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Abstract— This paper proposes an algorithm for estimating
the absolute pose (position and orientation) of n cameras using
relative measurements between pairs of cameras. Our work
is inspired by the recent work [1] where the same problem
was considered and a distributed algorithm was proposed.
In contrast to [1], which fused relative measurements of
orientation and bearing between camera pairs, and produced
a least squares estimate, we make two novel contributions.
First, our algorithm is capable of fusing any type of relative
measurement between cameras: relative orientation, relative
position, relative bearing, or relative distance, or any combi-
nation thereof. Second, the algorithm determines a maximum
likelihood estimate of the camera poses when the measurement
noises distributions are Gaussian-like in their corresponding
Riemannian manifolds. A gradient descent method on the
product manifold (SO(3) × R3)n is used to compute the
estimates. Unlike past probabilistic techniques, our assumed
distribution for measurement noise on orientation and bear-
ings are defined on the natural manifolds rather then any
parameterization. Though the proposed algorithm is centralized
in its computation, we discuss how the computations can be
distributed among the cameras. Performance of the proposed
algorithm is examined through simulations. Comparison with
the algorithm in [1] with non-uniform sensor accuracy reveals
which algorithm is most appropriate for a given scenario.

I. INTRODUCTION

A camera network consists of a number of cameras that

are geographically distributed such that the images recorded

by the cameras are used for a common sensing task. Such

networks are useful in a number of applications, such as

surveillance of public places for security reasons [2], envi-

ronmental monitoring of hazardous or remote areas [3], and

tracking occupant movement inside smart buildings [4]. The

cameras are capable of communicating with one another or

a central processor through a communication network.

Images captured by a camera network for the purposes of

tracking or localizing objects are only of use if the network

is localized. Localizing a camera network is to determine all

camera poses, i.e., positions and orientations, relative to a

common coordinate frame. Localization is also sometimes

referred to as calibration or external calibration. With a

localized camera network, a common target observed by

multiple cameras at distinct time instants can be tracked

by fusing measurements provided by the cameras. In fact,

localization is required simply to detect when two cam-

eras observe the same target. Manual localization is often

inaccurate. Even if positions of cameras can be accurately

measured manually, measuring orientations in such a fashion

is highly error prone. Automated localization is therefore

highly desirable, in which camera network localization is

performed by refining initial, perhaps very noisy, estimates

using measurements collected by the cameras.

This paper is concerned with automated localization of a

static camera networks when the pose of cameras do not

change with time. Our work is inspired by the paper [1], in

which the authors consider the problem of ensuring glob-

ally consistent pose estimates when relative measurements

between cameras are available. The papers [5], [6] also

consider the same problem in the planar (2-D) case, in which

the pose of each camera can be described by three scalars:

x, y for the position coordinates and θ for orientation. The

question of localizability of planar camera networks with

noise free measurements of various types (bearing, distance,

etc.) is partially addressed in [5]. The paper [6] proposes two

distributed algorithms to compute a least-squares estimate of

the camera poses. Compared to the 2-D case examined in

these papers, the 3-D case is more practically relevant and

considerably more complex. Existing work on 3-D camera

calibration has therefore focused on estimation algorithms

that lead to some estimates with noisy measurements, even

if strong performance guarantees on the estimates obtained

cannot be provided.

In [1], a method for 3-D camera network localization is

proposed that fuses relative orientation and relative bearing

measurements between pairs of cameras in an n camera

network. A nonlinear cost function defined on a Riemannian

manifold is minimized using gradient descent. The paper

[7] proposes a method for distributed 3-D camera network

calibration by using belief propagation. The work by [1]

deviates from prior algorithmic work on camera network lo-

calization in one major aspect. Most of the prior algorithms,

such as that in [7], use a minimal parameterization of the

orientations (such as Euler angles) which is then used to

pose the estimation problem as a vector-space optimization

problem. In contrast, the algorithm in [1] does not rely on

any parameterization of the orientation. Instead, the cost

function whose minimization provides the estimate is defined

in the natural space of the problem: in a product Riemannian

manifold (SO(3)× R
3)n, where SO(3) is the 3-D rotation

group.

