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Abstract— We study the problem of distributed control of
a large network of double-integrator agents to maintain a
rigid formation. A few lead vehicles are given information
on the desired trajectory of the formation; while every other
vehicle uses linear controller which only depends on relative
position and velocity from a few other vehicles, which are called
its neighbors. A predetermined information graph defines the
neighbor relationships. We limit our attention to information
graphs that are D-dimensional lattices, and examine the sta-
bility margin of the closed loop, which is measured by the
real part of the least stable eigenvalue of the state matrix.

The stability margin is shown to decay to 0 as O(1/N2/D)
when the graph is “square”, where N is the number of agents.
Therefore, increasing the dimension of the information graph
can improve the stability margin by a significant amount. For a
non-square information graph, the stability margin can be made
independent of N by choosing the “aspect ratio” appropriately.
An information graph with large D may require nodes that are
physically apart to exchange information. Similarly, choosing an
aspect ratio to improve stability margin may entail an increase
in the number of lead vehicles. These results are useful to the
designer in making trade-offs between performance and cost in
designing information exchange architectures for decentralized
control.

I. INTRODUCTION

We consider the problem of formation control of vehi-

cles so that neighboring vehicles maintain a constant pre-

specified spacing while in motion. This problem is relevant

to a number of applications such as formation flying of

aerial, ground, and autonomous vehicles for surveillance,

reconnaissance, mine-sweeping, etc. [1], [2], [3]. A few lead

vehicles are provided information on their desired trajectories

that they use in computing their control actions; while the

rest of the vehicles are allowed to use only locally available

information. In a distributed linear control architecture, each

vehicle can measure only the relative position and velocity

with respect to a number of neighbors. The neighbor rela-

tionship is predefined in terms of a graph, which we call the

information graph.

The one-dimensional version of this problem, in which

a string of vehicles moving in a straight line have to be

controlled to maintain a constant inter-vehicle separation, has

been extensively studied [4], [5], [6]. The general trend of
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the results is that the problem scales poorly with the number

of vehicles: as the number of vehicles increase the sensitivity

to disturbances increases [7], [8], [9] and the stability margin

decays [10], [6]. The information graphs considered in the

literature are usually limited to at most two neighbors, with

notable exceptions such as [8], [11], [12] that consider more

general information exchange architectures.

Our goal is to examine how the stability margin scales with

the size of the formation and the structure of the information

graph that specifies allowable information exchange between

pairs of vehicles. The real part of the least stable eigenvalue

is used as a measure of the stability margin. The stability

margin determines the decay rate of initial formation keeping

errors. Such errors arise from poor initial arrangement of the

vehicles. In this paper we limit our attention to a specific

class of information graphs, namely, D-dimensional (finite)

lattices. These are natural choices for information graphs in

2D or 3D formation problems in which vehicles are arranged

in regular pattern and relative measurements are possible

among physically closest vehicles.

Each vehicle is modeled as a double integrator, and a dis-

tributed control algorithm is studied in which every vehicle

(except for a few lead vehicles) use only relative position and

relative velocity with respect to its neighbors in the informa-

tion graph. We show that when the network is homogeneous

and symmetric (all vehicles use the same control gains and

information from each neighbor is given equal weight), the

stability margin decays to 0 as O(1/N2/D) when the graph

is “square”. Therefore, increasing the dimension (which may

need nodes physically apart to exchange information) of the

information graph can improve the stability margin by a

considerable amount. For non-square information graph, the

stability margin can be made independent of the number of

agents by choosing the “aspect ratio” appropriately. That may

entail an increase in the number of lead vehicles that have

access to the formation’s desired trajectory.

The results in this paper are a generalization of the

results in [13], which showed that the stability margin

when the information graph is a 2-D lattice decays to 0
as O(1/N). The results in [13] were obtained by using the

PDE approximation by taking the continuum limit when the

number of vehicles is large. In this paper we avoid such

approximation, and establish the scaling laws of the stability

margin for general D-dimensional lattices. In addition, [13]

considered the scenario in which the desired trajectory of the

formation was one with a constant velocity, and moreover,

every vehicle knew this velocity. In contrast, the control law

we consider requires agents to know only the desired inter-
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agent separation; the overall trajectory information is made

available only to the lead vehicles. This makes the model

more applicable to practical formation control applications in

which the formation may be required to accelerate or deceler-

ate occasionally, and the decision to do so is made available

only to the lead vehicles. Our results have some interesting

connections with those in [11], which are discussed at the

end.

The rest of this paper is organized as follows. Section II

presents the distributed formation control problem. Sec-

tion III describes the technical results, including one on

eigenvalues of a grounded Laplacian matrix that plays a

pivotal role on establishing the main result. The main result

and its implications are presented in Section IV.

