and uk−1 is the same vector expressed
in the vehicle’s frame at time k − 1, then uk−1

= Rk−1
k uk. This

notation is adopted from [20]. We will refer to the frame that is
attached to the vehicle at time k as ‘‘frame k’’. Similarly, let tki,j be the
relative translation from frame i to frame j, expressed in frame k.
The rotation Rk−1

k ∈ SO(d) is usually expressed as a d×dmatrix for
d ∈ {2, 3}, while tki,j is a vector inRd. Without loss of generality, the
coordinate frame that is attached to the robot’s body at the initial
time k = 0 is used as the global coordinate frame. We denote the
rotation from frame k to the global coordinate frame (frame 0) by
R0
k . Similarly, the translation from frame k−1 to frame k expressed

in the global coordinate frame is denoted by t0k−1,k. The position of
the robot at time n is the vector t00,n.

With relative pose sensors such as cameras, inertial sensors,
and wheel odometers, the measurements available at time k are
estimates of the relative translation from frame k − 1 to frame k
expressed in frame k, i.e., of tkk−1,k, and the rotation between the
frames k− 1 and k, i.e., of Rk−1

k . The translation from k− 1 to k, for
k ≥ 1, expressed in the global coordinate frame, is

t0k−1,k = R0
k t

k
k−1,k, where R0

k = R0
1 R

1
2 · · ·Rk−1

k .

An example of a robot’s path along with its corresponding relative
posemeasurements can be seen in Fig. 1. Estimates are denoted by
hats on top of the corresponding symbols, and errors by tildes, so
that R̂k−1

k and t̂kk−1,k are the noisy estimates of Rk−1
k and tkk−1,k, and

the corresponding errors R̃k−1
k and t̃kk−1,k are defined as

R̃k−1
k := (Rk−1

k )−1R̂k−1
k ,

t̃kk−1,k := t̂kk−1,k − tkk−1,k.
(1)

The absolute position of the robot at time k is determined by adding
the relative position measurements, after expressing them all in
the global coordinate frame. The measurement of the translation
from frame k − 1 to frame k expressed in the global coordinate
frame, which is denoted by t̂0k−1,k, is

t̂0k−1,k := R̂0
k t̂

k
k−1,k, (2)

where R̂0
k is an estimate of R0

k , which is computed from the relative
rotation estimates as

R̂0
k =

k
i=1

R̂i−1
i . (3)
Fig. 1. A figure to explain the notation: a robot’s path (shown in dashed blue line)
in two dimensions and associated relative poses between time instants. t0k−1,k is
the translation between the frames k − 1 and k, expressed in the global frame 0,
and tkk−1,k is the same vector expressed in the local frame k. The matrix R0

k is the
rotation between frame 0 and frame k, so that R0

kt
k
k−1,k is the translation from k− 1

to k expressed in the global frame 0. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Finally, the estimate of the position at time n in the global
coordinate frame 0 is obtained by adding the relative translation
estimates after transforming them to frame 0:

t̂00,n :=

n
k=1

t̂0k−1,k. (4)

The error between the estimated position and the true position at
time n is

e(n) := t00,n − t̂00,n. (5)

The goal of this paper is to study how the mean and covariance of
the position estimation error e(n) scales with the time index n. If
the robot’s speed is upper and lower bounded by two constants,
then the asymptotic trends with time are equivalent to those with
distance traveled.

The straightforward dead-reckoning formula (4) may not be
used in practice. Typically a filtering-based algorithm is used to
fuse relative pose measurements with the predictions of a model
of the robot’s motion. There are many variations possible in terms
of assumed model, states and input measurements; see [21] for
a comparison among some of them. This renders examining the
mechanism of error propagation and establishing growth rates
with such algorithms intractable. Therefore we adopt the simple
dead-reckoning model that still captures the essential features
of localization from relative pose measurements. We wish to
emphasize that the estimation error resulting from the estimation
method described above will have the same asymptotic trend as
that of a filtering technique that uses a kinematic model of the
robot motion. The reason is that a kinematic model essentially
produces an independent noisy measurement of the relative
pose. Thus, our investigations are useful in analyzing asymptotic
performance of a wider class of estimation techniques. One
situation where ourmodel is not appropriate is when vision-based
loop closure is used to augment localization [22]. We focus on
situations where loop closure is not applicable, e.g., an unmanned
aerial vehicle flying in an expansive environment so that itmay not
come back to its earlier positions.

To state the assumptions on measurement error statistics, we
establish a few conventions. A rotation matrix R ∈ SO(3), where
the special orthogonal group SO(3) is the set of 3 × 3 real or-
thogonal matrices with unit determinant, can be represented by
the exponential map: R = eω

s
, where ωs is the 3 × 3 skew-

symmetric matrix corresponding to the vector ω ∈ R3 [23, Chap-
ter 2]. A matrix in SO(2) is uniquely specified by an angle θ ∈

[−π, π). A random rotation matrix R ∈ SO(3) (respectively,
SO(2)) can therefore be specified by a random vector ω ∈ R3



232 J. Knuth, P. Barooah / Robotics and Autonomous Systems 61 (2013) 229–244
(respectively, a scalar random variable θ ). We say that two ran-
dom rotationmatrices R1,R2 ∈ SO(3) are independent if their cor-
responding ω1 and ω2 are independent random vectors. For SO(2),
independence of rotations is defined as the independence of the
scalar random variables θ1, θ2 that uniquely determine the rota-
tions. If R1 and R2 are independent, every entry of the matrix R1
is independent of every entry of R2. Similarly, we say that a rota-
tion R1 ∈ SO(3) (respectively, SO(2)) and a random vector t ∈ R3

(respectively, R2) are independent if ω1 (respectively, θ ) and t are
independent. In this case, too, every entry of t is independent of
every entry of R.

In this paper, we use E[R] (for a random rotation matrix R) to
denote the matrix whose i, j-th entry is E[(R)i,j], i.e., the expected
value of the i, j-th entry of R. As a result of this convention, if
R1 ∈ SO(d) is independent of R2 ∈ SO(d) and of t ∈ R3, then
E[R1R2] = E[R1]E[R2] and E[R1t] = E[R1]E[t].

In what follows, Tr [·] stands for the trace of a matrix, and
∥ · ∥q denotes the (induced) q-norm of a (matrix) vector. When the
subscript is omitted, it denotes the (induced) 2-norm.

We state the following assumptions for use in the rest of the
paper.

Assumption 1. 1. The robot’s speed is uniformly bounded. More
specifically, there exists a constant τ > 0 such that ∥tkk−1,k∥

≤ τ .
2. The translation measurement errors t̃kk−1,k form a sequence

of independent random vectors, with mean bk := E[t̃kk−1,k]

and covariance Pk := Cov(t̃kk−1,k, t̃
k
k−1,k) that are uniformly

bounded. That is, there exist scalar constants b, p, p such that
0 ≤ ∥bk∥ ≤ b and 0 ≤ p ≤ Tr [Pk] ≤ p < ∞ for all k.

3. The rotation measurement errors R̃k
k+1 form a sequence of

independent random matrices. The rotation and translation
measurement errors R̃j−1

j and t̃kk−1,k are mutually independent
if j ≠ k, and possibly dependent when j = k, with
E[R̃k−1

k t̃kk−1,k] =: ρk ∈ Rd. There exists a scalar ρ such that
∥ρk∥ ≤ ρ for all k.

4. The relative translation measurement errors {t̃kk−1,k}
∞

k=1 are
uniformly absolutely integrable, i.e., there exists a scalar β so
that βk ≤ β < ∞ for all k, where βk := E∥t̃kk−1,k∥.

5. The rotation measurement errors R̃k
k+1 are identically dis-

tributed, so that each R̃k
k+1 has the same distribution as that of

some matrix R̃ ∈ SO(d), d ∈ {2, 3}. Moreover, R̃ is not degen-
erate, i.e., its pdf (probability distribution function) is not con-
centrated on a set of measure zero.

