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Abstract— We propose a distributed algorithm for estimating
the full 3-D pose (position and orientation) of multiple au-
tonomous vehicles with respect to a common reference frame
when GPS is not available. This algorithm does not rely on
the use of any maps, or the ability to recognize landmarks in
the environment. Instead we assume that noisy measurements
of the relative pose between pairs of robots are intermittently
available. We utilize the additional information about each
robot’s pose provided by these measurements to improve over
self-localization estimates. The proposed method is based on
solving an optimization problem in an underlying product

manifold (SO(3)×R
3)n(k). A provably correct explicit gradient

descent law is provided. Unlike many previous approaches, the
proposed algorithm is applicable to the 3-D case. The method
is also capable of handling a fully dynamic scenario where
the neighbor relationships are time-varying. Simulations show
that the errors in the localization estimates obtained using this
algorithm are significantly lower then what is achieved when
robots estimate their pose without cooperation. Results from
experiments with a pair of ground robots with vision-based
sensors reinforce these findings.

I. INTRODUCTION

In recent years, interest in utilizing teams of autonomous

mobile robots has grown rapidly. Multi-robot teams are

beneficial in many ways. Utilizing a group of low cost robots

may be more economical then risking a single, more costly

robot. In search and rescue operations, a group of robots

can cover a larger area then a single robot. In hazardous

conditions, the innate redundancy of a group of robots

may be necessary to prevent catastrophic loss of mission

capability. Regardless of the application, localization is a

crucial task for any autonomous mobile robot team.

Localization for autonomous robots can be accomplished

using a variety of sensors. Some of the more common sensors

include Inertial Measurement Units (IMUs), vision based

sensors, and Global Positioning System (GPS). Of the three,

GPS is the only sensor capable of providing global mea-

surements of a robots position. However in many situations,

GPS measurements may not be available, or may only be

intermittently available. For example, a group of unmanned

aerial vehicles (UAVs) operating in an urban environment

may temporarily lose GPS measurements when the signal is

blocked by large buildings. In such a situation, the global

pose can be found by integrating over the relative pose

measurements found using IMUs or vision based sensors.

This method of localization through “dead reckoning” can

lead to a rapid growth in localization error [1]. When

utilizing a team of robots, measurements of the relative pose

between pairs of robots may be available. These provide

additional information on the robots’ pose that can be used

to improve localization accuracy.

In this paper we propose a method for collaborative

localization after a group of robots loses access to GPS. We

assume all robots are equipped with proprioceptive sensors

(vision, IMU, etc.) allowing each robot to measure its change

in pose between time steps. We refer to these noisy measure-

ments as inter-time relative pose measurements. Using these

noisy measurements, each robot can perform localization

through dead reckoning. In addition, we assume each robot

is equipped with exteroceptive sensors, allowing intermittent

noisy measurements of the relative pose between pairs of

robots. We refer to these measurements as inter-robot relative

pose measurements. These inter-robot relative pose measure-

ments provide additional information on the absolute pose of

each robot. We propose both a centralized and distributed

algorithm to perform collaborative localization by fusing

the inter-time and inter-robot relative pose measurements

to obtain a improved estimate of the global pose of every

robot. In the distributed algorithm, communication is only

necessary between pairs of robots for which an inter-robot

relative pose measurement has been obtained.

Collaborative localization has been considered in the con-

text of simultaneous localization and mapping (SLAM). In

one class of approaches, robots exchange local maps which

are aligned and merged to improve robots’ location estimates

as well as to improve the maps; see [2], [3] and references

therein. This requires the ability to identify common features

in distinct maps generated by the robots. In [4], robots

exchange images and an implicit extended Kalman filter is

used to update the state of each robot when a common feature

is found.

Recognizing common landmarks in distinct maps is often

challenging. In addition, exchanging image data or maps

between robot requires high bandwidth communication. A

second body of work therefore considers the collaborative

localization problem as one in which only relative mea-

surements (of pose, position, orientation etc.) between pairs

of robots are obtained and used to improve localization

accuracy over self-localization. The most common approach

to localize a team of robots in 2-D is through the use of

the Kalman filter or the Extended Kalman filter; see [5],

[6], [7], [8] and references therein. Other approaches include

the ML estimator based method of Howard et al. [9], the

MAP estimator based approach of Nerurkar et al. [10], and

methods based on iterative computation of the best linear

unbiased estimator [11]. Leung et al. considers the problem

of equivalency between centralized and decentralized collab-

orative localization algorithms [12]. No specific algorithm is
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proposed.

