
Collaborative localization with heterogeneous
inter-robot measurements by Riemannian

optimization
Joseph Knuth and Prabir Barooah

Abstract—We propose a distributed algorithm for collaborative
localization of multiple autonomous robots that fuses inter-robot
relative measurements with odometry measurements to improve
upon dead reckoning estimates. It is an extension of our previous
work [7], in which a method for fusing inter-robot pose measure-
ments was presented. In this paper we extend the method to fuse
any type of inter-robot measurements (distance, bearing, relative
position, relative orientation, and any combination thereof),
thus increasing the applicability of the method. The proposed
method is posed as an optimization problem in a product
Riemannian manifold; and is solved by gradient descent without
performing a parameterization of the orientations. The proposed
distributed algorithm allows each robot to compute its own pose
estimate based on local measurements and communication with
its neighbors. Simulations - as well as experiments with a pair of
ground robots - show that the proposed distributed algorithm
significantly improves localization accuracy over the case of
no-collaboration. Simulations show that, in some situations,
the proposed distributed algorithm outperforms two competing
methods - an Extended Kalman Filter-based algorithm as well
as a distributed pose graph optimization method that relies on
an Euclidean parameterization of orientations.

I. I NTRODUCTION

Interest in utilizing teams of autonomous mobile robots has
grown in recent years, since multi-robot teams can provide in-
creased functionality over a single robot. In search and rescue
operations, a group of robots can cover a larger area than a
single robot. In hazardous conditions, the innate redundancy
of a group of robots may be necessary to prevent catastrophic
loss of mission capability. Irrespective of the application,
localization is a crucial capability for any mobile robot.

Though GPS provides global measurements of a robots
position, GPS measurements may not be available in many sit-
uations, or may be only intermittently available. For example,
a group of unmanned aerial vehicles (UAVs) operating in an
urban environment may temporarily lose GPS measurements
when the signal is blocked by large buildings. In such a
situation, the absolute pose (position and orientation) can be
obtained by integrating over the relative pose measurements
obtained using IMUs or vision based sensors and using a
known initial pose. This method of localization is referredto
as dead reckoning. Localization through dead reckoning can
lead to a rapid growth in localization error [15]. Within a
team of collaborative robots, though, relative measurements
between pairs of robots - such as bearing, distance etc. -
may be available. These provide additional information on the
robots’ pose that can be used to improve localization accuracy

over dead reckoning. This has led to research into collaborative
localization, which is the topic of this paper.

We assume all robots are equipped with proprioceptive
sensors (vision, IMU, etc.) allowing each robot to measure
its change in pose. We refer to these noisy measurements
as inter-time relative pose measurements. Using these noisy
measurements, each robot can perform localization through
dead reckoning. In addition, we assume each robot is equipped
with exteroceptive sensors, allowing intermittent noisy mea-
surements ofinter-robot relative measurementsbetween pairs
of robots, which can be one or more of the following: relative
bearing, relative distance, relative orientation, relative position,
and relative pose.

We propose a distributed algorithm to perform collaborative
localization by fusing the inter-time and inter-robot relative
measurements to obtain an estimate of the absolute pose of
every robot that improves over dead-reckoning estimates. With
this algorithm, which we call the D-RPGO (Distributed Rie-
mannian Pose Graph Optimization) algorithm, communication
is only necessary between pairs of robots for which an inter-
robot relative measurement has been obtained. The method
behind the algorithm is an extension of the method in our
previous work [7], which was limited to inter-robot relative
pose measurements. In this paper we extend it to handle
any type of relative measurement, and provide performance
comparison of the D-RPGO algorithm with two alternate
collaborative localization algorithms.

A. Related work

Most of the work on collaborative localization can be
roughly classified as probabilistic; they provide estimates of
the robots’ poses as well as some measure of the associated
uncertainty. These include [3, 10], where the pdf (probability
density function) of robots’ positions (or poses) are improved
by fusing inter-robot measurements with inter-time measure-
ments. Quite a few works are based on the extended Kalman
filter (EKF); see [18, 17, 13, 5, 14] and references therein.
The papers [16, 4], which are based on the particle filter, also
belong to this category.

