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Abstract—We propose a distributed algorithm for collaborative  over dead reckoning. This has led to research into colldivera
localization of multiple autonomous robots that fuses inter-robot  |ocalization, which is the topic of this paper.
relative measurements with odometry measurements to improve We assume all robots are equipped with proprioceptive

upon dead reckoning estimates. It is an extension of our previous . IMU. et lowi h robot t
work [7], in which a method for fusing inter-robot pose measure- sensors (vision, , etc.) allowing each robot to measure

ments was presented. In this paper we extend the method to fuseitS change in pose. We refer to these noisy measurements
any type of inter-robot measurements (distance, bearing, relate  as inter-time relative pose measurementssing these noisy
position, relative orientation, and any combination thereof), measurements, each robot can perform localization through
thus increasing the applicability of the method. The proposed 44 reckoning. In addition, we assume each robot is eqdiippe
method is posed as an optimization problem in a product . o . .
Riemannian manifold; and is solved by gradient descent without with exteroceptive Sensors,_ allowing intermittent nmsy‘am
performing a parameterization of the orientations. The proposed Surements ofnter-robot relative measuremenb@tween pairs
distributed algorithm allows each robot to compute its own pose of robots, which can be one or more of the following: relative
estimate based on local measurements and communication with hearing, relative distance, relative orientation, re&@position,

its neighbors. Simulations - as well as experiments with a pair of and relative pose.

round r - show that the pr istri Igorithm s . .
gigrl:ifiganqtlt;oﬁnpri)vce)s fogztilitzaetignogcg:i?agyﬁosgte?h: gcc:iste of W(_a prQDose a d'.smbumd_ algor_lthm to pgrform COIIabIOEatIV
no-collaboration. Simulations show that, in some situations, localization by fusing the inter-time and inter-robot tela
the proposed distributed algorithm outperforms two competing measurements to obtain an estimate of the absolute pose of
methods - an Extended Kalman Filter-based algorithm as well every robot that improves over dead-reckoning estimatéth W
as a distributed pose graph optimization method that relies on i a1g0rithm, which we call the D-RPGO (Distributed Rie-
an Euclidean parameterization of orientations. . S . .
mannian Pose Graph Optimization) algorithm, communicatio
is only necessary between pairs of robots for which an inter-
robot relative measurement has been obtained. The method
Interest in utilizing teams of autonomous mobile robots haghind the algorithm is an extension of the method in our
grown in recent years, since multi-robot teams can provigle iprevious work [7], which was limited to inter-robot relagiv
creased functionality over a single robot. In search andues pose measurements. In this paper we extend it to handle
operations, a group of robots can cover a larger area thamrg type of relative measurement, and provide performance
single robot. In hazardous conditions, the innate redurdarcomparison of the D-RPGO algorithm with two alternate
of a group of robots may be necessary to prevent catastropbatiaborative localization algorithms.
loss of mission capability. Irrespective of the applicatio
localization is a crucial capability for any mobile robot. ~ A- Related work
Though GPS provides global measurements of a robotsMost of the work on collaborative localization can be
position, GPS measurements may not be available in many sitghly classified as probabilistic; they provide estirsabé
uations, or may be only intermittently available. For ex#mp the robots’ poses as well as some measure of the associated
a group of unmanned aerial vehicles (UAVS) operating in amcertainty. These includél [@10], where the pdf (probigbil
urban environment may temporarily lose GPS measuremedemnsity function) of robots’ positions (or poses) are inve
when the signal is blocked by large buildings. In such ly fusing inter-robot measurements with inter-time measur
situation, the absolute pose (position and orientatiom) lm@a ments. Quite a few works are based on the extended Kalman
obtained by integrating over the relative pose measuresnefitter (EKF); see [18] 17, 13,5, 14] and references therein.
obtained using IMUs or vision based sensors and usingThe papersiﬂd] 4], which are based on the particle filteg als
known initial pose. This method of localization is referied belong to this category.
as dead reckoningLocalization through dead reckoning can In single robot localization and mapping, an alternative
lead to a rapid growth in localization error [15]. Within ato filtering is the pose graph based approach. This can be
team of collaborative robots, though, relative measurésneextended to multi-robot localization with map merging amon
between pairs of robots - such as bearing, distance etcrobots lﬂ?] or without |Ib]. In the pose graph approach the
may be available. These provide additional informationtmn t problem is described in terms of a graph whose nodes corre-
robots’ pose that can be used to improve localization acguraspond to robot poses and edges represent measurements that