As in the papers cited in the previous paragraph, in this

paper we provide a method for collaborative localization of

robots that uses noisy relative pose measurements between

certain pairs of robots. In contrast to existing work, we

make two novel contributions. First, our method is appli-

cable to 3-D pose estimation problem, while to the best

of our knowledge all the previous papers on collaborative

localization using relative measurements are limited to 2-

D pose estimation. Our proposed method relies on solving

a non-linear optimization problem on a product manifold

(SO(3) × R
3)n(k). This is accomplished through a prov-

ably convergent gradient descent algorithm on the product

manifold. We provide an explicit formula for the gradients

as well as the update law. The gradient descent law is

provided in a parameterization-independent form, and any

parametrization of the rotation operators can be used in

its numerical implementation. This problem was previously

considered in [13], but the solution provided there used an

update law that relied on linear approximation and no proof

of correctness could be provided. The second contribution

is that the method is applicable to the dynamic scenario,

in which the pairs of robots that obtain inter-robot relative

pose measurements vary over time. As Leung et al. reports

in [12], an important assumption in the papers cited in the

previous paragraph (except for [12] itself) is that of a static

communication network, or the ability of each robot to send

information to all other robots.

We provide two algorithms, a centralized and a distributed

one. In the latter, each robot only uses locally available

measurements and communicates only with a small number

of neighbors. The complexity of the computations performed

by a robot is only a function of the number of its neighbors at

any given time, not the total number of robots in the group.

This makes the distributed algorithm scalable to arbitrarily

large groups of robots. In addition, the communication com-

plexity of the algorithm is small. At every update, a pair of

neighboring robots needs to exchange only (i) measurement

of their relative pose and (ii) their current pose estimates.

Since a pose measurement, which is an element of SE(3),
can be represented by 6 numbers, the pair of robots have to

exchange only 12 numbers.

II. PROBLEM STATEMENT

Consider a group of r mobile robots indexed by i =
1, . . . , r. Time is measured by a discrete counter k =
0, 1, 2, . . . . Measurements of a robot’s global pose (position

and orientation) from GPS and compass is either not avail-

able or only rarely available. Instead, we assume that each

robot is equipped with proprioceptive sensors such that, at

every time k, the robot is able to measure the Euclidean

transformation between its current pose and its pose at the

previous time k−1. We refer to these measurements as inter-

time relative pose measurements. Such measurements can be

obtained with inertial sensors, vision based sensors, or with a

combination thereof. Additionally, they need not be obtained

from a sensor alone. Instead, a measurement could also be
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Fig. 1. A time history of three robots up to time k = 3 with inter-time
and inter-robot relative pose measurements. Each (robot,time) pair is labeled
with the corresponding node index from V0(3). Arrows indicate edges, i.e.,
relative measurements, in E (3). Robots 1 and 3 had GPS measurements at
the initial time k = 0. No other GPS measurements were available.

the estimate of the rotation and translation undergone by the

robot in that time interval that is obtained by fusing raw

sensor measurements with prediction of the robot’s motion

from a dynamic/kinematic model.

In addition to these inter-time measurements, each robot

is equipped with exteroceptive sensors so that it can mea-

sure the relative pose (Euclidean transformation) of another

robot with respect to itself whenever it can “see” the other

robot. We call these measurements inter-robot relative pose

measurements. Various combinations of sensors are able to

extract inter-robot relative pose measurements. When infor-

mation about the robots motion is known a priori, bearing

and distance, bearing-only, and distance-only sensors can all

be used to find the full pose [14]. If instead each robot is

equipped with a camera and a target with known geometry,

the full pose can be estimated from visual measurements

using the epipolar constraint [15].

The situation above is best described in terms of a time-

varying graph G(k) = (V0(k), E (k)) that shows how the

noisy relative pose measurements relate to the global pose

of each robot at every time step. The graph is defined as

follows. For each robot i ∈ {1, . . . , r} and each time t ≤
k, a unique index (call it u) is assigned to the pair (i, t).
How this indexing is done is immaterial. The set of these

indices {1, . . . , rk} define the set V (k) and the node set

of the graph is defined as V0(k) := V (k) ∪ {0}. We then

refer to the reference frame attached to robot i at time t as

frame u. Node u is associated with the pose of robot i at

time t relative to some common reference frame, given by

the Euclidean transformation between the common reference

frame and frame u, expressed in the common frame. We call

these poses node variable and denote them Tu. The common

reference frame with respect to which all node variables are

expressed is associated with node 0. If the global pose of at

least one robot is known at time 0, perhaps through the use of

a GPS and compass, then node 0 can be associated with the

global reference frame. When global pose measurements are

not available, node 0 could correspond to the initial reference

frame of one of the robots. In either case, estimating the

node variables is equivalent to determining the robots’ poses

with respect to frame 0. The node 0 is therefore called the
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reference node.