In single robot localization and mapping, an alternative
to filtering is the pose graph based approach. This can be
extended to multi-robot localization with map merging among
robots [2] or without [6]. In the pose graph approach the
problem is described in terms of a graph whose nodes corre-
spond to robot poses and edges represent measurements that



provide constraints between certain pairs of poses. The best
set of pose estimates are found by minimizing a cost function
that quantifies how well a given set of poses explain the
measurements. Under certain assumptions on the measurement
noise, the solution is the maximum likelihood or maximum a-
posteriori estimate of the poses. Without any assumption, they
still yield a least squares solution. Pose graph optimization
methods used to compute the non-linear least squares solution
in SLAM and bundle adjustment (see [19, 9] and references
therein) can be directly applied to the multi-robot case, though
distributing the computations among the robots present addi-
tional challenges [6]. The pose graph based methods typically
only estimate the poses and not a measure of the associated
uncertainty; though recent work has made progress in this
direction; see [20] and references therein.

B. Contributions

In our earlier paper [7], we proposed a method for collab-
orative localization that required relativeposemeasurements
between robots. In this paper we extend the method so that
any type of inter-vehicle measurement (distance, bearing,
relative position, relative orientation, relative pose, or some
combination thereof) between pairs of robots can be fused.
This increases the practical applicability of the method.

The method proposed here, as well as that in [7], can
be classified as a pose graph based approach: the estimation
problem is formulated as an optimization defined by a graph,
where nodes represent robot poses at various times and edges
represent inter-time and inter-robot measurements. A major -
but subtle - distinction between our method and existing pose
graph optimization methods is that while existing methods
use a vector space parameterization of orientation (such as
the complex part of the unit quaternion representation) and
then search for the minima in that space, we perform the
optimization directly on the product Riemannian manifold
in which the problem is naturally posed, without relying
on a specific parameterization. A gradient-descent method
on the Riemannian manifold is used for searching for the
optima that is independent of the parameterization as well;any
parameterization of the orientations can be used for numerical
implementation. The advantages of doing so are discussed
in Section III (see Remark 1). Simulations show that the
proposed method based on Riemmanian manifold pose graph
optimization (RPGO) outperforms the traditional pose graph
optimization performed by vector-space based methods, which
we call Euclidean pose graph optimization (EPGO).

In comparison with the EKF-based collaborative localiza-
tion methods described above, our method offers a distinct
advantage. The linearization involved in the EKF requires a
small angle approximation to hold at all times. Unless the time
interval between two successive inter-vehicle measurements is
extremely small, which is unlikely in many practical situations,
the small angle approximation is violated, which is likely to
lead to poor covariance updates and poor pose estimates. This
is verified through simulations presented here.

The EKF estimator we use is inspired by that in [14], while
the Euclidean pose graph optimization method we use is an
implementation of standard approaches [9].

II. PROBLEM STATEMENT

A. The Collaborative Localization Problem

Consider a group ofr mobile robots indexed byi =
1, . . . , r. Time is measured by a discrete counterk =
0, 1, 2, . . . . Each roboti is equipped with a local, rigidly
attached reference frame, calledframe i. Localization of
robot i consists of estimating the Euclidean transformation
Ti ∈ SE(3) that relates a robot’s local reference frame
to an absolute reference frame common to all robots. This
transformation is referred to as the robot’sabsolute pose.

Measurements of a robot’s absolute pose from GPS and
compass are either not available or only rarely available.
Instead, we assume that each robot is equipped with sensors
(such as inertial sensors or vision based sensors) and perhaps
sensor fusion algorithms such that, at every timek, a robot
is able to obtain a inter-time relative pose measurement: a
measurement of the transformation between the previous and
the current pose. In addition, each robot is equipped with
exteroceptive sensors so that the robot is able to uniquely
identify each robot it can “see” (within some sensing radius),
and obtain a relative measurement for each such robot with
respect to itself. When roboti collects a measurement of robot
j, it can be one of the following:

• Relative pose: The Euclidean transformation between the
reference frame attached to roboti and the reference
frame attached to robotj, expressed in roboti’s reference
frame. Denoted by the symbolT.

• Relative Orientation: The element ofSO(3) that de-
scribes the change in orientation between framei and
frame j, expressed in framei. Denoted by the symbol
R.

• Relative position: The vector inR3 that describes the
change in position between roboti and robotj, expressed
in frame j. Denoted by the symbolt.

• Relative bearing: The vector of unit length that points
from robot i to robot j, expressed in framei. Denoted
by the symbolτ .