I. INTRODUCTION



provide constraints between certain pairs of poses. The bes

set of pose estimates are found by minimizing a cost functionThe EKF estimator we use is inspired by thatlin [14], while
that quantifies how well a given set of poses explain thtbe Euclidean pose graph optimization method we use is an
measurements. Under certain assumptions on the measurerimeplementation of standard approacHas [9].

noise, the solution is the maximum likelihood or maximum a-

posteriori estimate of the poses. Without any assumptfy; t Il. PROBLEM STATEMENT

still yield a least squares solution. Pose graph optinmati A. The Collaborative Localization Problem

methods used to compute the non-linear least squaresaoluti
in SLAM and bundle adjustment (Sela[ﬂ, 9] and referenc
therein) can be directly applied to the multi-robot caseutih
distributing the computations among the robots preseni- ad
tional challenges[[G]. The pose graph based methods t)}ijpica"i1
only estimate the poses and not a measure of the associ
uncertainty; though recent work has made progress in thig
direction; see@O] and references therein. to

sConsider a group ofr mobile robots indexed by =
(i...,r. Time is measured by a discrete counter =
g,l,Q,.... Each roboti is equipped with a local, rigidly
ttached reference frame, calldthme . Localization of
é)é)ti consists of estimating the Euclidean transformation
€ SE(3) that relates a robot's local reference frame
an absolute reference frame common to all robots. This
transformation is referred to as the robatlssolute pose

o Measurements of a robot’s absolute pose from GPS and
B. Contributions compass are either not available or only rarely available.

In our earlier paper[[?], we proposed a method for collagnstead, we assume that eac.h.robot is equipped with sensors
orative localization that required relatiyisemeasurements (Such as inertial sensors or vision based sensors) andgserha
between robots. In this paper we extend the method so tR&NSOr fusion algorithms such that, at every tilea robot
any type of inter-vehicle measurement (distance, bearidﬁ,able to obtain a inter-time re_Iatlve pose measurement: a
relative position, relative orientation, relative pose,some Measurement of the transformation between the previous and
combination thereof) between pairs of robots can be fusdf€ current pose. In addition, each robot is equipped with
This increases the practical applicability of the method. ~ €xteroceptive sensors so that the robot is able to uniquely

The method proposed here, as well as that[in [7], cadentify each robot it can “see” (within some sensing rajius

be classified as a pose graph based approach: the estimaAid obtain a relative measurement for each such robot with

problem is formulated as an optimization defined by a graprﬁ",SpeCt to itself. When rob@tc_ollects a measurement of robot
can be one of the following:

where nodes represent robot poses at various times and edgéts
represent inter-time and inter-robot measurements. Amajo ¢ Relative pose The Euclidean transformation between the
but subtle - distinction between our method and existingepos ~ reference frame attached to robotand the reference
graph optimization methods is that while existing methods frame attached to robgt expressed in robats reference
use a vector space parameterization of orientation (such as frame. Denoted by the symbar.
the complex part of the unit quaternion representation) ands Relative Orientation: The element ofSO(3) that de-
then search for the minima in that space, we perform the scribes the change in orientation between fraimand
optimization directly on the product Riemannian manifold ~ frame j, expressed in framé. Denoted by the symbol
in which the problem is naturally posed, without relying R.
on a specific parameterization. A gradient-descent methoce Relative position The vector inR® that describes the
on the Riemannian manifold is used for searching for the change in position between roboand robotj, expressed
optima that is independent of the parameterization as aeyl; in frame j. Denoted by the symbd.
parameterization of the orientations can be used for nwaleri + Relative bearing The vector of unit length that points
implementation. The advantages of doing so are discussed from roboti to robot j, expressed in framé Denoted
in Section[I] (see Remark]1). Simulations show that the by the symbolr.
proposed method based on Riemmanian manifold pose grapm Relative distance The distance between robaétand
optimization (RPGO) outperforms the traditional pose grap  robotj. Denoted by the symbal.
optimization performed by vector-space based methodsitwhiThese are called inter-robot relative measurements. cbihe
we call Euclidean pose graph optimization (EPGO). laborative localization problenis to estimate the absolute