The set of directed edges at time k, denoted E (k), corre-

sponds to the noisy inter-time and inter-robot measurements

collected upto time k. That is, suppose robot i is able to

measure robot j’s relative pose at time ℓ, and let u, v be

the nodes corresponding to robots i, j at time ℓ, respectively.

Then (u, v) ∈ E (k) for all k ≥ ℓ. This edge is associated

with the noisy measurement of the relative pose between

robot i and robot j, expressed in robot i’s frame at time ℓ.

We denote this noisy relative pose measurement by T̂u v.

Similarly, each inter-time relative pose measurements of a

robot also creates an edge in the graph.

The graph G(k) is called the measurement graph at time

k. Figure 1 shows an example of the graph corresponding to

the measurements collected by 3 robots up to time index 3.

An estimate of robot i’s pose at time k can be obtained

by chaining together (through the standard pose composition

operator) the inter-time relative pose measurements collected

from time 0 until time k. This is how a robot localizes itself

after losing GPS signal if it is operating alone. In context of

the measurement graph, this corresponds to chaining mea-

surements from node 0 to the node u (node u corresponds

to the pose of robot i at time k) along the path that only

consists of the inter-time measurements of robot i. However,

measurement on edges along any undirected path from node

0 to u can lead to such an estimate as well. Because both

inter-time and inter-robot relative pose measurements are

corrupted by noise, each path from 0 to u will yield a distinct

estimate of the node variable associated with u. Fusing all

these estimates should then yield a more accurate estimate

than what is possible by following a single path. When

the measurements are linearly related to the node variables,

this can be accomplished by using the best linear unbiased

estimator, as done in [11]. In our case, the relationship

between the measurements and node variables is nonlinear.

In the following sections we propose a method to solve

the collaborative localization problem, that is, to estimate

the pose of each robot at time k with respect to the common

reference frame 0 by using all the measurements in the

graph G(k). We first propose a centralized algorithm that

takes into account all paths in the graph G(k) and finds the

“best” estimate for each node variable. We then propose a

modified algorithm that is fully distributed and only requires

communication between robot pairs that obtain inter-robot

relative pose measurements.

III. CENTRALIZED ALGORITHM

In this section we present a solution to the collaborative

localization problem where all the relative measurements are

instantly available to a central processor at each time k. The

centralized solution naturally leads to a distributed scheme,

which will be described in the next section.

Instead of addressing the problem of estimating the robots’

current poses at time k, we examine the more general

problem of estimating all the node variables of the mea-

surement graph G(k) using the robots’ past noisy relative

pose measurements. We assume the graph G(k) is weakly

connected for all time k. That is, for all k ≥ 0 and all

i, j ∈ V (k) there exists an undirected path from i to j. An

undirected path from a node to another is a path along the

edges without respecting the directions of the edges. The

problem is posed as an optimization of a cost function over

the set of node variables, where the cost function measures

how well a given set of global poses explains the noisy

measurements collected up to time k. The initial condition

for each node variable i ∈ V (k) is given by chaining together

the noisy relative pose measurements associated with the

edges of any undirected path from node 0 to node i. For

ease of exposition we assume each robot at time 0 has an

initial estimate of its pose at that time with respect to the

reference node.

To derive a suitable cost function, we break each pose

(both noisy relative pose measurements and node variables)

into its corresponding rotation R ∈ SO(3) 1 and translation

t ∈ R
3. Note that we consider a rotation R ∈ SO(3) to

be an abstract operator and not necessarily equated to its

matrix representation. When the relative pose measurements

are completely error free, R̂i j is the true rotation between

frame i and frame j, expressed in frame i. This rotation can

also be expressed in terms of the node variables as R
T
i Rj ,

where R
T
i is the adjoint of the operator Ri. Similarly, both

t̂i j and R
T
i (tj−ti) should be equal, which is the translation

from frame i to frame j expressed in frame i, if there were

no noise in t̂i j . When noise is present in the measurements,

how much these estimates differ - measured by a suitable

distance function - provides a measure of how a given set of

node variables explain the noisy measurements. Distance for

the translations can be given in terms of the 2-norm of the

difference. To measure the distance between A, B ∈ SO(3),
we use a Riemannian distance d(A, B) given by

d(A, B) =

√

−
1

2
Tr
(

log2(AT B)
)

. (1)

More details on this distance function can be found in [17].