• Relative distance: The distance between roboti and
robot j. Denoted by the symbolδ.

These are called inter-robot relative measurements. Thecol-
laborative localization problemis to estimate the absolute
pose of every robot by utilizing both the inter-time and inter-
robot measurements. The situation above is best described
in terms of a directed, time-varying, fully-labeledgraph
G(k) = (V0(k), E (k), ℓ(k)) that shows how the noisy relative
measurements relate to the absolute pose of each robot at
every time step. The graph is defined as follows. For each
robot i ∈ {1, . . . , r} and each timet ≤ k, a unique index
(call it u) is assigned to the pair(i, t). How this indexing
is done is immaterial. The set of these indices{1, . . . , rk}
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Fig. 1. Snapshot of a measurement graph at timek = 3 for a group of
three robots. Each (robot,time) pair is labeled with the corresponding node
index fromV0(3). Arrows indicate edges, i.e., relative measurements, inE (3).
Each edge is labeled to indicate the type of measurement. Robots 1 and 3
had GPS measurements at the initial timek = 0. Thereafter, no other GPS
measurements were available.

define the setV (k) and the node set of the graph is defined
asV0(k) := V (k)∪{0}. We then refer to the reference frame
attached to roboti at timet as frameu. Nodeu is associated
with the absolute pose of roboti at time t relative to the
common reference frame, i. e., the Euclidean transformation
between the common reference frame and frameu expressed
in the common frame. We call these posesnode variablesand
denote themTu. The common reference frame with respect to
which all node variables are expressed is associated with node
0. If the absolute pose of at least one robot is known at time
0, perhaps through the use of a GPS and compass, then node
0 can be associated with the common reference frame. When
absolute pose measurements are not available, node0 could
correspond to the initial reference frame of one of the robots.
In either case, estimating the node variables is equivalentto
determining the robots’ poses with respect to frame0 (the
reference frame associated with node0). Node0 is therefore
called thereference node.

The set ofdirected edgesat time k, denotedE (k), corre-
sponds to the noisy inter-time and inter-robot measurements
collected up to timek. That is, suppose roboti is able to
measure robotj’s relative pose at timek, and let u, v be
the nodes corresponding to robotsi, j at timek, respectively.
Then the edgee = (u, v) will be in E (k) for all k ≥ k.
Similarly, each inter-time relative pose measurements of a
robot also creates an edge in the graph. To delineate the typeof
measurement, a label from the set{ T (pose),R (orientation),
t (position),τ (bearing),δ (distance)} is attached to each
edge. The map from the set of edges to the set of labels
is given by ℓ(k). Recall our example in which the edge
e = (u, v) is associated with a relative pose measurements.
The label for edgee is then given byℓ(k)(e) = T (pose).
The noisy relative measurement associated with each edge
e = (u, v) ∈ E (k) is denoted bŷTu v, R̂u v, t̂u v, τ̂u v, or δ̂u v

for ℓ(k)(e) = T (pose), R (orientation), t (position), τ
(bearing), andδ (distance) respectively.

The graphG(k) is called themeasurement graphat time
k; see Figure 1 for an example. We make the following

assumption to ensure at least one estimate exists for every
robot at each timek:

Assumption 1. All inter-time relative measurements are of the
full relative pose and each robot has access to an estimate of
its current absolute pose at time0.

This assumption will often hold in practice, as any robot
capable of localizing itself using dead-reckoning must estimate
the full relative pose between each time step. Under this
assumption, an estimate for the pose of roboti at time timek
(or equivalently, the value of the node variableTu, where node
u ∈ V (k) corresponds to the pair(i, k)) can be computed by
composing the inter-time relative pose measurements obtained
by robot i up to time k. This estimate is equivalent to
robot i performing dead-reckoning.The goal of collaborative
localization is to fuse information available from all edges
in the graphG(k) to obtain estimates of the robots’ poses
at timek that is more accurate than that possible from dead
reckoning, which only uses single paths from the reference to
the current robot pose.

In section III we propose acentralized algorithmto solve
the collaborative localization problem that uses all the mea-
surements in the graphG(k) to compute the “best” estimate
for each node variable. In Section IV, we propose adistributed
algorithm to compute an estimates of each robot’s current
pose. The distributed algorithm has the additional constraints
that (i) at every time step, each robot must only be required to
communicate with other robots it can “see” or that can “see” it,
and (ii) memory, processor power, and communication band-
width are limited. For the distributed algorithm,we assume
that the communication range is greater then the measurement
range. It is always possible to satisfy this assumption by
dropping any measurements between robots that are unable
to communicate.