Apart from the assumptions on independence of measurement
errors, the other assumptions, namely those on the existence of the
parameters τ , b, p, p, ρ, β , are trivially satisfied in any practical
scenario. Finiteness of the displacement τ and the parameter b
is easy to see; the parameters p and p are simply the lower and
upper bounds on the eigenvalues of Pk. The d-dimensional vector
ρk is a measure of the correlation between the translation and
rotationmeasurements, and the parameter ρ is an upper bound on
the magnitude of the correlation. We allow the relative translation
and rotation measurement errors at a particular time instant to be
statistically dependent, since this may happen if there is overlap
between the sensor suite used to obtain these two measurements.
The parameter β is akin to an upper bound on the sum of bias and
variance of the translationmeasurement error. To see this, consider
not E[∥t̃kk−1,k∥], but E[∥t̃

k
k−1,k∥

2
], which is the trace of the second

moment of translation measurement error t̃kk−1,k. Since the second
moment is the sum of covariance and square of the first moment,
an upper bound on E[∥t̃kk−1,k∥

2
] is also an upper bound on sum
of mean and variance (more precisely, on ∥bk∥
2

+ Tr [Pk]) of the
translation measurement error.

The following technical result is crucial for the main results of
this paper and will be required for the subsequent discussions. We
therefore state it here; the proof is provided in the Appendix.

Proposition 1. Let R be a random rotation matrix with distribution
defined over SO(d), d ≥ 2, and let E[R] be the d × d matrix whose
i, j-th entry is the expected value of the i, j-th entry of R. We have
∥E[R]∥ ≤ 1, and the inequality is strict if the distribution of R is not
degenerate.2 �

3. Main results

3.1. General trajectories

Before stating the result, we recall the asymptotic O,Ω,Θ
notation. For two scalar-valued functions f (n), g(n) taking non-
negative integer arguments, the notation f (n) = O(g(n)) means
that there exists a positive integer n1 and a positive constant c1
such that f (n) ≤ c1g(n) for all n ≥ n1. The notation f (n) =

Ω(g(n)) means there exists a positive integer n2 and a positive
constant c2 such that f (n) ≥ c2g(n) for all n ≥ n2. The notation
f (n) = Θ(g(n)) means that both f (n) = Ω(g(n)) and f (n) =

O(g(n)) hold.
Recall that R̃ is a rotation matrix that has the same distribution

as all the rotation errors R̃k
k+1, k = 1, . . . . It follows from

Proposition 1 that, under Assumption 1,

1 > γ := ∥E[R̃]∥. (6)

Theorem 1. Consider a robot moving in a two-dimensional or three-
dimensional Euclidean space that performs position estimation from
relative pose measurements as described in Section 2. Under Assump-
tion 1, the following statements hold, where τ , β, b, ρ, p, p are pa-
rameters defined in Assumption 1 and γ is defined in (6).
1. The bias in the position estimation error satisfies ∥E[e(n)]∥ =

O(n). In particular,

max

0, ∥t00,n∥ −

1 − γ n

1 − γ
(γ τ + β)


≤ ∥E[e(n)]∥ ≤ ∥t00,n∥ +

1 − γ n

1 − γ
(γ τ + β) . (7)

2. The position error covariance satisfies Tr [Cov(e(n), e(n))] =

O(n), with upper bound given by

Tr [Cov(e(n), e(n))] ≤ α0


1 + γ − 2γ n

1 − γ


n, (8)

where

α0 = max

(τ 2 + 2τb + p + b2),


τ +

ρ

γ


(τ + b)


. (9)

If, furthermore,

p ≥ 2bτ + τ 2 + 2
(τ + ρ/γ )(τ + b)

1 − γ
, (10)

then
Tr [Cov(e(n), e(n))] = Θ(n). �

Before discussing the implications of the theorem, we present
a result in the form of a lemma that is useful in that discussion,
as well as in the proof of the theorem. The proof of the lemma is
provided in the Appendix.

2 Recall that we say that the distribution of R is degenerate if its pdf is 0
everywhere except possibly in a set of measure 0.
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Lemma 1. Under Assumption 1, the first and second moments of the
position estimate satisfy

∥E[t̂00,n]∥ ≤
1 − γ n

1 − γ
(γ τ + β) = O(1),

E[∥t̂00,n∥
2
] ≤ α0

1 + γ − 2γ n

1 − γ
n = O(n),

where α0 is defined in (9). Moreover, if condition (10) is satisfied, then
we have E[∥t̂00,n∥

2
] = Θ(n). �

3.2. Discussion of Theorem 1 and its proof

Theorem 1, in particular the upper bound in (7), shows that,
if the robot’s motion is confined to a bounded region, then the
bias in the position estimation error stays uniformly bounded by
a constant: ∥E[e(n)]∥ = O(1). If the robot moves with a constant
speed and with a constant (absolute) orientation, then its position
grows linearly with time. In this case the theorem tells us that
the bias grows linearly with time: ∥E[e(n)]∥ = Θ(n), since now
both the upper and lower bounds are asymptotically linear in
time. This implies that the asymptotic trend of the bias is crucially
dependent on the robot’s displacement; the distance traveled is
less important.

This dependency of the bias on the robot’s trajectory comes
from the fact that the estimated position is always bounded in
mean, even if the robot is moving out to infinity, which follows
from Lemma 1. To obtain an intuitive understanding of Lemma 1,
we first note that the estimated position is simply the sum of
the translations after transforming them to the common global
coordinate frame 0; see (4). Taking the expectation on both sides
of (4), we obtain

E[t̂00,n] = E[t̂00,1] + E[t̂01,2] + · · · + E[t̂0n−1,n]. (11)

The k-th term in the sum above, for the special case that rotation
and translation measurements are independent, is

E[t̂0k−1,k] = E


k−1
0

R̂i
i+1


t̂kk−1,k


=


k−1
0

E[R̂i
i+1]


E[t̂kk−1,k]

=


k−1
0


Ri
i+1E[R̃]


E[t̂kk−1,k].

The magnitude of this term is of order γ k, since it involves k
products of E[R̃], each of which has a norm equal to γ . Since γ < 1
(see (6)), the sum (11) is bounded for all n. The expected value
of the position estimate therefore converges to a point. The bias
in position estimation error, which is the mean of the difference
between the estimated and true positions, is therefore dominated
by the true position if themagnitude of the position vector is large.
In particular, we emphasize that the distance traversed is immaterial.

For further discussion on the bias and variance of the position
estimation error, some discussion of the statistics of the measure-
ment errors is in order. Quantifying statistical measures of the
translationmeasurements is straightforward. The vector bk, which
is the mean of the translation measurement error, is called its bias,
and Tr [Pk] is called its variance.

In contrast, quantifying rotationmeasurement error statistics is
trickier. According to the convention used in this paper, in general
E[R] ∉ SO(d) even if R ∈ SO(d). It is important that the notation
E[R] is not to be understood as the expectation of the random
variable Rwith a distribution defined over SO(d), whichwe denote
by µR , so that µR ∈ SO(d). We call µR the ‘‘Lie-group mean’’ of R.
We call an estimate R̂ of a true rotation R unbiased if µR̂ = R. A
result of the adopted convention is that, for an unbiased estimator
R̂ of R, in general E[R̂] ≠ R. The reason the quantity E[R] is more
useful for this paper thanµR is that, whenR and t are independent,
E[Rt] = E[R]E[t], but in general E[Rt] ≠ µRE[t].

The bias in translation measurements obtained from vision-
based sensors has been the subject of research [13,12]. The bias
in rotation measurement, on the other hand, seem to have drawn
limited attention. In [12], the error in three-dimensional rotation is
described in terms of the corresponding Euler angles, and the bias
in rotation is also defined in terms of the bias in the Euler angles. An
alternate definition of three-dimensional rotation error in terms of
a 3-vector (involving angle and axis of rotation) is used in [24], but
the question of its bias is not discussed.

Notice that the bounds (7) on the bias do not depend on the
error in the translation measurements. The conclusions drawn
above remain the same even if the rotation and translation
measurements are unbiased, i.e., µR̃ = I , bk = 0, and, in fact, even
if the translation measurements are completely error free, t̃kk−1,k = 0.

The discussion above can be summarized into the following
conclusions about the bias.
(i) For large time index n, the main contributions to the bias in

the position estimate are the displacement of the robot and
the errors in the relative rotation measurements.