In comparison with the EKF-based collaborative localizgzose of every robot by utilizing both the inter-time and inte
tion methods described above, our method offers a distimobot measurements. The situation above is best described
advantage. The linearization involved in the EKF requiresia terms of a directed, time-varying, fully-labelegraph
small angle approximation to hold at all times. Unless theeti G(k) = (vo(k), £ (k), £(k)) that shows how the noisy relative
interval between two successive inter-vehicle measur&mgen measurements relate to the absolute pose of each robot at
extremely small, which is unlikely in many practical sitioais, every time step. The graph is defined as follows. For each
the small angle approximation is violated, which is likety troboti € {1,...,r} and each time < k, a unique index
lead to poor covariance updates and poor pose estimates. Tall it ») is assigned to the paifi,¢). How this indexing
is verified through simulations presented here. is done is immaterial. The set of these indicgs. .., rk}



T.,@ ,,ﬂs ] Robot 1 assumption to ensure at least one estimate exists for every
T*m/T robot at each time:

\ E R ] Assumption 1. All inter-time relative measurements are of the
T é full relative pose and each robot has access to an estimate of
é T*'T" Robot 2 its current absolute pose at tinte
This assumption will often hold in practice, as any robot
capable of localizing itself using dead-reckoning musineste
VT\%%T—» T’b Robot 3  the full relative pose between each time step. Under this
assumption, an estimate for the pose of rabat time timek
(or equivalently, the value of the node variafllg, where node
i u € V (k) corresponds to the pait, k)) can be computed by
composing the inter-time relative pose measurementsraatai
tFr:g- 1 bStnatéshog of g ;nteasurement ?rélplhdat tﬁ??hu? for adgroup Céf by robot i up to time k. This estimate is equivalent to
o from ;‘0(S)aCA”((;\‘,’vsomd'?ggepeﬂ;; ?ee Tolative meacror g 83‘; © roboti performing dead-reckonind@he goal of collaborative
Each edge is labeled to indicate the type of measurement. Rdband 3 localization is to fuse information available from all edge
had GPS measurements at the initial tilme= 0. Thereafter, no other GPS in the graph g( ) to obtain estimates of the robots’ poses
measurements were available. at time k& that is more accurate than that possible from dead
define the set’ (k) and the node set of the graph is definegeckoning, which only uses single paths from the refereace t
as ’V()(k‘) = ‘V(k‘) U {O} We then refer to the reference framehe current robot pose
attached to robot at timet asframe. Nodew is associated  |n section[Il] we propose aentralized algorithnto solve
with the absolute pose of robatat time ¢ relative to the the collaborative localization problem that uses all theame
common reference frame, i. e., the Euclidean transformatigurements in the grapéi(k) to compute the “best” estimate
between the common reference frame and framexpressed for each node variable. In SectipnllV, we proposdisiributed
in the common frame. We call these posesle variablesand algorithm to compute an estimates of each robot’s current
denote thenT',,. The common reference frame with respect tpose. The distributed algorithm has the additional coimgsa
which all node variables are expressed is associated with n@hat (i) at every time step, each robot must only be requioed t
0. If the absolute pose of at least one robot is known at tim@mmunicate with other robots it can “see” or that can “see” |
0, perhaps through the use of a GPS and compass, then ngeé (i) memory, processor power, and communication band-
0 can be associated with the common reference frame. Whgigith are limited. For the distributed algorithrye assume
absolute pose measurements are not available, Aaoild  that the communication range is greater then the measuremen
correspond to the initial reference frame of one of the rebotange It is always possible to satisfy this assumption by

In either case, estimating the node variables is equivab}ntdropping any measurements between robots that are unable
determining the robots’ poses with respect to frahéthe to communicate.

reference frame associated with ndg)e Node0 is therefore
called thereference node