In this paper we extend the work of [1] on 3-D localization

in two ways. First, our proposed algorithm can fuse het-

erogeneous relative measurements between pairs of cameras

to improve pose estimates, while the existing work requires

that each relative measurement be of the same kind: relative

orientation and bearing in [1] and relative pose (orientation

and position) in [7]. Obtaining measurements of the relative

orientation is extremely difficult in practice, while obtain-



ing other types of relative measurements, such as bearing

or distance between two cameras, is usually easier. This

makes the proposed method less restrictive than those in [1],

[7]. Second, while [1] provides no statistical performance

guarantees, we provide the ML estimates for a particular

distribution of the measurement noise. The algorithm in [7]

in fact computes the MAP (maximum a-posteriori) estimate

if measurements, when parameterized to lie in vector spaces,

are Normally distributed. In contrast, the distributions we

assume are defined on the manifolds that the measurements

naturally belong to - the 3D rotation group for orientations

and the 2-sphere for bearing - and not on any specific

parameterization. Even if the distribution of a measurement

that lies in a manifold is Gaussian-like (in the sense that

it satisfies the central limit theorem, does not have a heavy

tail, etc.), the distributions of the entries of a specific minimal

parameterization of the measurement need not be Gaussian.

Each parameterization will have a distinct distribution.

Choosing appropriate distributions is critical for maximum

likelihood estimation. To this end we propose plausible

distributions for each measurement type. Both position and

distance measurements are assumed Normally distributed.

However, orientation and bearing measurements are not

elements of any vector space. Thus no perfect analog to

the Gaussian distribution for these cases exist. Therefore we

choose Gaussian-like distributions on the respective man-

ifolds. Specifically, bearing measurements are assumed to

be Von Mises-Fisher (VMF) distributed. We say the VMF

distribution is “Gaussian-like” due the following fact. Just

as the Normal distribution is the equilibrium distribution for

the Ornstein-Uhlenbeck process in vector spaces, the VMF

distribution is the equilibrium distribution of the analogue

of the Ornstein-Uhlenbeck process on the sphere [8]. Ori-

entation measurements are chosen to follow the wrapped

Gaussian (WG) distribution on SO(3). Though there is still

much to learn about this distribution, it is known that the

corresponding WG distribution on SO(2) is the solution to

the heat equation [9]. The Normal distribution solves the

heat equation on a vector space, and so we say the WG

distribution is “Gaussian-like.”

The proposed algorithm, which is called the ML-CL

(maximum likelihood collaborative localization) algorithm,

computes the ML estimates by optimization over a Rie-

mannian manifold. Since ML-CL computes the ML esti-

mates, information on varying levels of accuracy of the

measurements are taken into account in a principled way.

Simulation comparisons with the algorithm in [1] reported

here shows how this can be useful. When all the relative

measurements have the same noise level, the accuracy of

the estimated provided by the ML-CL algorithm are close

to that provided by the algorithm in [1]. However, when

some of the measurements are known to be quite accurate

or inaccurate compared to others, the estimates obtained by

the ML-CL algorithm are much more accurate than those by

the algorithm in [1].

We only consider the centralized computation case here.

Since a static network of cameras is considered where the

camera poses do not change with time, pose estimates need

to be computed only once. In such a setting, centralized

computation is quite feasible. In [10] we discuss how a dis-

tributed algorithm can be developed if desired. The scheme is

distributed in the sense that each camera can estimate its own

pose by iteratively updating its estimate by communicating

with a set of “neighboring” cameras.