(ii) The distance traveled by the robot is immaterial in determin-
ing either the bias or the variance.

(iii) The asymptotic scaling of the bias does not change even when
the translation and rotation measurements are unbiased, and
in fact even if translation measurements are completely error
free.

The conclusion about rotation errors determining the position
estimation error seems to be well known, and is hardly surprising.
However, conclusions (ii) and (iii) do not seem to be recognized in
the literature. In fact, earlier work on this topic tends to focus on
the distance traveled; see [4,5].

The variance growth rate does not seem to be sensitive to the
trajectory of the robot. Furthermore, unlike the bias, the variance
can growwithout bound when the robot’s trajectory is confined to
a bounded region. We will see evidence of this later in simulations
and experiments reported in Sections 4 and 5. We believe that
the sufficient condition (10) is conservative, and is an artifact
of our proof technique. Condition (10) is usually not satisfied in
practice since it requires a very large translation measurement
error. Yet the position estimation error variance seems to beΘ(n)
in simulations and experiments reported in Section 5.2.

The results of the theorem are in contrast to the prevalent belief
in the literature that the error growth is superlinear in time if
absolute orientationmeasurements are not available: this was first
stated in [5], and then cited by [6–10]. The theorem shows that,
even without absolute orientation sensors, the localization error –
or more precisely its bias and variance – grows at most linearly
with time. We believe that the belief about superlinear growth
came about from the fact that experiments/simulations were not
conducted for long enough to draw reasonable conclusions about
asymptotic trends. Though the root cause is the geometric decay
due to γ , since γ is usually quite close to 1, there is an initial period
where the error grows sharply until the geometric decay kicks
in and the linear trend becomes obvious. More insight into this
phenomenon will be obtained later in Section 3.3, which discusses
two-dimensional trajectories (see in particular Theorem 2). We
note that our results are consistent with the experimental results
presented in [5]. The formulas we provide for the error in the
straight-line case in Theorem 2 does show superlinear-like growth
for intermediate values of time. As mentioned earlier, linear
growth becomes clear only for large values of time.

The element-wise definition of E[R̃] lets us get away without
having to define or characterize the ‘‘variance/second moment of
the rotationmeasurement error R̃’’, even in establishing bounds on
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the variance of the position estimation error. Later, in Theorems 2
and 3, we provide exact formulas for the variance of the position
estimation error in special two-dimensional cases. Even there we
do not explicitly define a variance of the rotation (angle) measure-
ment. The key quantity is still the element-wise mean of the rota-
tion matrix. It seems that as long as the quantity E[R̃] can be quan-
tified we do not need to deal with the difficult question of char-
acterizing the variance of random variables defined over SO(3). It
should be noted, however, that the pdf of the rotation measure-
ment error, which involves higher moments, does determine E[R̃].

The proof of Theorem 1, presented next, follows from Lemma 1
in a straightforward manner.
Proof of Theorem 1. It follows from (5), by applying the triangle
inequality, that

∥E[e(n)]∥ ≤ ∥t00,n∥ + ∥E[t̂00,n]∥ (12)

∥E[e(n)]∥ ≥ max

0, ∥t00,n∥ − ∥E[t̂00,n]∥


. (13)

From Lemma 1, we have that ∥E[t̂00,n]∥ is upper bounded, and so
the first statement follows immediately from (12) and (13).

To prove the second statement, note that

Tr [Cov(e(n), e(n))] = Tr

Cov(t̂00,n, t̂

0
0,n)


= Tr

E[t̂00,n(t̂

0
0,n)

T
] − E[t̂00,n]E[t̂

0
0,n]

T 
= E[(t̂00,n)

T t̂00,n] − ∥E[t̂00,n]∥
2

≤ E[(t̂00,n)
T t̂00,n].

Since we have that ∥E[t̂00,n]∥ = O(1), the second statement follows
from Lemma 1. �

3.3. Special two-dimensional trajectories

In this section, we provide exact formulas for the bias and
variance for the special case when the motion of the robot is
confined to a two-dimensional plane and its trajectory is limited
to a certain type(s). In the two-dimensional scenario t̂ij,k, t

i
j,k ∈ R2

and Ri
j, R̂

i
j ∈ SO(2) for every i, j, k. The x-axis and the y-axis of a

Cartesian coordinate frame that lies on this plane and is attached
to the robot’s body at the initial time k = 0 are used as the global
coordinate frame. In the two-dimensional scenario, the robot’s
orientation at time n can be uniquely described by an angle θ0,n ∈

[−π, π), which describes the rotation of its local frame about the
z-axis of the global frame. The relative rotation between frames
k − 1 and k is uniquely determined by the angle by which the
frame k − 1 has to be rotated in the counterclockwise direction to
reach frame k, whichwe denote by θk−1,k. Fig. 1 shows an example.
A noisy measurement of the relative rotation, denoted by θ̂k−1,k,
is assumed available at time k. The error in the relative rotation
measurement is

θ̃k−1,k := θ̂k−1,k − θk−1,k. (14)
For future use, we define fR : [−π, π) → SO(2) as

fR(α) :=


cosα − sinα
sinα cosα


.

The matrix Rk−1
k that describes the relative rotation between

frames k − 1 and k is therefore given by Rk−1
k = fR(θk−1,k). It can

be shown from definition (1) that

R̃k−1
k = fR(θ̃k−1,k). (15)

The estimate of the rotation Rk−1
k therefore is R̂k−1

k = fR(θ̂k−1,k).
The first result, which is stated below, is on the position esti-

mation error growth rate when the robot moves in a straight line
with constant velocity and orientation. The proof of the theorem is
in the Appendix.
Theorem 2. Consider a robot thatmoves on a two-dimensional plane
in a straight line with a constant orientation. Formally, for all k,
θk−1,k = 0 and tkk−1,k = r ∈ R2, for some vector r. In addition
to Assumption 1, assume that the relative orientation error θ̃ has a pdf
that is symmetric around its mean E[θ̃ ], the translation measurement
errors t̃kk−1,k, k = 1, . . . are wide sense stationary with bk = b, Pk =

P, and ρk = ρ for all k. In that case, we have

E[e(n)] = n r −

I − cR

−1 I − (cR)n
 

cRr + ρ

,

Tr [Cov(e(n), e(n))] = ψn + ω(n),
(16)

where

c := E

cos


θ̃ − E[θ̃ ]


, R := fR(E[θ̃ ]), (17)

and the scalars ψ,ω(n) are given by

ψ = 2crT

I − cR

−1 Rr
+ Tr


P + bbT 

+ (2bT
+ rT )(I − cR)−1ρ (18)

ω(n) = rT (I − cR)−2 I − 4cR + 2(cR)2 + 2(cR)n+1 r
− 2bT (I − cR)−2 I − (cR)n


ρ + bT (I − cR)−1

×

I − (cR)n


r − rT (I − cR)−2 I − (cR)n


ρ

−
(I − cR)−1(I − (cR)n)(cRr + ρ)

2
2 . �

Since the random variable θ̃ is not degenerate by Assumption 1,
we have that |c| < 1. The spectral radius of cR is strictly lower than
unity since |c| < 1 and R ∈ SO(2). Hence I − cR is invertible and
ψ,ω(n) in (18) are well defined.

An immediate corollary of Theorem 2 is that, for straight-line
motion, both the bias and the variance of the position estimation
error grow asymptotically linearly with time. This follows from
the expressions for the bias and the variance upon using the fact
that c < 1. However, due to the presence of the cn terms, the
growth looks superlinear for intermediate values of the time index
n. Simulations described in Section 4.2 verify this statement; see in
particular Figs. 4 and 5. The linear trend becomes visible onlywhen
large values of the time index n are considered. This may be one of
the reasons that the error is believed to grow superlinearly with
time in the literature.

The next case is a periodic trajectory in two dimensions. We
say that the robot moves in a periodic trajectory with period p if the
absolute orientation and position of the robot satisfy the following
conditions: θ0,k = θ0,k+p and t00,k = t00,k+p for all k. The shape of
the (closed) path along which the robot moves can be arbitrary.
In the statement of the theorem, η denotes the number of periods
up to time n, and q denotes the residual, i.e., η(n) := ⌊n/p⌋ and
q := n − ηp.