The set ofdirected edgesat time k, denotedz (k), corre- In the centralized case, we assume that the relative measure
sponds to the noisy inter-time and inter-robot measuresnefiie€nts are instantly available to a central processor atteaeh
collected up to timek. That is, suppose robatis able to %. The problem of estimating the robots’ poses at times
measure robotj’s relative pose at timet, and letu,v be €mbedded in the problem of estimating all the node variables
the nodes corresponding to robatg at timek, respectively. Of the measurement gragh(x)
Then the edge: = (u,v) will be in =(k) for all k& > k. [T}, ={T. € SE®):ucv(k) (1)
Similarly, each inter-time relative pose measurements of a v (k)
robot also creates an edge in the graph. To delineate thefype&ising the robots’ past noisy relative measurements (bdéin-in
measurement, a label from the 6T (pose)R (orientation), time and inter-robot). We estimate the node variables by
t (position), = (bearing),é (distance)} is attached to each minimizing a cost function of these variables that measures
edge. The map from the set of edges to the set of lab&lgw well a given set of node variables (absolute poses)
is given by ¢(k). Recall our example in which the edgeexplains the noisy measurements. The initial guess for each
e = (u,v) is associated with a relative pose measuremenggde variablel',, u € v (k) is taken to be the dead-reckoning
The label for edge: is then given by/(k)(e) = T (pose). estimate, whose existence is guaranteed by Assumiption 1.
The noisy relative measurement assouated with each edgdhe cost function we propose is of the form

II. CENTRALIZED ALGORITHM

e = (u,v) € £ (k) is denoted by, ,, Ru v, tu v, Fuv,s OF 0y 1
for é(k)(e) = T (pose) R (orientation) t (position) F{T}, ) = > geRutuw,Ryty) (2
(bearing), andd (distance) respectively. (u,v)=e€z (k)

The graphG(k) is called themeasurement grapht time where the scalar, non-negative valued function
k; see Figure[Jl for an example. We make the following.(R.,t,, R, t,) is designed to be a measure of how



well the noisy relative measurement associated with theould be of the forme! Q.e., where Q. is a covariance
edgee = (u,v) fit estimates of the relevant node variablematrix and the vector, is an error. The cost function to
R, t.,R,,t,. Here R, € SO(3) andt, € R?® denote minimize is then defined as

the rotation and translation components that make up the D) 1 .
node variableT,,. For an illustrative example, consider the f(p e RPW) = 3 > elQee., (6)
relative rotation measuremeilk, , associated with the edge e€z (k)

e = (u,v). By definition, R, is a measurement of theyherep is a vector of Euclidean parameterization of thgk)
rotation between frame and framev, expressed in frame poses to be determined, whose dimenditt) is 6n(k) with

u. This same rotation is also equal B, R.,, whereR,, is  minimal parameterization. The cost function is then mizedi
the adjoint of the operatoR,,. Therefore, when no NOIS€py methods such as gradient descent, Levenberg-Marquardt,
is present in the measuremer®, , is equal O R, R.. etc. on the real coordinate spadg@”*). The problem(5)
When measurements are corrupted by noise, the distaffers from () both in formulation and the solution method
between the two quantities, witR, and R, replaced by \e employ. The orientations (such By .)) that appear in
their estimates, measured by a suitable metric S#(3), oyr problem formulation are abstract rotation operators, o
provides a measure of how well the estimateRofandR,  glements 0of50(3), and not rotation matrices or quaternions
fit the noisy measurement. Therefore, a suitable cost fomcti, any parameterization thereof. In contragf) is defined
for a relative orientation measuremeRt, ., associated with iy terms of a specific parameterization. For instance, if the

the edgee = (u,v) is given by measurement or = (u,v) is that of the relative orienta-
ge(Ru, tu, Ry, t0) = d*(Ry o, RTR,), A3) tion, one possible choice of the error is = ¢(R,') ®

¢(Ry) — ¢(Ryy), Where ¢(-) denotes the unit-quaternion

where d(-, -) is the Riemannian distanced(A,B) = representation of its argument ang represent quaternion

\/—%Tr (log*(ATB)), A, B € SO(3), whereTr () denotes multiplication. Optimization is performed, e.g., over tfest
trace. Using arguments similar to the one presented above fyee entries of the unit-quaternion parameterization,ialth
orientation measurements, appropriate cost functionsaflor makes the cost defined over a vector space. Another possibili

measurement types are constructed: is ec = vec(M(R;') @ M(R,) — M(Ry,)), WhereM () is
(Ru, o, R ) — the 3 x 3 matrix representation, andec(M) is the stacked
el Ruy bu, By bo ) = vector of all the columns of the matrix/. Each such choice

dz(liluv, R/ R,) if ¢(k)(e) =T of the parameterization and the error — and there are many —
[ tuw — RI(t, — tu)]? will change the local minima as well the difficulty of searmi
(R0, RIR,) if ¢(k)(c) = R for the minima. O
- - In light of the remark above, we defined the cdst (2) in the
T 2 _ ’
[buo — Ry (b0 — )] if £(k)(e) =t natural space of the variables (the product manifgkf x
| (Fuollts — tul]) — RE(t, — t,)||? i L(k)(e) =T SO(3))"®)) that is independent of any parameterization of
- 5 - rotations. Our next goal is to find a provably correct aldorit
(0w = 6w = tull) if £(k)(e) =0 to solve [[) that utilizes the geometry of the space without