III. C ENTRALIZED ALGORITHM

In the centralized case, we assume that the relative measure-
ments are instantly available to a central processor at eachtime
k. The problem of estimating the robots’ poses at timek is
embedded in the problem of estimating all the node variables
of the measurement graphG(k)

{

T
}

V (k)
:= {Tu ∈ SE(3) : u ∈ V (k)} (1)

using the robots’ past noisy relative measurements (both inter-
time and inter-robot). We estimate the node variables by
minimizing a cost function of these variables that measures
how well a given set of node variables (absolute poses)
explains the noisy measurements. The initial guess for each
node variableTu, u ∈ V (k) is taken to be the dead-reckoning
estimate, whose existence is guaranteed by Assumption 1.

The cost function we propose is of the form

f(
{

T
}

V (k)
) :=

1

2

∑

(u,v)=e∈E (k)

ge(Ru, tu,Rv, tv) (2)

where the scalar, non-negative valued function
ge(Ru, tu,Rv, tv) is designed to be a measure of how



well the noisy relative measurement associated with the
edgee = (u, v) fit estimates of the relevant node variables
Ru, tu,Rv, tv. Here Ru ∈ SO(3) and tu ∈ R

3 denote
the rotation and translation components that make up the
node variableTu. For an illustrative example, consider the
relative rotation measurement̂Ru v associated with the edge
e = (u, v). By definition, R̂u v is a measurement of the
rotation between frameu and framev, expressed in frame
u. This same rotation is also equal toRT

uRv, whereRT
u is

the adjoint of the operatorRu. Therefore, when no noise
is present in the measurement,̂Ru v is equal to RT

uRv.
When measurements are corrupted by noise, the distance
between the two quantities, withRu and Rv replaced by
their estimates, measured by a suitable metric onSO(3),
provides a measure of how well the estimates ofRu andRv

fit the noisy measurement. Therefore, a suitable cost function
for a relative orientation measurementR̂u v associated with
the edgee = (u, v) is given by

ge(Ru, tu,Rv, tv) = d2(R̂u v,R
T
uRv), (3)

where d( · , · ) is the Riemannian distance:d(A,B) =
√

− 1
2 Tr

(

log2(ATB)
)

, A,B ∈ SO(3), whereTr () denotes
trace. Using arguments similar to the one presented above for
orientation measurements, appropriate cost functions forall
measurement types are constructed:

ge(Ru, tu,Rv, tv) =

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
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d2(R̂u v,R
T
uRv)

+‖t̂u v −RT
u (tv − tu)‖

2 if ℓ(k)(e) = T

d2(R̂u v,R
T
uRv) if ℓ(k)(e) = R

‖t̂u v −RT
u (tv − tu)‖

2 if ℓ(k)(e) = t

‖
(

τ̂u v‖tv − tu‖
)

−RT
u (tv − tu)‖

2 if ℓ(k)(e) = τ

‖
(

δ̂u v − ‖tv − tu‖
)

‖2 if ℓ(k)(e) = δ

(4)

The “best” set of pose estimates is a solution to the following
optimization problem:

{T∗}V (k) = min
{T}V (k)∈(R3×SO(3))n(k)

f({T}V (k)), (5)

where n(k) is the cardinality of the setV (k). Finding the
minimum of a function defined over a vector space has been
studied extensively. However the functionf( · ) in (2) is de-
fined on a curved surface, specifically, the productRiemannian
Manifold (SO(3) × R

3)n(k). We search for the minima by
using recently developed techniques for optimization over
Riemannian manifolds [1].