The cost function is then given by summing over all mea-

surements.

f(
{

T
}

V (k)
) :=

1

2

∑

(i,j)∈E (k)

(

d2(R̂i j ,R
T
i Rj)

+‖t̂i j − R
T
i (tj − ti)‖

2
)

.

(2)

By minimizing the cost function, we expect to find an

improved estimate for the global pose of each robot over

what can be found through dead reckoning alone. This cost

function in (2) is similar to one proposed in [18] for a static

camera network; here the cost function changes with time.

Finding the minimum of a function defined over a vector

space has been studied extensively. However the function

f( · ) is defined on a curved surface, specifically, the product

Riemannian Manifold (SO(3) × R
3)n(k) where n(k) =

|V (k)|, the cardinality of the set V (k). One option for this

1SO(3) denotes the set of all bounded linear operators on the Euclidean
space R

3 that preserve the length of vectors and orientation of the space.
For more information about the group SO(3) and its properties, see [16].
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optimization is to use a parameterization of the rotations

using, say, Euler angles or unit quaternions, and then embed-

ding the manifold in an vector space of higher dimension.

Optimization techniques applicable to vector spaces can then

be used, with the constraints on the parameterization of

rotations appearing as Lagrange multipliers. However our

goal is to find a provably correct algorithm that utilizes

the geometry of the space without relying on any particular

parameterization. See [19] for a discussion on the merits

of such a direct optimization over the alternatives. We

accomplish this through use of a gradient descent algorithm

on the product manifold.

Given a smooth real valued function f defined on a

manifold M , the gradient of f at p ∈ M , denoted grad f(p),
is a vector in the tangent space of M at p, denoted TpM .

Just as in Euclidean Space, grad f(p) points in the direction

of greatest rate of increase of f . The following theorem

provides the gradient for our cost function. Due to space

constraints, the proof of the theorem is given in the corre-

sponding technical report [17].

Theorem 1: The gradient of the cost function shown in (2)

at p = (R1, t1, . . . ,Rn, tn) ∈
(

SO(3) × R
3
)n

is

grad f(p) = (grad f(R1), grad f(t1), . . . ,

grad f(Rn), grad f(tn))
(3)

where, for i = 1, . . . , n,

grad f(Ri) = −Ri

(

∑

(i,j)∈E (k)

[

R
T
i (tj − ti)t̂

T
i j

−t̂i j(tj − ti)
T
Ri + log(RT

i RjR̂
T
i j)
]

+
∑

(j,i)∈E (k)

log(RT
i RjR̂j i)

)

(4)

grad f(ti) =
∑

(i,j)∈E (k)

(

ti + Rit̂i j − tj

)

+
∑

(j,i)∈E (k)

(

ti − Rj t̂j i − tj

)

.

(5)

Minimizing a function f using gradient descent requires that

during each iteration, the current estimate must be updated

by moving in the direction of the negative gradient. In

a vector space this is accomplished by simply subtracting

η grad f from the current estimate for some appropriate

scalar η. On a Riemannian manifold, moving in the direction

of −grad f requires the notion of parallel transport. The

parallel transport map at a point p = (R1, t1, . . . ,Rn, tn) ∈
(SO(3) × R

3)n, denoted by expp, is given by

expp(ξ) = (R1 exp(RT
1 ξR1

), t1 + ξt1 , . . . ,

Rn exp(RT
n ξRn

), tn + ξtn
)

(6)

where ξ = (ξR1
, ξt1 , . . . , ξRn

, ξtn
) is an element of the tan-

gent space Tp

[

(SO(3)×R
3)n
]

= TR1
SO(3)×· · ·×Ttn

R
3,

and the exp( · ) function appearing in the right hand side

of (6) is the Lie-group exponential map [19]. The derivation

of (6) is provided in [17]. The gradient descent law is

pt+1 = exppt
(−ηtgrad f(pt)), t = 0, 1, . . . , (7)

where ηt ≥ 0 is chosen to be the Armijo step size. More

detail on gradient descent algorithms on manifolds, and on

the Armijo step size in particular, can be found in [20].

Using the upadate law given in 7, a gradient descent is

performed, terminating when the norm of the graident falls

below some user specified threshold. Theorem 4.3.1 in [20]

guarantees that the estimates found using this algorithm are

critical points of the cost function f defined in (2).