4 relying on any particular parameterization. We accomgtliéh
The “best” set of pose estimates is a solution to the follgwirthrough use of a gradient descent algorithm on the product

optimization problem: manifold.
. ) We showed in |__[]7] that given a pointp,, =
{T }V(k):{T}V(k)e(ura%leSO(s))nmf({T}V(k))’ ®) (Rq,t1,...,Ry,t,) in the product manifold, the point

) o o Pm+1 resulting from one step of the gradient descent
where n(k) is the cardinality of the sev (k). Finding the ggorithm is given by

minimum of a function defined over a vector space has been -
studied extensively. However the functigit-) in @) is de- Pmt1 = (R1exp(Ry &R, ), 61 + &ty @
fined on a curved surface, specifically, the prodRietmannian R, exp(RTeR ), tn + &)

Manifold (SO(3) x R3)*(*), We search for the minima by whereexp( - ) is the Lie-group exponential map [11g, =

using recently developed techniques for optimization over
Riengannian rﬁanifold [1]. | g ~Nm X eer (k) 9704 ge(Ri), andgrad g.(R;) denotes the gra-

dient of the edge cost. with respect to the node variabke;.
Remark 1 (Relation to Euclidean pose graph optimization)The positive scalaw,,, is the step-size, determined using a line
The problem(@) is very similar to the least squares problensearch algorithm. Similarly;, = —7,, Zeez(k) grad g.(t;).

that appears in pose graph optimization used for SLAM and The gradient with respect to relative pose measurements
bundle adjustment [19] 9]. In existing pose graph optiniazrat were derived in[[7]. The innovation in this paper is compu-
methods, rotations are first parameterized and then edgéscatation of gradients for all types of measurements. When edge
are defined as squared-error terms defined over the vector (u,v) corresponds to a bearing measurement, it can be
space of those parameters. The cost on an edge (u,v) shown after some tedious calculations thatd g¢.(Ry) =



*2Rh(RZ(tv = t)Tuulltu = toll = Tuollte — tuf[(t, —
T I . - __ communication with nearby robots. Moreover, computationa

bu) Rh) it h = u, ando otherW|se: Similarlygrad ge(tn) = complexity of the algorithm grows only with the number of

— 4L ()[(by = tu) = [ty — tu[|RuTw o). Wherel,, (h) equals peighpors, since it depends on the size of the local subgraph

Lif h=u, =1if h = v, and0 otherwise. The formulas for 54 not with the total number of neighbors. This makes the
the gradients for all other types of measurements can fou&@orithm highly scalable to large teams of robots.

in [8]; we do not provide them here due to lack of space.
Gradient descent is performed using the update law given V. SIMULATION RESULTS

in (7), terminating when the norm of the gradient falls below \ye now present simulations (i) that show the improvement
some user specified threshold. Theorém1 in [|I|] guarantee ;. |ocalization accuracy with the proposed D-RPGO algo-