Theorem 3. Consider a robot moving in R2 whose trajectory is
periodic with period p. In addition to Assumptions 1.1–4, assume that
the first and second moments of the measurement errors are periodic
with period p (so that bk = bk+p, ρk = ρk+p and Pk = Pk+p). In that
case,

E[e(n)] = t00,q −

I − (cR)p

−1

×

I − (cR)ηp


w(p)− (cR)ηpw(q), (19)

wherew(j) is given by

w(j) :=

j−1
i=0


cR
i R0

i+1


cR ti+1

i,i+1 + ρi


,

where c,R are as defined in Theorem 2.
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The proof of the theorem is provided in the Appendix. The
assumption of the moments ρk etc. being periodic with period p is
motivated by the use of vision-based sensors to measure relative
poses. In that case themeasurement error statisticsmay depend on
the scene the camera sees, which will repeat itself every p instants
due to the periodic nature of the robot’s motion. Note that i.i.d.
errors are a special case of errors with periodic statistics, so the
result also holds if all the measurement errors are i.i.d.

It can be shown in a straightforward manner from (19) that the
bias is O(1), by using the fact that |c| < 1. This is consistent with
Theorem 1, since the robot stays in a bounded region for all time
when following a periodic trajectory.

4. Simulation verification

In this sectionwe empirically estimate themean and covariance
of the estimation error by conducting Monte Carlo simulations
and compare themwith the theoretical predictions. In Section 4.1,
we simulate a robot moving along a randomly generated three-
dimensional path and compare the results with the upper and
lower bounds predicted in Theorem 1. In Sections 4.2 and 4.3,
we present simulations for the two-dimensional scenario with
straight-line and periodic trajectories so that empirical results
can be compared with predictions of Theorems 2 and 3. Here
the robot is simulated moving along either the straight-line or
periodic trajectory at a speed of 0.32m/s for about 5.5 h, traveling
a distance of 6400 m. In all three simulations, measurements of
the robot’s relative pose were taken every 0.2 s. All simulations
are conducted in MATLAB©. To the extent possible, the parameters
used in the simulations are the same as those in the experiments.

4.1. Three-dimensional simulation

For the three-dimensional case we simulate a robot moving
along a path that is shown in Fig. 2. The robot traverses this
path from the starting point to the left and moving to the right.
Measurement errors are generated as follows. The error in rotation
(R̃k−1

k ) is introduced by applying a random unit-quaternion at
each time step drawn independently from a Von Mises–Fisher
distribution with concentration parameter value of 10000. The
reader is referred to [25] for details of the Von Mises–Fisher
distribution. The errors in relative translation at each time step
(t̃kk−1,k) are drawn from a zero-mean normal random variable with
covariance matrix (2.5 × 10−5) I3×3. The corresponding constants
necessary to compute the upper bounds in Theorem 1 are obtained
from randomly generated measurements to simulate a sensor
characterization test, and are found to be γ = 0.9997, τ =

0.1295 m, b = 0 m, β = 0.008 m, p = 7.45 × 10−5 m2, and
p = 7.55 × 10−5 m2.

Fig. 3 compares the empirically estimated bias and variance
with the upper bounds given by Theorem 1. The empirical
estimates are obtained from 4500 Monte Carlo simulations. As
predicted by the theorem, the bias in the position estimate grows
without bound since the robot’s position is growing (in norm)
without bound. We see that the bounds predicted by the theorem
are of the same order of magnitude as values obtained empirically.
However, the bound for the variance is rather loose.

4.2. Straight-line two-dimensional trajectory

For the straight-line case, we simulate a robot moving in a
straight line on a plane with a constant velocity of [0.2263,
0.2263]T m/s and constant orientation. Two types of simulation
are conducted.
Fig. 2. The three-dimensional path used for the simulation in Section 4.1. The red
dot indicates the robot’s initial location, while the red circle indicates the robot’s
final location. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

a

b

Fig. 3. Three-dimensional scenario: Comparison of Theorem 1’s predictions
(‘‘Upper Bound’’ and ‘‘Lower Bound’’) of bounds on the bias and variance in position
estimation error with those estimated fromMonte Carlo simulations (‘‘Empirical’’).

In the first type, which we call simulated data, noisy mea-
surements of the rotation, i.e., θ̂k−1,k, are generated as a Laplace-
distributed random variable using a pseudo-random number
generator. The reason for choosing a Laplace distribution over,
say, a Gaussian, is the following. We obtained a large sample of
two-dimensional orientation estimates from images taken with a
machine-vision camera andperformedhypothesis testing for three
distributions: Laplacian, Gaussian and Fisher–Von Mises. Only the
Laplace distribution passed the test. We refrain from giving de-
tails of the hypothesis testing here; they can be obtained from the
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authors upon request. Similar results about localization error also
are obtained if a Gaussian distribution is used in generating two-
dimensional rotation measurements, though we do not present
them here. Both Gaussian and Laplacian distributions satisfy the
requirement of Theorem 2, that of symmetry around the mean.
Noisymeasurements of the translations, i.e., t̂kk−1,k, were generated
from noisy measurements of the translation direction, which we
call ζk

k−1,k, and the translation magnitude, which we call dk ∈ R+,

as t̂kk−1,k = d̂kζ̂
k
k−1,k, where d̂k and ζ̂

k
k−1,k are noisy estimates of

dk and ζk
k−1,k, respectively. Note that ζk

k−1,k is a 2-vector with unit
norm. This is done to simulate relative pose measurement with
IMU/wheel odometry and a monocular camera without scale in-
formation. The camera provides the relative translation direction
but not the magnitude of the translation, which is measured by
IMUs/wheel encoders.

In the second type of simulation, which we call simulated cam-
era, the vision-based relative pose estimation sensor is simulated
in amore realistic fashion by generating synthetic image data, from
which the relative rotation and direction of translation are esti-
mated. The magnitudes of the translation measurements are gen-
erated as in the ‘‘simulated data’’ case.

Simulated data. At each time step k, a measurement of the
relative orientation is constructed numerically as θ̂k−1,k = 0 +

θ̃k−1,k, where the orientation error θ̃k−1,k is chosen to be a 0-
mean Laplace-distributed random variable. Recall that a Laplace
distribution with µ mean and variance 2λ2 has pdf f (θ̃) =
1
2λ e

−|θ̃−µ|/λ. The value of λ chosen is 3.6 × 10−3, which best
fits the orientation measurement error statistics generated by the
synthetic monocular camera-based relative pose sensor that is
used in the experiments described in what follows. The noisy
measurement of translation direction ζ̂

k
k−1,k is generated as

ζ̂
k
k−1,k =


cos φ̃k−1,k − sin φ̃k−1,k

sin φ̃k−1,k cos φ̃k−1,k


ζk
k−1,k,

where φ̃k−1,k is a zero-mean Laplace randomvariablewith variance
3.07 × 10−2 rad2, and ζk

k−1,k =
1

√
2
[1, 1]T is the true translation

direction. The magnitude of the translation is dk = 6.4 × 10−2 m
and its noisy measurement is generated as d̂k = dk + d̃k, where
d̃k is a zero-mean Gaussian random variable with mean 0 and
variance 8.5467 × 10−5 m2. These numbers are chosen to be
consistent with those seen in an experiment with a wheeled robot
described later in Section 5. The parameters b, c, P, ρ, which are
needed to compute the predictions by Theorem 2, are estimated
by a simulated sensor characterization test, i.e., by appropriate
averaging of randomly generated data. They turn out to be b =

[−0.6842,−0.6842] × 10−3 m, c = 1 − 1.2873 × 10−5, Tr [P] =

1.2479 × 10−4 m2, and ρ = cb.
The mean and covariance of the position estimation error at

every time instant are empirically estimated by averaging over
76,600 Monte Carlo simulations. Fig. 4 presents the estimated
mean and covariances, and the values predicted by Theorem 2.We
see from the figure that the prediction from Theorem 2 matches
estimates fromMonte Carlo simulations quite closely, even for the
large time intervals used in the simulations.