Remark 1 (Relation to Euclidean pose graph optimization).
The problem(5) is very similar to the least squares problem
that appears in pose graph optimization used for SLAM and
bundle adjustment [19, 9]. In existing pose graph optimization
methods, rotations are first parameterized and then edge-costs
are defined as squared-error terms defined over the vector
space of those parameters. The cost on an edgee = (u, v)

would be of the formeTe Qeee, where Qe is a covariance
matrix and the vectoree is an error. The cost function to
minimize is then defined as

f(p ∈ R
D(k)) :=

1

2

∑

e∈E (k)

eTe Qeee, (6)

wherep is a vector of Euclidean parameterization of then(k)
poses to be determined, whose dimensionD(k) is 6n(k) with
minimal parameterization. The cost function is then minimized
by methods such as gradient descent, Levenberg-Marquardt,
etc. on the real coordinate spaceRD(k). The problem(5)
differs from (6) both in formulation and the solution method
we employ. The orientations (such asR( · )) that appear in
our problem formulation are abstract rotation operators, or
elements ofSO(3), and not rotation matrices or quaternions
or any parameterization thereof. In contrast,(6) is defined
in terms of a specific parameterization. For instance, if the
measurement one = (u, v) is that of the relative orienta-
tion, one possible choice of the error isee = q(R−1

u ) ⊗
q(Rv) − q(R̂uv), where q( · ) denotes the unit-quaternion
representation of its argument and⊗ represent quaternion
multiplication. Optimization is performed, e.g., over thefirst
three entries of the unit-quaternion parameterization, which
makes the cost defined over a vector space. Another possibility
is ee = vec(M(R−1

u )⊗M(Rv)−M(R̂uv)), whereM( · ) is
the 3 × 3 matrix representation, andvec(M) is the stacked
vector of all the columns of the matrixM . Each such choice
of the parameterization and the error – and there are many –
will change the local minima as well the difficulty of searching
for the minima. �

In light of the remark above, we defined the cost (2) in the
natural space of the variables (the product manifold(R3 ×
SO(3))n(k)) that is independent of any parameterization of
rotations. Our next goal is to find a provably correct algorithm
to solve (5) that utilizes the geometry of the space without
relying on any particular parameterization. We accomplishthis
through use of a gradient descent algorithm on the product
manifold.

We showed in [7] that given a pointpm =
(R1, t1, . . . ,Rn, tn) in the product manifold, the point
pm+1 resulting from one step of the gradient descent
algorithm is given by

pm+1 = (R1 exp(R
T
1 ξR1

), t1 + ξt1 , . . . ,

Rn exp(R
T
n ξRn

), tn + ξtn)
(7)

whereexp( · ) is the Lie-group exponential map [11],ξRi
=

−ηm
∑

e∈E (k) grad ge(Ri), andgrad ge(Ri) denotes the gra-
dient of the edge costge with respect to the node variableRi.
The positive scalarηm is the step-size, determined using a line
search algorithm. Similarly,ξti = −ηm

∑

e∈E (k) grad ge(ti).
The gradient with respect to relative pose measurements

were derived in [7]. The innovation in this paper is compu-
tation of gradients for all types of measurements. When edge
e = (u, v) corresponds to a bearing measurement, it can be
shown after some tedious calculations thatgrad ge(Rh) =



−2Rh

(

RT
h (tv − th)τ̂

T
u v‖tu − tv‖ − τ̂u v‖tv − tu‖(tv −

tu)
TRh

)

if h = u, and0 otherwise. Similarly,grad ge(th) =

−4Iuv(h)[(tv − tu)−‖tv − tu‖Ruτ̂u v]. whereIuv(h) equals
1 if h = u, −1 if h = v, and0 otherwise. The formulas for
the gradients for all other types of measurements can found
in [8]; we do not provide them here due to lack of space.
Gradient descent is performed using the update law given
in (7), terminating when the norm of the gradient falls below
some user specified threshold. Theorem4.3.1 in [1] guarantee
that this algorithm converges to a critical point of the cost
function f defined in (2).

The algorithm presented above, which we call the RPGO
algorithm, is independent of the parameterization used to
represent rotations. One could use any parameterization during
numerical implementation, and the choice of parameterization
does not affect the minimum obtained.

IV. D ISTRIBUTED ALGORITHM

The method used to compute estimates in a distributed way
is the same as the one proposed in [7]. Therefore we describe
the distributed algorithm very briefly; the interested reader is
referred to [7] for details.