that this algorithm converges to a critical point of the cogfnm gver self-localization, and (i) comparison witheatate
function f defined in [(2). . collaborative localization algorithms. We first define some
The algorithm presented above, which we call the RPGQ\(formance metrics. The position estimation error of tabo
algorithm, is i_ndependent of the parameterizati_on _L_Jsed iOdefined ae; (k) := t:(k)—t;(k), wheret; (k) is its absolute
represent rotations. One could use any parameterizationgiu ,osition atk andt;, (k) is the estimate. The bias in the position
numerical |mplementgt|9n, and the_ choice of parameteodat oqtimation error of robatis defined a$ Ele;(k)]||, where]| - |
does not affect the minimum obtained. is the 2-norm andt denotes expectation. The standard devi-
ation is defined as/Tr (Cov(e;(k), e;(k))), where Cou(-)
stands for covariance. In each scenario described bel@w, th
The method used to compute estimates in a distributed Waigs and variance in position estimation error is estimated
is the same as the one proposed in [7]. Therefore we describ®ugh the use of a Monte Carlo simulation with000
the distributed algorithm very briefly; the interested mrad sample runs.
referred to[[7] for details. _ _ _
Two robots are called neighbors at tinkeif at least one A. Performance with various relative measurements
of them obtains a relative measurement of the other at thatA group of robots are simulated traveling along randomly
time. Let V;(k) be theneighborsof robot i at time k. We generated distinct zig-zag paths in 3-D space, so that all
assume that each robot can communicate with its neighbamnslational and rotational coordinates vary along tiroe f
during each time step. Robothen forms docal measurement each robot. Two robots can obtain relative pose measursment
graphg; (k) = (v;(k), £:(k), £;(k)), whose node set is simply at time k if the Euclidean distance between them at that
the neighbors ofi at time k& along with the reference nodetime is less thar7 m. Furthermore25% of these potential
0 and i itself. The edges ofj;(k) correspond to the inter- measurements were dropped, simulating random failure and
robot measurements at time between: and its neighbors, insuring the measurement graph would not be symmetric.
along with an edge = (0, j) for eachj € v;(k). Each robot Error in measurements of the relative orientation are irduc
j obtains its current estimati?oj at time k£ by concatenating by composingC(q) with the rotation corresponding to the
the robot’s pose estimate obtained at tilme 1 with the noisy true orientation, wher&’(q) is the rotation operator corre-
inter-time relative pose measurement describing the sobsponding to the unit quaternio drawn from a Von Mises-
motion from k — 1 to k. This estimate is then used as théisher distribution centered about the identityl [12]. Samiy,
measurement associated with edge- (0,5). At each time noisy relative bearing measurements are generated byiagply
k, every roboti € {1,...,r} uses the estimatdy; so the randomC(q) to the vector in unit sphere in 3-D that
obtained as an initial pose estimate and then updates it discribes the true bearing. Measurements of relativentista
using the RPGO algorithm on its local measurement graphd position are normally distributed with mean corresjamnd
at that time. After the computation, each robot transmits tho the true values.
updated absolute pose estimate to each of its current r@ighb  The bias and standard deviation in position estimationrerro
The process keeps repeating as the robots keep moving. for robot1 for different scenarios, each with a distinct type of
After the computations at timé, a robot only stores the noisy inter-robot measurement, are reported in figire 2. &fe s
estimated value its own current pose. Note that if raliais no from the figure that improvement over single robot local@at
neighbors at timek, the distributed collaborative localizationin both bias and standard deviation occurs for all inter-
algorithm is equivalent to performing self-localizatiororih  robot measurement types with one exception. Though distanc
inter-time relative measurements. Since the distribulgd-a measurements improve the standard deviation of the positio
rithm is simply the centralized algorithm applied to a locadstimates, they have little effect on the bias. As expected,
measurement graph, it inherits the correctness propertiyeof full relative pose provides the most benefit to localization
centralized algorithm as well. accuracy. However, other measurement types also leads to
The proposed distributed algorithm is called the D-RPGi{inprovement over self-localization. For the scenario angkbt
algorithm, since it is a distributed version of the RPG@uration considered, the three types of relative measureme
algorithm. The D-RPGO algorithm only requires measure-bearing, position and orientation - seem to have somewhat
ments that the robot can collect with on-board sensors asichilar degree of benefit.

IV. DISTRIBUTED ALGORITHM
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estimation error, when each robot in a group of 5 robots useDHRPGO Time k
algorithm to estimate their poses. Each curve corresponttetoobots using ) ) ) .
a distinct type of inter-robot relative measurements (irtditaoy the labels). Fig. 3. Simulation: comparison between D-RPGO and D-EPGOritgos.

The label “Self Loc.” refers to a robot using dead reckonitena, without ~The position estimation error of robot 1 (in a group ®frobots utilizing
using any inter-robot relative measurements. noisy inter-robot relative pose measurements), computedbaithalgorithms,

with the same input data are shown. The label “Self Loc.” refera robot
localizing by dead reckoning alone.