Simulated camera. We now simulate the scenario in which rela-
tive pose measurements are obtained by a calibrated monocular
Prosilica EC 1020 camera and wheel odometers found on a Pio-
neer P3-DX. To simulate an estimate of the camera ego-motion be-
tween consecutive time steps, suppose between k and k+1, a set of
50 three-dimensional points is randomly generated in the volume
visible to the camera at time step k, with their coordinates repre-
sented in the coordinate frame attached to the camera at time step
k. The points are then acted on by the true transformation from k to
a

b

Fig. 4. Two-dimensional scenario, straight-line trajectory. Comparison of Theo-
rem 2’s predictions (‘‘Theoretical’’) of the bias and variance in position estimation
errorwith those obtained fromMonte Carlo simulations (‘‘Empirical’’), for the ‘‘sim-
ulated data’’ case.

k+1 to find the corresponding coordinates in the coordinate frame
attached to the camera at time step k + 1, discarding any points
falling outside the volume visible to the camera at that time step.
Using a calibration matrix corresponding to the Prosilica EC 1020
camera, the points are projected into their corresponding image
plane. This forms a set of correspondences analogous to the fea-
ture points extracted from actual image pairs. Each feature point is
now corrupted by uniform noise with support lying in a 2×2 pixel
square about the point. A RANSAC [26] assisted normalized 8-point
algorithm [27] is used to estimate the rotation R̂ and translation di-
rection ζ̂ between the two time steps from these point correspon-
dences. The axis of rotation was then aligned with the normal to
the plane of motion and the component of the translation vector
in that direction was dropped to ensure that the motion estimates
remained in the plane. Themagnitude of translation d̂ is generated
as in the simulated data case. The values of the parameters that are
needed to compute the predictions by Theorem 2 are estimated
from a simulated sensor characterization test like before. The val-
ues are found to be b = [−0.5767,−0.5904] × 10−5 m, Tr [P] =

1.6382 × 10−4 m2, and c = 1 − 2.1462 × 10−5.
Fig. 5 compares the predictions of bias and variance by

Theorem 2 to those estimated from 1000Monte Carlo simulations.
The number of Monte Carlo simulations is smaller in the synthetic
data case due to the prohibitively high cost of conducting these
simulations. We see from Fig. 5 that Theorem 2 accurately predicts
the position estimation error computed from synthetic image data.
The prediction toward the end of the simulation time is not as
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(a) Bias. (b) Variance.

Fig. 5. Two-dimensional scenario, straight-line trajectory. Comparison of Theorem 2’s predictions (‘‘Theoretical’’) of the bias and variance in position estimation error with
those obtained from Monte Carlo simulations (‘‘Synthetic’’), for the ‘‘simulated camera’’ case.
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Fig. 6. Two-dimensional scenario, periodic motion. Comparison of Theorem 3’s predictions with estimates from Monte Carlo simulations (‘‘Empirical’’). The legend
‘‘Theoretical’’ in (a) refers to the prediction from (19) in Theorem 3.
accurate as in the simulated data case, which is due to the smaller
number of Monte Carlo trials.

4.3. Periodic trajectory

Wenow simulate a robotmoving on a circlewith circumference
of 4.11 m so that its trajectory is periodic with period p =

3020. The speed of the robot is approximately 0.32m/s, so that
it traverses the circle about 47 times before completing one
period. The trajectory is chosen to be close to that encountered
in an experiment with a Pioneer P3-DX robot, which will be
described in Section 5. Noisy relative pose measurements are
generated as in the simulated data case in straight-line motion.
Orientation measurement errors are Laplace distributed (with
mean E[θ̃ ] = 6.8 × 10−5 m and parameter λ = 3.6 × 10−3),
while translation measurement errors are generated in the same
manner, and with the same distributions as in the simulated data
case in straight-line motion, with the new true values given by
ζk
k−1,k = − [0.049, 0.999]T and dk = 0.064 m.
Fig. 6 shows the empirical estimates of bias and variance from

29,970Monte Carlo simulations. It also presents the bias predicted
from Theorem 3. We see from Fig. 6(a) that the bias is quite
accurately predicted by Theorem 3. The high-frequency oscillation
corresponds to the time it takes for the robot to traverse the circle
once. The lower-frequency oscillation corresponds to the period
of the trajectory. The variance seems to grow linearly with time,
as one can see from Fig. 6(b), but a formula is not available in the
periodic case for comparison.

5. Experimental verification

In this section, we report results of experiments conducted
with a wheeled Pioneer P3-DX robot that is equipped with
a calibrated monocular Prosilica EC 1020 camera and wheel
odometers. The images captured by the camera are used to
estimate the relative rotation and direction of translation. The
distance traveled estimated by the wheel odometers is fused with
the direction of translation estimated from the camera to estimate
the translation vector. The relative pose of the camera is measured
every 0.2 s. An overhead camera is used to measure the true
two-dimensional pose of the robot. Due to space constraints of
the indoor test setup, the trajectory of the robot was chosen to
be an approximately circular one with radius 0.65 m and one
rotation taking approximately 13 s (see Fig. 7). Although the robot’s
trajectory is not truly periodic, it is approximately periodic, with
period p = 3020 (i.e., 604 s).

5.1. Test setup

Fig. 8(b) shows a schematic of the experimental setup. The
global coordinate frame is defined to coincide with the coordi-
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Fig. 7. (a) The robot used in the experiments, and (b) a few snapshots from the
overhead camera showing the trajectory.

nate frame attached to an overhead camera viewing the plane of
motion. That is, the origin of the global coordinate axes corre-
sponds to the camera’s focal point. The overhead camera is used
to obtain the true pose of the robot. The robot’s local coordinate
frame was defined by a cube affixed to the top of the box. A grid
consisting of six dots was placed atop the cube with a known
geometry (see Fig. 8(a)), which allows reconstruction of the full
three-dimensional pose of the robot from the single monocular
camera. Although some error between the true pose of the robot
and that estimated from the overhead camera is inevitable, this
error did not have any cumulative effect over time. Therefore the
pose estimated from the overhead camera is taken as the ground
truth.

A KLT tracker [28] was used to track feature points across
pairs of images, and a RANSAC-assisted normalized 8-point
algorithm was used to estimate the relative rotation and direction
of translation between every successive pairs of images. All
estimation was performed off-line. Even with RANSAC, outliers
in point correspondences can cause large errors in the relative
pose estimates. An ad hoc ‘‘filter’’ was implemented to reduce
the effect of such errors, as follows. If the estimated relative pose
from the camera was deemed infeasible (which was determined
by the known motion of the robot), the relative rotation and
relative translation direction estimated in the previous time step
were used as the estimate for the current time step. The relative
translation between two time instants was estimated from the
relative translation direction and the estimate of itsmagnitude, the
latter being obtained from a wheel odometer. The relative poses
so obtained were chained together to obtain an estimate of the
global position and orientation of the robot at every time step, as
described in Section 2.

5.2. Test results

The position estimation error at each time step is computed by
comparing the ground truth with the robot’s position estimated
from relative pose measurements. Fig. 9 shows one instance
of the true and estimated path. The bias and variance in the
position estimation error at any given time step are determined by
averaging over 17 experiments, where each experiment consists of
the robot moving on its path for 1000 s (5000 time steps).

The experimentally obtained bias and variance of position
estimation error are shown in Fig. 10(a) and (b). We see from the
figures that the experimentally obtained results – especially the
bias – closely resemble those seen in simulations (see Fig. 6(a)
and (b)), which in turn are accurately predicted from the analysis.
The experimentally obtained bias stays bounded, as Theorem 3
predicts. The variance also shows anon-average linear growthwith
time,which is consistentwith Theorem1. The experiment provides
additional confidence in our theoretical results. In addition, we
note that, while the theoretical predictions are for a dead-
reckoning- type position estimation algorithm, the algorithm used
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(a) Top view. (b) Coordinate axes.

Fig. 8. Schematic of the test setup.
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Fig. 9. A sample experiment with a P3-DX robot, showing the estimated and true
positions.

in the experiments was more akin to a kinematic-model-based
filter. Still, the theoretical predictions match the experimental
results rather well. This is expected since – as argued earlier – the
analysis is applicable to a broader class of estimation algorithms;
see the discussion in Section 2 after Eq. (5).