Two robots are called neighbors at timek if at least one
of them obtains a relative measurement of the other at that
time. Let Ni(k) be theneighborsof robot i at time k. We
assume that each robot can communicate with its neighbors
during each time step. Roboti then forms alocal measurement
graphGi(k) = (V i(k), E i(k), ℓi(k)), whose node set is simply
the neighbors ofi at time k along with the reference node
0 and i itself. The edges ofGi(k) correspond to the inter-
robot measurements at timek betweeni and its neighbors,
along with an edgee = (0, j) for eachj ∈ V i(k). Each robot
j obtains its current estimatêT0 j at timek by concatenating
the robot’s pose estimate obtained at timek−1 with the noisy
inter-time relative pose measurement describing the robots
motion from k − 1 to k. This estimate is then used as the
measurement associated with edgee = (0, j). At each time
k, every robot i ∈ {1, . . . , r} uses the estimatêT0 i so
obtained as an initial pose estimate and then updates it by
using the RPGO algorithm on its local measurement graph
at that time. After the computation, each robot transmits the
updated absolute pose estimate to each of its current neighbors.
The process keeps repeating as the robots keep moving.

After the computations at timek, a robot only stores the
estimated value its own current pose. Note that if roboti has no
neighbors at timek, the distributed collaborative localization
algorithm is equivalent to performing self-localization from
inter-time relative measurements. Since the distributed algo-
rithm is simply the centralized algorithm applied to a local
measurement graph, it inherits the correctness property ofthe
centralized algorithm as well.

The proposed distributed algorithm is called the D-RPGO
algorithm, since it is a distributed version of the RPGO
algorithm. The D-RPGO algorithm only requires measure-
ments that the robot can collect with on-board sensors and

communication with nearby robots. Moreover, computational
complexity of the algorithm grows only with the number of
neighbors, since it depends on the size of the local subgraph,
and not with the total number of neighbors. This makes the
algorithm highly scalable to large teams of robots.

V. SIMULATION RESULTS

We now present simulations (i) that show the improvement
in localization accuracy with the proposed D-RPGO algo-
rithm over self-localization, and (ii) comparison with alternate
collaborative localization algorithms. We first define some
performance metrics. The position estimation error of robot i
is defined asei(k) := t̂i(k)−ti(k), whereti(k) is its absolute
position atk andt̂i(k) is the estimate. The bias in the position
estimation error of roboti is defined as‖E[ei(k)]‖, where‖ · ‖
is the 2-norm andE denotes expectation. The standard devi-
ation is defined as

√

Tr (Cov(ei(k), ei(k))), whereCov( · )
stands for covariance. In each scenario described below, the
bias and variance in position estimation error is estimated
through the use of a Monte Carlo simulation with1, 000
sample runs.

A. Performance with various relative measurements

A group of robots are simulated traveling along randomly
generated distinct zig-zag paths in 3-D space, so that all
translational and rotational coordinates vary along time for
each robot. Two robots can obtain relative pose measurements
at time k if the Euclidean distance between them at that
time is less than7 m. Furthermore,25% of these potential
measurements were dropped, simulating random failure and
insuring the measurement graph would not be symmetric.
Error in measurements of the relative orientation are induced
by composingC(q) with the rotation corresponding to the
true orientation, whereC(q) is the rotation operator corre-
sponding to the unit quaternionq drawn from a Von Mises-
Fisher distribution centered about the identity [12]. Similarly,
noisy relative bearing measurements are generated by applying
the randomC(q) to the vector in unit sphere in 3-D that
describes the true bearing. Measurements of relative distance
and position are normally distributed with mean corresponding
to the true values.

The bias and standard deviation in position estimation error
for robot1 for different scenarios, each with a distinct type of
noisy inter-robot measurement, are reported in figure 2. We see
from the figure that improvement over single robot localization
in both bias and standard deviation occurs for all inter-
robot measurement types with one exception. Though distance
measurements improve the standard deviation of the position
estimates, they have little effect on the bias. As expected,
full relative pose provides the most benefit to localization
accuracy. However, other measurement types also leads to
improvement over self-localization. For the scenario and time
duration considered, the three types of relative measurements
- bearing, position and orientation - seem to have somewhat
similar degree of benefit.
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Fig. 2. Simulation: bias and standard deviation in robot1’s position
estimation error, when each robot in a group of 5 robots use theD-RPGO
algorithm to estimate their poses. Each curve corresponds tothe robots using
a distinct type of inter-robot relative measurements (indicated by the labels).
The label “Self Loc.” refers to a robot using dead reckoning alone, without
using any inter-robot relative measurements.