II. PROBLEM STATEMENT

We wish to determine the pose (position and orientation)

of each camera in an n-camera network with respect to

a common reference frame, which is called the absolute

reference frame. We will call such a pose that camera’s

absolute pose. Relative measurements between certain pairs

of cameras are available. Such an inter-camera relative

measurement, say from camera A to camera B, can of one

of the following types: relative orientation, relative position,

relative bearing, or relative distance. These measurements

can be obtained in various ways. If one camera is in

the field of view of the other, bearing between them can

be easily measured. The distance between them can also

be measured if the cameras have targets (tags) of known

geometry attached to them. Such methods are used in [11].

In fact, if cameras have targets of known geometry attached

to them, the position and/or orientation with respect to the

other can also be measured. Distance can also be measured

by using radio-frequency (RF) techniques that measure Time

of Arrival or Received Signal Strength between the wireless

radios attached to the cameras [12]. RF techniques that can

measure angle of arrival, such as that in [13] can be used to

measure bearing . The more common method of obtaining

relative measurements is to detect common feature points

in the images collected by a pair of cameras that have

overlapping field of view; see [14], [15], [16] for discussion

on such methods.

The situation above is best described by a directed fully-

labeled graph G = (V ,E, ℓ) that shows how the inter-

camera relative measurements relate to the absolute pose

of each camera. The graph is defined as follows. Each of

the n cameras is assigned a unique integer from the set

V = {1, . . . , n}. The node set for the graph G is then give

by the set V0 = V ∪ {0} where 0 ∈ V0 corresponds to the

absolute reference frame. The absolute reference frame might

be the reference frame of one of the cameras. The camera

associated with node i ∈ V will be referred to as camera i.

Associated with each node i ∈ V are the two node variables

Ri ∈ SO(3), the orientation of camera i, and ti ∈ R
3, the

position of camera i. Each node variable is given with respect

to the absolute reference frame. The problem of localization

of the camera network is equivalent to estimating each of

the node variables.

The set of directed edges, denoted E , correspond to

the inter-camera relative measurements. That is, suppose a

measurement from camera i to camera j is available, then

there exists an edge e = (i, j) ∈ E . To delineate the type

of measurement, a label from the set { R (orientation),

t (position), τ (bearing), δ (distance) } is attached to



Node 1 Node 2

Node 3 Node 4

Node 0

e1 = (1, 2)

e
2
=

(4
,2
)e3
=
(2
, 3
)

e
4
=

(3
,
1
)

e
5
=
(4, 1)e

6
=
(0
, 1)

e 7
=
(0
, 2
)

e8 = (0, 3)
e9

= (0,
4)

Fig. 1. A camera network consisting of 4 cameras shown as the
corresponding graph. The sold lines indicate edges from E (inter-camera
measurements) while the dashed lines indicate edges from E0 \ E (initial
pose guesses). Node 0 represents the absolute reference frame in which the
pose of each camera is to be estimated. Usually node 0 is simply the frame
of one of the cameras.

each edge. The map from the set of edges to the set of

labels is given by ℓ. Thus if the measurement e = (i, j)
between camera i and j is of their relative orientation, then

ℓ(e) = R. If several different types of relative measurements

are available between a camera pair, that is represented by

multiple parallel edges, each with one type of measurement.

In certain cases, the absolute camera poses are indetermi-

nate upto a rotation or a translation. For instance, if only

relative orientation measurements between nodes in V are

available, absolute orientations can’t be determined without

ambiguity. We assume that each camera has an initial guess

of its absolute pose, even if highly inaccurate. This can be

obtained by manual measurements once during deployment.

In case the absolute poses are indeterminate, fusing them

with the initial guess is likely to lead to a better estimate.

We would like to utilize the information contained in the

initial guess of the pose of each camera. To this end, we add

two additional edges to our graph for each node, correspond-

ing to each initial estimated node variable. The new edge set

is given by E0 = E ∪ {eRi = (0, i), eti = (0, i) | i ∈ V }.
Where ℓ(eRi) = R (orientation) and ℓ(eti) = t (position)

for all i ∈ V .