B. Comparison with alternate methods of collaborative leca
Ization true pose and the estimated pose (before fusing the current

We now present simulations that provide some insight intBter-robot measurements) being the filter state. A pair of
how the D-RPGO algorithm performs when compared witfpbots is simulated traveling along distinct sinusoidahpan
two state-of-the-art collaborative localization algbnits. All 3-D space. Measurements are generated as described. earlier
inter-robot relative measurements are of the relative jose The trends observed from extensive simulations can be
these simulations. summarized as follows. When the time interval between

The first alternative we consider is a standard pose grapicessive inter-robot measurements, callTt, is small, the
formulation, in which optimal robot poses are computed byKF performs as well, or better than, the D-RPGO algorithm.
minimizing the cost function({6). Rotations are parametati However, when the time between measurements is large, the
by the complex part of the corresponding unit-quaternio, aD-RPGO algorithm provides significantly better estimatés o
the optimization problem is set up as?ﬂ [9]. Searching fdhe robots’ poses compared to the EKF. Figlire 4 provides
the optima is performed by Levenberg-Marquardt algorithriumerical results for the case of a largd” (30 seconds in
When the optimal poses of a measurement graph are obtaiffé§ €xample), when EKF performs poorly. How small’
in this way, we call it a solution from a EPGO algorithm. Td'as to be for EKF to perform well depends on many factors,
maintain comparability, we provide the same local measur@cluding the motion of the robots, noise in the measurement
ment graph to both the D-RPGO algorithm as well as a EPGRIE. For the parameters used in the simulations mentioned
algorithm, which we call the D-EPGO algorithm. above, AT has to be smaller thaf.1 sec for the EKF to

A group of 5 are robots are simulated to move along thBerform as well as the D-RPGO algorithm. _
3-D path described above. Error in the pose measurement¥/e believe the reason for this behavior of the EKF is
were induced as in simulations in Section V-A. Simulation&€ error introduced by the linearization involved in caovar
were performed varying the concentration paraméten the ance prqpagation. The linearized state equations rely en th
Von Mises-Fisher distribution from which the noisy rotatio @ssumption that the angle between the true and estimated
(quaternions) used to corrupt the inter-robot orientatioea- orientation is very small. When the time interval betweeerrint
surements are drawn. These simulations show that, vihésn 'obot measurements is sufficiently small, this approxiorati
very large, that is, the variance is very low, D-EPGO doey Vepolds: In.tha’g case the error in thg covariance matrix. due to
well, even outperforming the D-RPGO algorithm. Howevefinearization is small enough that it does not out weigh the
when K is small, that is, the noise variance is large, D-RPG@fdded benefit of using covariance information. However, the
outperforms D-EPGO. Due to a lack of space, only the resufid@ll angle approximation is violated for large time intdsy
for K = 100 are shown; see Figufé 3. For this specific casteading to quite poor covariance estimates, which in tuad le
it is clear that the proposed D-RPGO algorithm outperforn{§ POOr pose estimates.
the D-EPGO algorithm. A detailed comparison is a topic of
future work.

Finally, we consider a method for collaborative localiaati ~ An experiment is conducted using two Pioneer P3-DX
using an Extended Kalman Filter (EFK), developed in a similaobots, shown in Figur€]l5. Each robot is equipped with a
manner as the EKF observer for collaborative localizatiazalibrated monocular Prosilica EC 1020 camera and wheel
in [Iﬂ]. An indirect form filter is used, with error betweereth odometers. Measurements from these sensors were fused to

VI. EXPERIMENTAL RESULTS
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Fig. 5. Two Pioneer P3-DX robots equipped cameras and targetsot 1

Time & is shown on the left, while robat is on the right.

Fig. 4. Simulation: comparison between D-RPGO and EKF algmst with

AT = 30 sec. The position estimation error of robot 1 (in a group2of

robots utilizing noisy inter-robot relative pose measuretsierromputed with

both algorithms. The label “Self Loc.” refers to a robot loz@g by dead 0
reckoning alone.

/

-5 — — — True Loc.
obtain noisy inter-time relative pose measurements. Eaiabi r £ Self Loc.
is additionally equipped with a target allowing the on-mbar > ©— Pose

—¥— CQOrientatior
—+H&— Position
—<&— Bearing
—%— Distance

cameras to measure the inter-robot relative pose by ekygoit -10
the known geometry of each target. The true absolute pose of
each robot is determined using an overhead camera capable
of tracking each robot’s target, providing ground truth.igyo
inter-robot relative pose measurements are obtained &2ry
seconds.