B. Comparison with alternate methods of collaborative local-
ization

We now present simulations that provide some insight into
how the D-RPGO algorithm performs when compared with
two state-of-the-art collaborative localization algorithms. All
inter-robot relative measurements are of the relative posefor
these simulations.

The first alternative we consider is a standard pose graph
formulation, in which optimal robot poses are computed by
minimizing the cost function (6). Rotations are parameterized
by the complex part of the corresponding unit-quaternion, and
the optimization problem is set up as in [9]. Searching for
the optima is performed by Levenberg-Marquardt algorithm.
When the optimal poses of a measurement graph are obtained
in this way, we call it a solution from a EPGO algorithm. To
maintain comparability, we provide the same local measure-
ment graph to both the D-RPGO algorithm as well as a EPGO
algorithm, which we call the D-EPGO algorithm.

A group of 5 are robots are simulated to move along the
3-D path described above. Error in the pose measurements
were induced as in simulations in Section V-A. Simulations
were performed varying the concentration parameterK in the
Von Mises-Fisher distribution from which the noisy rotations
(quaternions) used to corrupt the inter-robot orientationmea-
surements are drawn. These simulations show that, whenK is
very large, that is, the variance is very low, D-EPGO does very
well, even outperforming the D-RPGO algorithm. However,
whenK is small, that is, the noise variance is large, D-RPGO
outperforms D-EPGO. Due to a lack of space, only the results
for K = 100 are shown; see Figure 3. For this specific case,
it is clear that the proposed D-RPGO algorithm outperforms
the D-EPGO algorithm. A detailed comparison is a topic of
future work.

Finally, we consider a method for collaborative localization
using an Extended Kalman Filter (EFK), developed in a similar
manner as the EKF observer for collaborative localization
in [14]. An indirect form filter is used, with error between the
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Fig. 3. Simulation: comparison between D-RPGO and D-EPGO algorithms.
The position estimation error of robot 1 (in a group of5 robots utilizing
noisy inter-robot relative pose measurements), computed withboth algorithms,
with the same input data are shown. The label “Self Loc.” refers to a robot
localizing by dead reckoning alone.

true pose and the estimated pose (before fusing the current
inter-robot measurements) being the filter state. A pair of
robots is simulated traveling along distinct sinusoidal paths in
3-D space. Measurements are generated as described earlier.

The trends observed from extensive simulations can be
summarized as follows. When the time interval between
successive inter-robot measurements, call it∆T , is small, the
EKF performs as well, or better than, the D-RPGO algorithm.
However, when the time between measurements is large, the
D-RPGO algorithm provides significantly better estimates of
the robots’ poses compared to the EKF. Figure 4 provides
numerical results for the case of a large∆T (30 seconds in
this example), when EKF performs poorly. How small∆T

has to be for EKF to perform well depends on many factors,
including the motion of the robots, noise in the measurements,
etc. For the parameters used in the simulations mentioned
above,∆T has to be smaller than0.1 sec for the EKF to
perform as well as the D-RPGO algorithm.

We believe the reason for this behavior of the EKF is
the error introduced by the linearization involved in covari-
ance propagation. The linearized state equations rely on the
assumption that the angle between the true and estimated
orientation is very small. When the time interval between inter-
robot measurements is sufficiently small, this approximation
holds. In that case the error in the covariance matrix due to
linearization is small enough that it does not out weigh the
added benefit of using covariance information. However, the
small angle approximation is violated for large time intervals,
leading to quite poor covariance estimates, which in turn lead
to poor pose estimates.

VI. EXPERIMENTAL RESULTS

An experiment is conducted using two Pioneer P3-DX
robots, shown in Figure 5. Each robot is equipped with a
calibrated monocular Prosillica EC 1020 camera and wheel
odometers. Measurements from these sensors were fused to
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Fig. 4. Simulation: comparison between D-RPGO and EKF algorithms with
∆T = 30 sec. The position estimation error of robot 1 (in a group of2
robots utilizing noisy inter-robot relative pose measurements), computed with
both algorithms. The label “Self Loc.” refers to a robot localizing by dead
reckoning alone.

obtain noisy inter-time relative pose measurements. Each robot
is additionally equipped with a target allowing the on-board
cameras to measure the inter-robot relative pose by exploiting
the known geometry of each target. The true absolute pose of
each robot is determined using an overhead camera capable
of tracking each robot’s target, providing ground truth. Noisy
inter-robot relative pose measurements are obtained every0.2
seconds.