It should be noted that while it might be convenient to

represent rotations as 3×3 rotation matrices in computation,

the algorithm presented above is independent of the param-

eterization used to represent rotations.

IV. DISTRIBUTED ALGORITHM

In this section we propose a modified algorithm capable of

running in a fully distributed manner with limited memory,

processor power, and communication bandwidth.

For each robot i, let N
(+)
i (k) denote the set of all robots

j ∈ {1, . . . , r} such that, at time k, robot i can measure its

relative pose with respect to j. Let N
(−)
i (k) denote the set

of all robots j ∈ {1, . . . , r} such that, at time k, robot j

can measure its relative pose with respect to robot i. The

neighbors of robot i at time k are then given by the set

Ni(k) = N
(+)
i (k) ∪ N

(−)
i (k). We assume that each robot

can communicate with its neighbors during each time step.

To facilitate the description of the distributed algorithm,

consider the time varying local measurement graph Gi(k) =
(V i(k), E i(k)) of robot i, whose node set is simply the

neighbors of i at time k along with the reference node 0 and i

itself: V i(k) = Ni(k)∪{0, i}. The edges of Gi(k) correspond

to the inter-robot measurements at time k between i and its

neighbors, along with an edge (0, j) for each j ∈ V i(k). Thus

if robot i can “see” robot j at time k, then (i, j) ∈ E i(k).
Similarly, if j can see i, (j, i) ∈ Ei(k). Each node in the local

measurement graph Gi(k) is associated with a global pose

for a robot at time k. Thus an edge (p, q) ∈ Gi(k) (where

i = p or q) is associated with the noisy inter-robot relative

pose measurement between robots p and q at time k. The

additional edges (0, j), j ∈ V i(k) are associated with the

initial estimate for each robots global pose, denoted T̂0 j .

Each robot i obtains T̂0 i at time k by concatenating the

robot’s pose estimate obtained at time k − 1 with the noisy

inter-time relative pose measurement describing the robots

motion from k − 1 to k. We consider this estimate as a

measurement on the edge (0, i). The graph Gi(k) is a now a

valid measurement graph since each edge has an associated

noisy relative measurement. The edge (0, i) ensures that

Gi(k) is weakly connected.

The decentralized algorithm works as follows. At each

time k, every robot i ∈ {1, . . . , r} forms an initial estimate of

its global pose T̂0 i(k) as described above and measures the

inter-robot relative pose T̂i j for each robot j ∈ N
(+)
i (k). It
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then transmits the pair (T̂i j , T̂0 i) to each robot j ∈ N
(+)
i (k)

and receives in turn robot j’s estimate of its current global

pose T̂0 j(k). Similarly, for each robot j ∈ N
(−)
i (k) robot i

will receive the pair (T̂j i, T̂0 j) and transmit to robot j the

estimate T̂0 i. Robot i then executes the algorithm present in

section III on the local measurement graph Gi(k). After the

computation, only the estimated value for the node variable

Ti is retained. No other value need be stored in robot i’s

local memory. Note that if robot i has no neighbors at

time k, the distributed collaborative localization algorithm is

equivalent to performing self-localization from inter-time rel-

ative measurements. Since the distributed algorithm is simply

the centralized algorithm applied to a local measurement

graph, it inherits the correctness property from the algorithm

presented in section III.

V. SIMULATION RESULTS

In this section we estimate the bias and variance for a

group of robots using a Monte Carlo simulation with 1, 000
samples. The distributed, rather then the centralized, algo-

rithm was chosen because it is more practical to implement

on larger reams of robots. The robots were simulated travel-

ing along distinct zig-zag paths in 3-D space, so that all three

translational and rotational coordinates varied along time for

each robot. Two robots were able to obtain relative pose

measurements at time k if the Euclidean distance between

them at that time was less than 7 m. Furthermore, 25%
of these potential measurements were dropped to simulate

random failure and ensure the measurement graph was not

symmetric.

The rotation measurements for each relative pose (both

inter-robot and inter-time) were corrupted by independent

identically distributed (i.i.d.) unit quaternions drawn from a

Von Mises-Fisher distribution [21] centered around the zero-

rotation quaternion and with a concentration parameter of

10, 000. Noise in the relative translation measurements was

simulated by adding i.i.d zero-mean normal random variables

with covariance matrix I3×3 × 10−6 m2. A plot of the paths

used for each robot, along with a plot of the number of

neighbors for robot 1 over time can be found in [17].