The graph G = (V0,E0, ℓ) is called the measurement

graph. Figure 1 shows an example of the graph correspond-

ing to a network of 4 cameras. For each e = (i, j) ∈ E0,

Me is a measurement of the relative orientation, position,

bearing, or distance, depending on the value of ℓ(e), between

nodes i and j. Let
{

M
}

E0

= {Me | e ∈ E0} be the set of all

noisy inter-camera relative measurements, which from now

on includes the initial guess for each camera pose.

Let
{

(R, t)
}

V
= {(Ri, ti) | i ∈ V } denote the set of all

node variables. Our goal is to determine the most likely

value of
{

(R, t)
}

V
given the noisy measurements

{

M
}

E0

for appropriate models of the measurement noise in terms of

their probability density functions (pdfs).

In this paper R ∈ SO(3) is to be understood as a

linear operator from the Euclidean space R
3 (with the 2-

norm) to itself that preserves the length of vectors and the

orientation of the space. It is not to be understood as 3× 3
rotation matrices or any other representation of 3D rotations.

Numerical implementation of the algorithm we propose in

the next section can be performed with any representation

of SO(3), such as rotation matrices or unit quaternions.

III. THE ML ESTIMATES

We assume that measurement on distinct edges are statis-

tically independent, so that the joint pdf of all the measure-

ments satisfies:

p
({

M
}

E0

) =
∏

e∈E0

pe(Me), (1)

where pe( · ) is the pdf of the measurement on edge e.

Since there are four types of measurements on the edges,

we need four classes of pdfs, which are denoted by pR,

pt, dτ and pδ , for measurement of orientation, position,

bearing and distance, respectively. Choosing appropriate pdfs

for orientations and bearing measurements is challenging

since these densities are not defined over vector spaces

but over curved surfaces. In particular, the density pR is

defined over SO(3) and the function pτ is defined over

S
2, the 2-sphere (unit sphere in R

3 with Euclidean norm).

We assume that each relative orientation measurement R̂i j

comes from a wrapped Gaussian distribution on SO(3)
with mean R

T
i Rj and covariance matrix σ2 I . The density

function pR : SO(3) → R
+ is given by

pR(R̂i j) = KR

∞
∑

k=−∞

exp
(

−
1

2σ2

(

d(R̂i j ,R
T
i Rj)− 2πk

)2
)

(2)

for appropriate normalizing constant KR(σ) [9]. Here the

distance function d( · , · ) in SO(3) is given by the Rieman-

nian distance

d(A,B) =

√

−
1

2
Tr

(

log2(ATB)
)

, A,B ∈ SO(3). (3)

This density has been proposed in [9] as an extension of the

Normal distribution in Euclidean spaces to SO(3).

For bearing measurements, we choose the Von Mises-

Fisher distribution [17]. This is a well-known density in

the literature on directional statistics and considered a close

analog of the Gaussian density in the d-Sphere. Specifically,

each relative bearing measurement τ̂i j is assumed to be

distributed according to the Von Mises-Fisher distribution

with mean direction µτ :=
R

T
i (tj−ti)
‖tj−ti‖

and concentration



parameter ke. The density function pτ : S2 → R
+ is given

by

pτ (τ̂i j) = Kτ exp
( ke

‖tj − ti‖
(tj − ti)

T
Rj τ̂i j

)

(4)

for appropriate normalization constant Kτ (ke).

Each relative position measurement t̂i j is assumed to be

multivariate normal with mean µt := R
T
i (tj − ti) and

covariance matrix Σe. The density function pt : R3 → R
+

is given by

pt(t̂i j) = Kt exp
(

−
1

2
(t̂i j − µt)

TΣ−1
e (t̂i j − µt)

)

(5)

for appropriate normalization constant Kt(Σe).

Finally, each relative distance measurement δ̂i j is assumed

Normally distributed with mean ‖tj − ti‖ and variance σ2
e .