There are nevertheless some discrepancies between the ex-
perimentally obtained bias and variance values and those ob-
tained from simulations, as can be seen comparing Fig. 6(a) with
Figs. 10(a) and 6(b) with Fig. 10(b). These are due to the differences
between the experiments and simulations. First, the experimen-
tal bias and variances values are computed by averaging over only
17 experiments, whereas the simulation estimates are computed
from at least 1000 Monte Carlo simulations, in some cases many
more. The reason for this smaller number of experimental trials is
the difficulty and time needed in performing these experiments.
The smaller number of trials used for averaging produced less ac-
curate estimates. Second, the characteristics of the camera error
could not bemodeled in any of our simulations. Third, it is not pos-
sible to ensure a truly periodic trajectory in a real experiment. The
‘‘high-frequency’’ oscillations in the experimental bias and vari-
ance plots are at 7.8 × 10−2 Hz, which correspond to the average
time the robot takes to traverse the circle once. These are seen in
the simulations aswell; see in particular the inset in Fig. 6(a). How-
ever, these oscillations are not particularly visible in the variance;
one has to magnify the curve in Fig. 6(b) considerably to see them.
We believe the noticeable difference in case of the variance comes
from the very small number of runs that we averaged over.
6. Reducing the bias

We now discuss a possible way to reduce the bias in the
position estimate by using the lessons learned from the analysis
that led to Theorem 1. First of all we note that computing the
bias in the translation estimation error, i.e., E[t̂0k−1,k] − t0k−1,k,
requires knowledge of true relative rotations and translations;
see the expressions after (11). Therefore the bias in localization
error cannot be eliminated by simply computing the bias in the
translation estimation error and subtracting it from the estimated
translation t̂0k−1,k at every k. Instead the proposed method consist
of modifying the rawmeasurements R̂k−1

k , t̂kk−1,k into the so-called
modified measurements (R̂k−1

k )modif, (t̂kk−1,k)modif, that are defined
below, and then using them in the position estimation.

(R̂k−1
k )modif := R̂k−1

k (R)−1 (t̂kk−1,k)modif := t̂kk−1,k − b,

where

R := E[R̃], (20)

b := E[t̃kk−1,k], k ≥ 1. (21)

We are assuming that the translationmeasurements are stationary
in mean so that b is a constant. The modified measurements
can be computed from the raw measurements and knowledge
of R, b, which can be determined from an analysis of sensor
noise characteristics. For instance, the question of estimating b
for vision-based sensors is examined in [13,12]. The position at
time k is now computed as before, but with the new corrected
measurements in place of the raw sensor measurements t̂kk−1,k and
R̂k−1
k . Specifically,

(R̂0
k)modif :=

k
i=1

(R̂i−1
i )modif,

(t̂0k−1,k)modif := (R̂0
k)modif (t̂kk−1,k)modif,

and finally, (t̂00,n)modif =

n
k=1

(t̂0k−1,k)modif.

The rationale for this proposal comes from the following rela-
tionships, which can be shown from straightforward calculations:

E[(R̂k−1
k )modif] = Rk−1

k (22)

E[(R̂k−1
k )modif(t̂kk−1,k)modif] = Rk−1

k tkk−1,k, (23)

where the second relation (23) holds if the raw rotation and
translation measurements R̂k−1

k , t̂kk−1,k are uncorrelated.
(a) Bias. (b) Variance.

Fig. 10. Experimental results: bias and variance of position estimation error for a P3-DX robot (5000 time steps = 16.67 min).
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Fig. 11. A randomly generated path in two dimensions used to test the bias-
reduction method.

The modification of the raw measurements, especially that
of the rotation measurement, eliminates the geometric decay of
the length of the relative translation measurements after being
transformed to frame 0. As discussed in Section 3.2, this decay was
the main cause of the bias growth. If R̂k−1

k , t̂kk−1,k are correlated
but the motion is limited to a two-dimensional space, a slightly
different method can be used that ensures that (22), (23) hold. The
details are not provided, in the interest of saving space.

The proposed method was tested with the help of simulations
to determine its effectiveness. The following types of trajectory
in two dimensions were used in the simulations: (i) straight line
(ii) circular, (iii) randomwalk in a city-like grid, and (iv) a randomly
generated smooth path. The performance was seen to be similar
in all cases; so we only present the details for the last case. The
path our robot traversed in that case is shown in Fig. 11. Noise in
the sensor measurements was simulated by adding i.i.d. Gaussian
random vectors with mean [0.05, 0.02]T m and covariance matrix
0.05I to the relative translation measurements at each time step.
The angle describing the relative rotation between each time step
was corrupted by adding i.i.d. Gaussian random variables with
mean6.8×10−3 and variance 2.6×10−3. The sensor characteristics
R and b needed for the correction were determined a priori; their
values are R = 0.9987, fR(6.8 × 10−3), b = [0.05, 0.02]T .
The estimates of the bias and variance in the position estimates
were obtained from more than a million Monte Carlo simulations.
The comparison between the bias with the method described in
Section 6 and that for the baseline case (no modification) is shown
in Fig. 12(a). The comparison of the variances is shown in Fig. 12(b).
We see from the simulations that the proposed method sig-
nificantly reduces the bias. The resulting variance is the same or
smaller, for small values of time. For large values of time, the result-
ing variance is larger than that achieved if themeasurements were
not modified. This is expected, since the modifications introduce
additional uncertainty. In particular, the modified rotation mea-
surements are no longer elements of SO(d). A similar trend is seen
for all other trajectories tested: the bias is significantly reduced
for all values of time, while the variance is either smaller or al-
most the same for small values of time but is larger for large values
of time.

7. Summary

We examined the growth of error in position estimates ob-
tained from noisy relative pose measurements. Asymptotic and
non-asymptotic growth rates of the bias and variance of the er-
ror (with respect to time) were obtained. In both two dimensions
and three dimensions, the bias and the variance of the position esti-
mation error grows atmost linearly with time or distance traveled.
The variance growth rate is also lower bounded by a linear function
of time if the translationmeasurement errors are large enough. Ex-
act formulas for the error bias and variance were obtained for two
special two-dimensional trajectories, straight line andperiodic. Ex-
tensive Monte Carlo simulations, and experiments with a wheeled
robot, were used to verify the results.

One of the assumptions made for the analysis was that
the measurements collected at two distinct time instants are
statistically independent. Though thismay not hold in practice, the
results obtained from experiments and simulations with synthetic
image data are consistent with the theoretical predictions. This
shows that the analysis is not sensitive to the assumptions of
independence. The sufficient condition (10) for the variance to be
asymptotically linear in time is not satisfied in the simulations and
the experiment. However, the empirically estimated variance from
simulations and experiment seems to grow linearlywith time. This
indicates that the sufficient condition is conservative. Determining
a necessary condition for variance growth to be linear is an open
question.

The precise growth rate of the bias depends on the trajectory of
the robot. Specifically, if the robot stays in a bounded region, the
bias is upper bounded by a constant for all time. The bias growth
is principally determined by the fact that the expected value of
the estimated position converges to a point, irrespective of how
the robot is moving. This occurs since γ , the norm of the expected
rotation error, is strictly less than unity. As a result, the magnitude
of the measured relative translation (between two successive time
(a) Bias. (b) Variance.

Fig. 12. Performance of the bias-reduction method, for the path shown in Fig. 11. The legend ‘‘With Adjustment’’ refers to the estimates obtained with the bias-reduction
method of Section 6. The bias is reduced to almost zero with the proposed method. All quantities are estimated from more than a million Monte Carlo simulations.
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instants), once the measurement is transformed to the global
coordinate frame, decays geometrically with time. It turns out
that the asymptotic growth rate of the bias does not change even
if all the measurements are unbiased or even if the translation
measurements are completely error free. An implication of the
results is that, though the magnitude of the translation vector
is an important determinant of the bias, the distance traveled is
immaterial in determining either the bias or the variance.