Simulations for robot teams of size 1, 2, 3, 4 and 5 were

carried out. When only one robot is present in the team,

collaborative localization is equivalent to self-localization

without the aid of any inter-robot relative pose measurement.

The position estimation error of robot i is ei(k) :=
t̂i(k)−ti(k), where ti(k) is its global position at time k and

t̂i(k) is the estimate of this position. The bias and standard

deviation in the position estimation error ei(k) for robot 1
(i = 1), defined as E [ei(k)] and

√

Tr (Cov[ei(k), ei(k)])
respectively, where E [ · ] denotes expectation and Cov[ · , · ]
denotes covariance, are shown in Figure 2. Both bias and

standard deviation show significant improvement with dis-

tributed collaborative localization over self-localization. This

is evident even for a team of only two robots. As the number

of robots in the team increases, the localization error of robot
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Fig. 2. The bias and standard deviation in position error for robot 1 when
the distributed algorithm is applied to a group of 1, 2, 3, 4 or 5 robots.

1 decreases. The improvement in accuracy however, shows

a diminishing return with increasing team size.

VI. EXPERIMENTAL RESULTS

In this section we present results from an experiment

conducted using the two Pioneer P3-DX robots shown

in Figure 3. Each robot was equipped with a calibrated

monocular Prosillica EC 1020 camera and wheel odometers.

Measurements from these sensors were fused to find the

noisy inter-time relative pose measurements. Each robot is

additionally equipped with a target allowing the on-board

cameras to measure the inter-robot relative pose by exploiting

the known geometry of each target. The true pose of each

robot was determined using an overhead camera capable

of tracking each robot’s target. The sensor were polled

every 0.2 seconds with the noisy inter-robot relative pose

measurements available at most, but not all times.

Both robots moved in straight lines with their paths

approximately parallel. Two different pose estimates of the

robots were obtained. One with self-localization (with the

inter-time relative pose measurements alone) and the other

with collaborative localization with the distributed algorithm,

which utilized the inter-robot relative pose measurements.

The resulting global position estimates, along with the true

positions, for robot 1 are reported in Figure 4. A similar

trend is seen in the orientation localization errors. These

results are omitted here due to space limitations, but can

be found in [17]. A distinct improvement in localization ac-

curacy is seen when collaborative localization is performed.

Simulations presented in Section V indicate that we should

see a significant improvement in localization accuracy even

in this small team, and the experimental results are consistent

with that conclusion.

A second experiment in which the robots moved in circular

paths was also performed and a similar improvement in

localization accuracy was observed. These results are not

presented here due to space limitations; the interested reader

is referred to [17].

VII. CONCLUSION AND FUTURE WORK

We introduced a novel distributed algorithm for estimating

the full 3-D pose of multiple robots when noisy measure-

ments of the relative pose between pairs of robots are inter-
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Fig. 3. Two Pioneer P3-DX robots equipped cameras and targets. Robot
1 is shown on the left, while robot 2 is on the right.
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Fig. 4. A plot of the location of robot 1 when both robots move in a straight
line. The true path (found using the overhead camera), estimated path
using self localization, and estimated path using the distributed collaborative
localization algorithm are all reported.

mittently available. The proposed algorithm does not rely on

any particular parameterization of the underlying manifold.

The algorithm is provably correct: the solution converges

to a minimum of the cost function that measures how well

the estimates explain the noisy relative measurements. The

distributed algorithm requires communication only between

neighbors. Both memory capacity and processing power

requirements are small, and only depends on the number of

neighbors, not on the total number of robots. The algorithm

is applicable to a dynamic scenario in which the neighbors

of a robot can vary arbitrarily with time. The novel con-

tributions of this work compared to much of earlier work

on collaborative localization are (i) ability to perform 3-D

localization and (ii) ability to handle a time-varying network

of robots.

Simulations show a significant increase in localization

accuracy with the distributed collaborative localization algo-

rithm over self-localization. The improvement is significant

even for a small team of robots (2 or 3), with diminishing re-

turns with increasing number of robots. Experimental results

verify that indeed significant accuracy improvement can be

achieved even with two robots.

In this paper we assume availability of relative pose

measurements between robots. The “measurement graph”-

based framework we use is also applicable when relative

measurements of distance, bearing, or orientation between

robots are available. In these cases, the cost function has to be

changed suitably so that it is a function only of the available

measurements on the edges of the graph. Preliminary work

along these lines shows promising results; details will be

presented elsewhere.
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