The density function pδ : R → R
+ is given by

pδ(δ̂i j) = Kδ exp
(−(δ̂i j − ‖tj − ti‖)

2

2σ2
e

)

(6)

for appropriate normalizing constant Kδ(σe).

Among these distributions, the wrapped Gaussian is the

most cumbersome due to the infinite series in its definition.

We therefore approximate pR by the function

p̄R(R̂i j) = KR exp
(

−
1

2σ2
d2(R̂i j ,R

T
i Rj)

2
)

. (7)

Note that p̄R is not a probability density function. In the

context of maximum likelihood estimation, however, there is

no need for p̄R to be a pdf as it is not meant to describe a

distribution, only closely approximate the function fR that

does.

To justify the approximation of pR by p̄R, the 1-norm of

pR − p̄R was computed using Monte-Carlo integration with

100, 000 samples. A plot of norm of the difference is omitted

here due to lack of space, but can be found in [10]. For

σ < 0.7 radians, the norm of the difference is near enough

to zero to be indistinguishable. We therefore conclude that

the approximation p̄R of the wrapped Gaussian distribution

pR is quite accurate for values of σ < 0.7.

We are now ready to characterize the ML estimate of the

camera poses, which is given in the next proposition.

Proposition 1: An approximation of the maximum like-

lihood ML estimate
{

(R, t)
}

V
of the node variables

{

(R, t)
}

V
based on the measurements

{

M
}

E0

is given by

{

(R̂, t̂)
}

V
= argmin

{(R,t)}
V
∈(SO(3)×R)|V |

f(
{

(R, t)
}

V
) (8)

where f : (SO(3)× R)|V | → R is a cost function given by

f(
{

(R, t)
}

V
) :=

∑

(i,j)=e∈E0

ge(Ri, ti,Rj, tj) (9)

in which ge(Ri, ti,Rj, tj) is the cost for edge e defined as

ge(Ri, ti,Rj, tj) =


















































1
2σ2

e
d2(R̂i j ,R

T
i Rj) if ℓ(e) = R

1
2

(

(

t̂i j −R
T
i (tj − ti)

)

×Σ−1
e

(

t̂i j −R
T
i (tj − ti)

)

) if ℓ(e) = t

−ke

‖tj−ti‖
(tj − ti)

T
Riτ̂i j if ℓ(e) = τ

1
2σ2

e

(

δ̂i j − ‖tj − ti‖
)2

if ℓ(e) = δ

(10)

Proof: We rewrite (1) as

p(
{

M
}

E0

|
{

(R, t)
}

V
) =

∏

e∈E0

pe(Me |
{

(R, t)
}

E0

)

where the dependency on the unknown parameters
{

(R, t)
}

V
is shown clearly. The likelihood function L( · ) is

the density viewed as a function of the unknown parameters.

The log-likelihood function logL satisfies

logL(
{

(R, t)
}

V
|
{

M
}

E0

) = log
(

p(
{

M
}

E0

|
{

(R, t)
}

V
)
)

∝ log(
∏

e∈E0

Ker
(

pe(Me |
{

(R, t)
}

V
))

where Ker pM is the kernel of the corresponding pdf. The

max-likelihood estimate is obtained by maximizing the right

hand side of the relation above. When we use the approxima-

tion p̄R instead of pR , it turns out that that the right hand side

is equal to −f(
{

(R, t)
}

V
), were f is as defined in (9). The

corresponding (approximate) maximum likelihood estimate

for
{

(R, t)
}

V
given

{

M
}

E0

is computed by minimizing f .

This estimate is not strictly equal to the maximum likelihood

estimate because of the approximation of fR by f̄R. Since

the approximation is quite accurate for σ < 0.7, we expect

the estimate obtained to be a close approximation of the ML

estimate for σ < 0.7.