A method to reduce the bias growth rate was suggested by
the lessons learned in the analysis of error growth. Simulations
showed that the proposed method reduces the bias significantly
for all time, while having negligible effect on the variance for
small values of time. Thus the method can be potentially used
to improve localization accuracy for short periods of time. There
are several issues that still need to be addressed. The method was
observed tomake the varianceworse for large values of time. So an
important research question is to determine the time period up to
which themethod can be used. Themethod requires knowledge of
the sensor characteristics. Its robustness to imprecise knowledge
of the sensor characteristics, and to time variations in those
characteristics, also needs to be studied. Another line of research
is to incorporate the proposed bias reduction method within a
filtering-type position estimation algorithm.
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Appendix

Proof of Proposition 1. Let y be a d-dimensional random vector.
Since Cov(y, y) = E[yyT ] − E[y]E[y]T , we have, upon taking the
trace of both sides,

∥E[y]∥2
= E[∥y∥2

] − Tr [Cov(y, y)] ≤ E[∥y∥2
],

since Tr [Cov(y, y)] ≥ 0.Moreover, equality in the above inequality
holds if and only if the variance of each of the components of y is
0, that is, y is degenerate. We now apply this result to the random
vector y := Rx, where x is a deterministic d-dimensional vector
while R is a random rotation matrix:

∥E[R]x∥2
≤ E[∥Rx∥2

] = E[∥x∥2
] = ∥x∥2, (24)

where the first equality is due to the fact that rotation does not
change the 2-norm of a vector, and the second equality is due to
x being deterministic. This proves that ∥E[R]∥ ≤ 1. Since y is
degenerate if only if R is, the inequality in (24) is strict if R is non-
degenerate. This proves the result. �

The following additional technical result is needed for the proof
of Lemma 1.

Proposition 2. If Xi is a sequence of random vectors such that
E[XT

i Xj] ≤ α0η
|i−j|, where |η| < 1 and α0 is an arbitrary constant,

then

E

 n
i=1

Xi

T  n
i=1

Xi

 ≤ α0
1 + |η| − 2|η|n

1 − |η|
n.
Furthermore, if α0η
|i−j|

≤ E[XT
i Xj] for i ≠ j and 0 < β0 ≤

E[XT
i Xi], where α0, β0 are constants such that β0 > 2

|α0|

1−|η|
, then

E[(
n

i=1 Xi)
T (
n

i=1 Xi)] = Θ(n).

Proof of Proposition 2. Expanding the sum, we obtain

E

 n
i=1

Xi

T  n
i=1

Xi

 =

n
i=1

Ti, (25)

where

Ti :=

n
j=1

E[XT
i Xj]. (26)

It follows from (26) and the hypothesis that

Ti ≤ α0(η
i−1

+ ηi−2
+ · · · + η + 1 + η + · · · + ηn−i)

≤ α0


−1 + 2

n−1
k=0

|η|k



= α0
1 + |η| − 2|η|n

1 − |η|
,

where the second inequality follows from 1 ≤ i ≤ n. The upper
bound now follows from (25). This proves the first statement.

When the additional hypothesis holds, we have

Ti ≥ α0(η
i−1

+ ηi−2
+ · · · + η)+ β0 + α0(η + · · · + ηn−i)

≥ −2|α0|

∞
k=0

|η|k + β0 = β0 − 2
|α0|

1 − |η|
=: ℓ0 > 0.

It follows from (25) that E[(
n

i=1 Xi)
T (
n

i=1 Xi)] ≥ nℓ0 = Ω(n).
Combining the asymptotic lower and upper bounds, we get
E[(
n

i=1 Xi)
T (
n

i=1 Xi)] = Θ(n). �

Proof of Lemma 1. It follows from (4) that

E[t̂00,n] =

n
k=1

E[t̂0k,k+1]. (27)

Recall that R = E[R̃]. From (2)–(3), we get

t̂0k,k+1 = R0
1 R̃

0
1 · · ·Rk

k+1 R̃
k
k+1


tk+1
k,k+1 + t̃k+1

k,k+1


⇒ E[t̂0k,k+1] = R0

k R · · ·Rk
k+1


R tk+1

k,k+1 + ρk+1


,

where the second equality follows from the assumption that the
orientation measurement errors are i.i.d. Since a rotation does not
change the 2-norm of a vector,

∥E[t̂0k,k+1]∥ ≤ ∥R
k
∥

∥R∥ ∥tk+1

k,k+1∥ + ∥ρk+1∥

,

where the inequality follows from applying triangle inequality
and using the sub-multiplicative property of induced norms. Since
∥R

k
∥ ≤ ∥R∥k, we obtain upon using Proposition 1 and the

definition of γ that

∥E[t̂0k,k+1]∥ ≤ γ ka,

where a := supk(∥R∥ ∥tk+1
k,k+1∥ + ∥ρk+1∥) ≤ γ τ + β . Applying the

triangle inequality to (27), we get

∥E[t̂00,n]∥ ≤

n−1
k=0

∥E[t̂0k,k+1]∥ ≤ a
n−1
k=0

γ k
≤ a

1 − γ n

1 − γ
,

since 0 < γ < 1. This proves the result about the mean.
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The proof for the secondmoment result proceeds by first show-
ing that E[(t̂0j,j+1)

T t̂0i,i+1] satisfies the hypothesis of Proposition 2
and then applying the proposition. We note that, for i ≤ j,

(t̂0i,i+1)
T t̂0j,j+1 = (t̂i+1

i,i+1R̂
0
i+1)

T R̂0
j+1 t̂

j+1
j,j+1

= (t̂i+1
i,i+1)

T R̂i+1
j+1 t̂

j+1
j,j+1

= V1 + V2 + V3 + V4,

where

V1 := (ti+1
i,i+1)

T R̂i+1
j+1 tj+1

j,j+1

V2 := (t̃i+1
i,i+1)

T R̂i+1
j+1 tj+1

j,j+1

V3 := (ti+1
i,i+1)

T R̂i+1
j+1 t̃j+1

j,j+1

V4 := (t̃i+1
i,i+1)

T R̂i+1
j+1 t̃j+1

j,j+1.

We now evaluate the expected values of these four terms. By using
the independence of the orientation measurement errors, we get

E[V1] = (ti+1
i,i+1)

T Ri+1
i+2R · · ·Rj

j+1R tj+1
j,j+1

⇒ |E[V1]| ≤ ∥ti+1
i,i+1∥ ∥R

j−i tj+1
j,j+1∥

≤ ∥R
j−i

∥ ∥ti+1
i,i+1∥ ∥tj+1

j,j+1∥ ≤ γ j−iτ 2,

where the first inequality uses the fact that rotations do not change
the 2-norm. For V2, since t̃i+1

i,i+1 is statistically dependent only on
R̃i
i+1 and not on R̃i+1

i+2, . . . , R̃
j
j+1, it is also independent of R̂i+1

j+1.
Hence,

|E[V2]| = |bi Ri+1
i+2 RRj

j+1 Rtj+1
j,j+1 ⇒ |E[V2]| ≤ γ j−i bτ .

Similarly, we have, for i < j,

E[V3] = (tii+1,i+1)
T Ri+1

j+1 R Rj−1
j R ρj+1

⇒ |E[V3]| ≤ γ j−i 1
γ
τρ

and, for i = j, |E[V3]| ≤ τb. For V4, when i < j, we have

V4 = (t̃i+1
i,i+1)

T Ri+1
i+2 R̃i+1

i+2 · · ·Rj
j+1 R̃j

j+1 t̃j+1
j,j+1,

⇒ |E[V4]| ≤ ∥bi∥ ∥R∥
j−i−1

∥ρj+1∥ ≤ γ j−i 1
γ
bρ.

When i = j, we have V4 = (t̃j+1
j,j+1)

T t̃j+1
j,j+1, which implies that

E[V4] = Tr

Pj+1


+ bT

j+1bj+1, by definition. Therefore,

0 < p ≤ E[V4] ≤ p + b2. (i = j).