Both robots move in straight lines that are approximately
parallel. Six different pose estimates of the robots are ob-
tained. The first estimate is obtained from dead reckoning.
The remaining 5 estimates are obtained from the D-RPGO
algorithm, each with a distinct type of inter-robot relative
measurement: full pose, orientation only, position only, bearing
only, or distance only. These measurements are obtained from
the relative pose measurements by projection. Figure 6 shows
the resulting position estimates obtained by the D-RPGO
algorithm. As expected, a distinct improvement in localization
accuracy is seen when collaborative localization is performed
for all but the distance-only measurements. The experimental
results reinforce the trends seen in Section V-A. Specifically,
when D-RPGO algorithm is used to fuse inter-robot distance
measurements, the bias in the position estimation error is
similar to that without collaboration. For all other types of
relative measurements, there is improvement with distributed
collaborative localization over self localization. Because fig-
ure 6 is only a single realization of the estimate, the bias in
position estimation error is visible, while the variance isnot
(cf. Figure 2).

VII. SUMMARY AND FUTURE WORK

In this paper we extended the algorithm introduced in [7]
for distributed collaborative pose estimation of multiplerobots.
While the algorithm in [7] could only fuse relative pose
measurements, which are difficult -if not impossible - to
obtain in practice, the algorithm introduced here (D-RPGO)
can fuse any type of relative measurements. Simulations and
experiments show that distributed collaborative pose estima-
tion with D-RPGO algorithm leads to significant improvement

Fig. 5. Two Pioneer P3-DX robots equipped cameras and targets. Robot1
is shown on the left, while robot2 is on the right.
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Fig. 6. Experimental: A plot of the location of robot1 in the overhead
camera reference frame when both robots move in a straight line.The true
path (found using the overhead camera), estimated path using self localization,
and estimated path using the distributed collaborative localization algorithm
are all reported.

over self-localization. Improvements were largest when all
inter-robot relative measurements are of the relative pose; but
significant improvements were observed also with other types
of measurements. Only distance measurements were observed
to not have much benefit, especially in the bias. This is
consistent with the trend observed in [13] for the 2-D case.

The proposed method is quite close in spirit to the pose
graph optimization problems commonly encountered in map-
ping and localization. The distinction is that our cost function
is defined on a Riemannian manifold and is minimized on
that surface without converting the problem to a vector space
optimization problem. While this distinction may seem minor,
results indicate it leads to substantial performance benefit in
some cases. In particular, the D-RPGO algorithm outperforms
a distributed version of the traditional pose graph optimization
(that uses a specific Euclidean parameterization of the robot
orientations) in terms of accuracy when the noise in the inter-
robot measurements is large.

It was found that the computation time of the D-RPGO
algorithm is comparable to that of the D-EPGO algorithm
in the simulations we performed. However, there are many
ways to speed up the computations involved in Euclidean
optimization that are not currently available for Riemannian
optimizations. We suspect when applied to large graphs,
Riemannian optimization will be slower than Euclidean op-
timization. Fortunately the measurement graphs that appear in



distributed computation are small, since their size scaleswith
the number of neighbors of a robot.

The EKF has been a popular tool in past work on collabo-
rative localization as well as mapping. Simulation comparison
of the proposed D-RPGO algorithm with the EKF showed
that the EKF performs poorly compared to the proposed D-
RPGO algorithm unless the time interval between successive
inter-robot relative measurements is quite small. This has
important implications for practical applications, sinceit is
more likely that inter-robot measurements will be available
quite infrequently. However, in those special cases when inter-
robot measurements arrive frequently, the EKF performs just
as well as the proposed method. One such scenario is the
one considered in [14], where robots observe common feature
points on the ground. In such a scenario the EKF maybe
preferable over the proposed method.

A limitation of the proposed method over the EKF (and
other filtering methods) is that the latter also provides a
covariance estimate while the proposed method does not. A
method to estimate the covariance, or some measure of esti-
mation error, is an important future task. Although simulations
reported here provide an indication of when the proposed
method performs over existing state-of-the art methods, a
more thorough study needs to be conducted to obtain a better
understanding of the relative merits of the proposed method
over alternatives. Future studies will also address issuessuch
as identification of the neighboring robots, and rejection of
outliers in the relative measurements.
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