A. Computing the Estimate

To compute the ML estimate, we have to solve the

optimization problem (8). Finding the minimum of a func-

tion defined over a vector space has been studied exten-

sively. However the function f( · ) in (9) is defined on a

curved surface, specifically, the product Riemannian Mani-

fold (SO(3)× R
3)n. We choose to solve this optimization

problem through gradient descent on the product Riemannian

manifold. A review of the gradient decent algorithm on

Riemannian manifolds in provided in [10].

Remark 1 (Distributed Implementation): The

computations involved in the Riemannian gradient descent

described in [10] can be distributed among the cameras.

The details of how the algorithm is distributed are omitted

here due to lack of space, but can be found in [10].



IV. SIMULATION STUDIES

In this section we present simulations studying the per-

formance of the ML-CL algorithm in terms of localization

accuracy. An additional simulation showing a visual repre-

sentation of the results of applying the ML-CL algorithm can

be found in [10].

A. Performance evaluation through MC simulations

We next examine the following questions. One, how does

estimation accuracy of the ML-CL algorithm change as the

connectivity of the measurement graph increases due to the

increase in the number of relative measurements for the

same number of cameras, and how does accuracy depend

on the type of those measurements? Two, how does ML-CL

perform compared to the alternative method proposed in [1]?

Some results relevant to the first question have been already

presented in the previous section. In this section we examine

the question through Monte-Carlo simulations to verify the

trends already observed are not random occurrences.

The following definitions are required. The error in an

estimate R̂i of the orientation for a camera i is eR(i) :=
d(Ri, R̂i), where d( · , · ) is defined in (3). The error in an

estimate t̂i of the position of camera i is ep(i) := ‖ti− t̂i‖2.

The total r.m.s. error in the orientation and position estimate

is defined as
√

E[
∑n

i=1 e
2
R(i)] and

√

E[
∑n

i=1 e
2
p(i)], respec-

tively, where E[ · ] denotes expectation. The expected value

E[e[ · ](i)] is also referred to as the bias in that error. All

expectations are computed from appropriate averaging from

random samples obtained through simulations.
a) Effect of graph connectivity and measurement type:

We again consider a network of 5 cameras. Starting with

a graph containing no relative measurements (i.e., edges),

where the initial guess is the best we can do, measurements

are randomly added until the graph is fully connected. For

each graph, r.m.s. errors are estimated using a Monte-Carlo

simulation with 2000 samples. In each sample, the initial

guess and noisy inter-camera relative measurements are again

drawn from the distributions described in Section III The

experiment is repeated for each type of relative measurement,

keeping the initial guess the same. The total r.m.s error in

the position estimates are reported in Figure 2. A similar

trend was seen for orientation estimates, and can be found

in [10]. We also show the Fiedler value of the network in the

figures. The Fiedler value is the second smallest eigenvalue

of the graph Laplacian matrix, and is a scalar measure of the

connectivity [18].

We see from the figures that as the number of measure-

ments increase, the estimation error decreases, as expected.

The ML-CL algorithm is seen to improve absolute orienta-

tion and position estimate over the initial guess for almost ev-

ery type of relative measurement. The few exceptions are as

follows. Measurements of the relative distance has no effect

on the estimated orientation. The cause of this is immediately

obvious from an examination of the cost function 9 as the

edge cost corresponding to distance measurements does not

contain an orientation node variable.
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Fig. 2. Total r.m.s. error of the position estimates with Ml-CL in a 5

camera network, as a function of number of measurements. Each curve in
the plot corresponds to the type of relative measurement available that is
specified by the legend.

B. Effect of measurement noise, and comparison with [1]

We now examine the effect on localization accuracy when

some of the measurements are noisier than others. We also

compare ML-CL’s performance with the algorithm in [1] for

varying measurement noise levels.

A network of 3 cameras is considered, in which every

camera has a measurement for every other camera in the

network. That is, the corresponding graph is fully connected.