Combining all four terms, we get

−α0γ
j−i

≤ E[(t̂0i,i+1)
T t̂0j,j+1] ≤ α0γ

j−i, (i < j)

x2 ≤ E[(t̂0i,i+1)
T t̂0i,i+1] ≤ x1,

whereα0 := τ 2+τb+ 1
γ
τρ+

1
γ
bρ and x1 := τ 2+2τb+p+b2, x2 :=

max(p − τ 2 − 2τb, 0). Repeating these arguments for i ≥ j and
combining, we find that

z0γ |i−j|
≤ E[(t̂0i,i+1)

T t̂0j,j+1] ≤ z0γ |i−j|,

where z0 := max{z0, x1}, and z0 := min(−α0, x2) = −α0. Now
call Xi := t̂0i,i+1, so that t̂00,n =

n−1
i=0 Xi. Hence, E[(t̂00,n)

T t̂00,n] =
E[(
n−1

i=0 Xi)
T (
n−1

j=0 Xj)]. It now follows from Proposition 2 that

E[(t̂00,n)
T t̂00,n] ≤ α0

1 + γ − 2γ n

1 − γ
n.

This proves the first statement of the lemma. The upper bound is
clearly O(n).

It also follows from Proposition 2 that a lower bound on
E[(t̂00,n)

T t̂00,n] isΩ(n) if β0 > 2 α0
1−γ . Since α0 = τ 2 + τb + τρ, the

conditionβ0 > 2 α0
1−γ is equivalent to p > 2bτ+τ 2+2 (τ+ρ/γ )(τ+b)

1−γ ,
which proves the result. �

Proof of Theorem 2. Define a new random variable, δθ̃k−1,k :=

θ̃k−1,k − E[θ̃k−1,k]. Then {δθ̃k−1,k}
∞

k=0 is an i.i.d. sequence and the
marginal density of δθ̃k−1,k is symmetric about 0. We define the
corresponding rotation matrices δ̃R

i
j := fR(δθ̃i,j). Utilizing the

commutative property of two-dimensional rotation matrices, we
have R̃i

j =

Rj−i δ̃Ri

j. It then follows from (5) that

e(n) = nr − t̂00,n,

and from (4), (3) and (2) that

t̂00,n =

n
k=1


k

i=1

Rδ̃R
i−1
i

 
r + t̃kk−1,k


,

where we have used the fact that R̂i−1
i = Ri−1

i R̃i−1
i = Rδ̃R

i−1
i , since

Ri−1
i = I due to the nature of the trajectory. We define two new

random variables

fn :=

n
k=1


k

i=1

Rδ̃R
i−1
i


r

gn :=

n
k=1


k

i=1

Rδ̃R
i−1
i


t̃kk−1,k,

so that

t̂00,n = fn + gn. (28)

By the i.i.d. assumption on the sequence {θ̃k−1,k}k, the sequence
{δ̃R

k−1
k }k is also i.i.d., so that

E[δ̃R
i
j] = E


k

k=i+1

δ̃R
k−1
k


=

j
k=i−1

E

δ̃R

k−1
k


= c j−iI, (29)

where we have used the fact that E[sin δθ̃ i−1,i] = 0, which follows
from Assumption 1. It is then straightforward to show that

E[fn] =

n
k=1

(cR)k r =

I − cR

−1 I − (cR)n

cRr

E[gn] =

n−1
k=0

(cR)k ρ =

I − cR

−1 I − (cR)n

ρ.

The expected value e(n) is now

E[e(n)] = n r −

I − cR

−1 I − (cR)n
 

cRr + ρ

, (30)

which proves the first equality in (16).
For the variance, it follows from (28) that

Tr [Cov(e(n), e(n))] = Tr

Cov(t̂00,n, t̂

0
0,n)


= E[fTnfn] + E[gT
ngn] + 2 E[fTngn]

− E[t̂00,n]
TE[t̂00,n]. (31)
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E[fTnfn] = rTE

 n
i=1


i

j=1

R δ̃R
j−1
j

T n
k=1


k
ℓ=1

R δ̃R
ℓ−1
ℓ

 r

= rT


I + cRT
+ · · · + (cRT )n−1

+

cR + I + cRT

+ · · · + (cRT )n−2
· · ·

+

(cR)n−1

+ · · · + I


r,

where we have used the independence of the sequence {δ̃R
k−1
k }k

and the fact that δ̃R
k−1
k δ̃R

k−1
k = I = RRT . The expression above

simplifies to

E[fTnfn] = rT

nI + 2

n−1
k=1

(n − k)

cR
k r = rT


I − cR

−2

×


I + 2(n − 2)cR − 2(n − 1)


cR
2

+ 2

cR
n+1


r.

To examine E[gT
ngn], we express the product as gT

ngn =
n

k=1 Tk,
where

Tk = (t̃kk−1,k)
T

(δ̃R

k−1
k )T (δ̃R

k−2
k−1)

T
· · · (δ̃R

0
1)

T

(Rk)T

×


R δ̃R

0
1 t̃

1
0,1 + · · · + Rn δ̃R

0
1 · · · δ̃R

k−1
k t̃kk−1,k


.

Taking the expectation and using the assumptions on the noise
correlations, we get, for k > 1,

E[Tk] = Tr

P + bbT 

+ bT ((cR)k−2
+ (cR)k−3

+ · · · + I

+ I + (cR)+ (cR)2 + · · · + (cR)n−1−k)ρ,

and for k = 1, E[Tk] = Tr

P + bbT


+ bT (I + cR + (cR)2 + · · · +

(cR)n−1−k)ρ . Repeating this for all the Tk, we get

E[gT
ngn] = nTr


P + bbT 

+ bT


2

n−2
k=0

(n − k − 1)

cR
k

ρ

= nTr

P + bbT 

+ bT I − cR
−2

×

2(n − 1)I − 2ncR + 2


cR
n

ρ.

Similar tedious calculations lead to the following:

E[fTngn] =


n−1
k=0

bT (cR)k +

n−2
k=0

(n − k − 1)ρT (cRT )k


r

= bT I − cR
−2


I − cR −


cR
n

+

cR
n+1


r

+ rT

I − cR

−2 
(n − 1)I − ncR + (cR)n


ρ.

Plugging all of this back in (31), we get Tr [Cov (e(n), e(n))] =

ψn + ω(n), where ψ,ω(n) are given in (18), proving the second
equality in (16). �

Proof of Theorem 3. Define a new random variable, δθ̃k−1,k :=

θ̃k−1,k − E[θ̃k−1,k]. The sequence {δθ̃k−1,k}
∞

k=0 is then i.i.d. and the
marginal density of δθ̃k−1,k is symmetric about the origin for each
k. We define the corresponding rotation matrices δ̃R

i
j := fR(δθ̃i,j).

Utilizing the commutative property of rotations in twodimensions,
we have the following relation:

R̃i
j =


Rj−i δ̃Ri

j. (32)
To examine the bias, we first rewrite the position estimate t̂00,n as

t̂00,n =

n
i=0

t̂0i,i+1 =

η−1
k=0


p

m=1

t̂0kp+m−1,kp+m



+

q
j=1

t̂0ηp+j−1,ηp+j, (33)

where the first term is sum is over all time steps up to the end of
the last (η-th) period and the second term is for the time steps after
that. For any 0 ≤ m < p, we have

t̂0kp+m−1,kp+m = R̂0
kp+m t̂kp+m

kp+m−1,kp+m

= R0
m R̃0

kp+m(t
m
m−1,m + t̃kp+m

kp+m−1,kp+m),

where, apart from R̂ = RR̃, we have used the periodic nature of the
trajectory that leads to R0

kp+m = R0
m and tkp+m

kp+m−1,kp+m = tmm−1,m.
Taking the expectation and using (32), we obtain

E[t̂0kp+m−1,kp+m] = R0
m(cR)

kp+m−1(cRtmm−1,m + ρm).

This expression is used to evaluate E[t00,n] by taking the expectation
of the right-hand side of (33). After grouping terms, we obtain

E[t00,n] =


η−1
k=0

(cR)kpω(p)


+ (cR)ηpω(q). (34)

Using techniques similar to those used in the proof of Theo-
rem 2, it can be shown that

E[t̂00,n] =

η−1
i=0

(cR)ipw + (cR)ηpw(q)

⇒ E[e(n)] =

q−1
k=0

R0
k+1t

k+1
k,k+1 −

η−1
k=0


cR
kp
w − (cR)ηpw(q).

By replacing the summation we arrive at (19), which proves the
theorem. �
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