Both robots move in straight lines that are approximateliy. 6. Experimental: A plot of the location of robdtin the overhead
parallel. Six different pose estimates of the robots are ogpmera reference frame when both robots move in a straight Tine.true
tained. The first estimate is obtained from dead reckonirff? (21 1510 e overhead camere) estmetedpal aoemizaton
The remaining 5 estimates are obtained from the D-RPG all reported.
algorithm, each with a distinct type of inter-robot relativ L
measurement: full pose, orientation only, position onbaling over self-localization. Improvements were largest wheln al

only, or distance only. These measurements are obtained fr@ter—robot relative measurements are of the relative jpose

the relative pose measurements by projection. Figlire 6 sh jgnificant improvements were observed also with otherdype
the resulting position estimates obtained by the D-RPG measurements. Only distance measurements were observed

algorithm. As expected, a distinct improvement in locdlaa to not have_ much benefit, especially in the bias. This is
accuracy is seen when collaborative localization is pevéat CONSIStent with the trend observed E'[B_] for the 2-D case.
for all but the distance-only measurements. The experiatent 1he proposed method is quite close in spirit to the pose
results reinforce the trends seen in Secflon]V-A. Spediical9'aph optimization problems commonly encountered in map-
when D-RPGO algorithm is used to fuse inter-robot distang¥d and localization. The distinction is that our cost flioe
measurements, the bias in the position estimation errori§sdefined on a Riemannian manifold and is minimized on
similar to that without collaboration. For all other typef othat surface without converting the problem to a vector spac
relative measurements, there is improvement with disteihu OPtimization problem. While this distinction may seem minor
collaborative localization over self localization. Besaufig- eSults indicate it leads to substantial performance bemefi
ure[® is only a single realization of the estimate, the bias §iPMe cases. In particular, the D-RPGO algorithm outpeorm
position estimation error is visible, while the variancenist @ distributed version of the traditional pose graph optatian

0o 2 4 6 8 10 12
x (m)

(cf. Figurel®). (that uses a specific Euclidean parameterization of thetrobo
orientations) in terms of accuracy when the noise in thea-inte
VIl. SUMMARY AND FUTURE WORK robot measurements is large.

In this paper we extended the algorithm introduced._In [7] It was found that the computation time of the D-RPGO
for distributed collaborative pose estimation of multippeots. algorithm is comparable to that of the D-EPGO algorithm
While the algorithm in |I|7] could only fuse relative posan the simulations we performed. However, there are many
measurements, which are difficult -if not impossible - tways to speed up the computations involved in Euclidean
obtain in practice, the algorithm introduced here (D-RPG@ptimization that are not currently available for Riemami
can fuse any type of relative measurements. Simulations asutimizations. We suspect when applied to large graphs,
experiments show that distributed collaborative posaresti Riemannian optimization will be slower than Euclidean op-
tion with D-RPGO algorithm leads to significant improvemertimization. Fortunately the measurement graphs that appea



distributed computation are small, since their size scaids
the number of neighbors of a robot.

The EKF has been a popular tool in past work on collabo{8] Joseph Knuth and Prabir

rative localization as well as mapping. Simulation comgami

of the proposed D-RPGO algorithm with the EKF showed
that the EKF performs poorly compared to the proposed D-
RPGO algorithm unless the time interval between successive
inter-robot relative measurements is quite small. This haf9]

important implications for practical applications, siniteis
more likely that inter-robot measurements will be avaiabl
quite infrequently. However, in those special cases whar-in

robot measurements arrive frequently, the EKF performs jy&O0]
as well as the proposed method. One such scenario is the
4], where robots observe common feature
points on the ground. In such a scenario the EKF maybe

preferable over the proposed method.

one considered i

A limitation of the proposed method over the EKF (and

other filtering methods) is that the latter also provides a
covariance estimate while the proposed method does not. A
method to estimate the covariance, or some measure of est2]

mation error, is an important future task. Although simiolias

reported here provide an indication of when the propos¢t3] A. Martinelli, F. Pont, and R. Siegwart.
method performs over existing state-of-the art methods, a

[11]

measurements. Imternational conference on Robotics
and Automation (ICRA)pages 1101-1106, 2012.
Barooah. Collabora-
tive localization with heterogeneous inter-robot mea-
surements by riemannian optimization. Techni-
cal report, University of Florida, 2012. URL
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