Each inter-camera measurement is of the relative orientation

and bearing. These measurement types are chosen to en-

able comparison with the algorithm in [1], since the same

measurement types are considered in [1]. The parameters σe

and ke for distributions of relative orientation and bearing

measurements of camera 2 and 3 are as in the previous

simulation. However, the noise parameters for measurements

obtained by camera 1 are allowed to vary as follows:

for orientation measurements, σe = 0.087 × K , and for

bearing measurements, ke = 20 ×K where K ∈ [2−8, 28].
The wrapped Gaussian distribution (for relative orientation

measurements) and Von Mises - Fisher distributions (for

relative bearing measurements) produce more or less noisy

measurements depending on the value of K . For larger values

of K , orientation measurements become more noisy, while

bearing measurements become less noisy. For each value of

K considered, noisy measurements are generated from the

corresponding distributions. These measurements are then

used by the ML-CL algorithm and the algorithm in [1]

to estimate the pose of each camera. To coincide with the

assumptions made in [1], the initial pose estimates are not

used as measurements in the ML-CL algorithm. This will be

reflected in our choice of distance metric. For each method of

estimation and each value of K , the bias and variance of the

distance between pose estimates is computed from a Monte-

Carlo simulation with 200 samples. The distance between a

pose T = {(Ri, ti)}
n
i=1 of a network of n cameras and its

estimate T̂ is defined as

d(T, T̂ ) :=

( n
∑

i=1

(d2(Ri, R̂i) +

∣

∣

∣

∣

∣

∣

∣

∣

ti

‖ti‖
−

t̂i

‖t̂i‖

∣
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Fig. 3. Comparison of ML-CL and the algorithm in [1] for varying levels
of noise in some of the relative measurements in a 3- camera network.
Larger K corresponds to noisier relative orientation measurements and less
noisy bearing measurements.

Using the orientation and bearing measurements alone, the

pose of all cameras can only be estimated up to a scale

ambiguity. For that reason we have normalized the position

estimates to adjust for the ambiguity in scale.

The results are reported in Figure 3. Though both al-

gorithms provide accurate estimates, we see that when all

measurements have equal amount of noise, the algorithm

in [1] proves to be more accurate. This is likely due to

an additional optimization step found in [1] in which the

initial estimates are improved by minimizing an additional

cost function. The ML-CL algorithm does not perform this

additional step, though it could be implemented if desirable.

However the ML-CL algorithm provides more accurate es-

timates when the difference between the noise levels in the

various measurements is large. This occurs since the ML-CL

algorithm takes into account the noise in each measurement

in a principled way to compute the most likely estimates

given this information. This reduces the effect of measure-

ments that are highly noisy, while heightening the effects of

measurements with lower noise. No such weights are present

in the algorithm in [1]. While it is possible to modify the cost

function in [1] to include weights, due to the non-Euclidean

nature of the relative orientation measurements, it is not clear

how one would determine these weights.

V. CONCLUSION

Relative measurements between pairs of cameras can be

fused with absolute measurements to improve pose estimates

of all the cameras. We introduced an algorithm for doing

so that computes the (approximate) maximum likelihood

estimate of the absolute poses of the cameras for certain

measurement noise distributions. Earlier approaches for 3-D

camera network localization required each measurement to

be of a specific type, and only considered “least-squares”

type estimates that did not provide statistical guarantees on

the estimates. The novel contributions of this work are (i)
the ability to fuse various types of inter-camera relative

measurements (orientation, bearing, position, distance, and

any combination thereof), and (ii) a maximum likelihood

(ML) approach that considers a distribution on the group

SO(3) rather then on one of its parameterizations. The

ML formulation has the advantage over least-squares type

approaches that it allows the algorithm to emphasize the

low noise measurements over those with high noise in a

principled way.

Future research will study the performance of the pro-

posed algorithm on a camera network experimentally in the

future. A more through investigation of the true distributions

describing the measurement errors is also an interesting are

for future study.
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