II. PROBLEM STATEMENT

We consider the formation control of N identical vehicles,

where the position of each vehicle is a Ds-dimensional

vector (with Ds = 1, 2 or 3); Ds is referred to as the

spatial dimension of the formation. Let p
(d)
i ∈ R be the d-th

coordinate of the i-th vehicle’s position, whose dynamics are

modeled by a double integrator:

p̈
(d)
i = u

(d)
i , d = 1, . . . , Ds, (1)

where u
(d)
i ∈ R is the control input (acceleration or de-

celeration command). The underlying assumption is that

each of the Ds coordinates of a vehicle’s position can be

independently actuated. We say that the vehicles are fully

actuated. The spatial dimension Ds is 1 for a platoon of

vehicles moving in a straight line, Ds = 2 for a formation

of ground vehicles and Ds = 3 for a formation of spatial

vehicles (e.g. aircrafts).

The control objective is to make the group of vehicles

track a pre-specified reference trajectory while maintaining a

desired formation geometry. Reference trajectory information

is available only to a set of lead vehicles. This information

is represented by introducing fictitious reference vehicles,

one for each lead vehicle. Each reference vehicle perfectly

tracks its own desired trajectory. Each lead vehicle can

measure its relative position and velocity with respect to

its corresponding reference vehicle, which is equivalent to

lead vehicles having knowledge of the desired trajectory of

the formation. Denoting the number of reference vehicles

by Nr, the set V := {1, . . . , N, N + 1, . . . , N + Nr} is

the set of all nodes in the formation, including N real

vehicles and Nr fictitious reference vehicles. The desired

formation geometry is specified by a desired relative position

vector ∆i,j for every pair of vehicles (i, j) ∈ V × V,

where ∆i,j is the desired value of pi(t)−pj(t). The desired

inter-vehicular spacings have to be specified in a mutually

consistent fashion, i.e., we must have ∆i,j = ∆i,k + ∆k,j

for every triple i, j, k ∈ V. Since we are interested in

rigid formations that do not change shape over time, ∆i,j ’s

are constants. To maintain a rigid formation, the control

must make every vehicle track its desired trajectory. The

desired trajectory of a real vehicle i, denoted by p∗i (t) can

be uniquely determined from the trajectories of the reference

vehicles and the desired formation geometry. In particular,

p∗i (t) = p∗j (t) + ∆i,j where j is any reference vehicle, and

p∗j (t) is its trajectory.

Next we define an information graph that makes it con-

venient to describe distributed control architectures.

Definition 1: An information graph is an undirected graph

G = (V,E). The set of edges E ⊂ V × V specify which

pairs of nodes (vehicles) are allowed to exchange information

to compute their local control actions. Two nodes i and j are

called neighbors if (i, j) ∈ E, and the set of neighbors of i
are denoted by Ni. �

In this paper we consider the following distributed control

law, whereby the control action at a vehicle depends on

the relative position and velocity measurements with its

neighbors in the information graph:

u
(d)
i =

∑

j∈Ni

−k(p
(d)
i − p

(d)
j − ∆

(d)
i,j ) − b(ṗ

(d)
i − ṗ

(d)
j ) (2)

where i ∈ {1, . . . , N} on the left hand side and j ∈ V on the

right hand side. The positive constants k, b are the position

and velocity feedback gains, respectively. It is assumed that

vehicle i knows its own neighbors (the set Ni), and the

desired spacing ∆
(d)
i,j . If j is a reference vehicle, p

(d)
j (t) =

p
(d)∗
j (t), where p

(d)∗
j (t) is the d-th coordinate of its reference

trajectory.

Example 1: Consider the two formations shown in Fig-

ure 1 (a) and (b). Their spatial dimensions are Ds = 1
and Ds = 2, respectively. The information graph, however,

is the same in both cases: V = {1, 2, . . . , 9}, E =
{(1, 2), (1, 3), · · · , (5, 6), (6, 9)}. A drawing of the informa-

tion graph appears in Figure 1 (c).

In this paper we restrict ourselves to a specific class of

information graphs, namely a finite rectangular lattice:

Definition 2 (D-dimensional lattice): A D-dimensional

lattice, specifically a n1 × n2 × · · · × nD lattice, is a graph

with n1n2 . . . nD nodes, denoted by Zn1×n2···×nD
. �

A D-dimensional lattice is drawn in R
D with a Cartesian

reference frame whose axes are denoted by x1, x2, . . . , xD.

Note that these coordinate axes may not be related to the

coordinate axes in the physical space R
Ds . We also define

Nd (d = 1, . . . , D) as the number of real vehicles in the xd

direction. Then we have the relation N1N2 . . . ND = N and

n1n2 . . . nD = N + Nr.

We assume that there is at least one boundary every node

of which is a reference vehicle. Reference vehicles are only

placed on the boundaries; this typically corresponds to lead

vehicles being the outermost vehicles in a formation. We call

such a boundary a Dirichlet boundary. A boundary of the

information graph is either a Dirichlet boundary, in which

case all nodes on it are reference vehicles, or none of the

nodes on it are reference vehicles.

For different configuration of Dirichlet boundaries, Nd and

nd has a slightly different but straightforward relation. For

example, in Figure 1 (c), N1 + 1 = n1 since the boundary

perpendicular to the positive x1 axis is a Dirichlet boundary,

while N2 = n2 since both boundaries perpendicular to the x2
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(a) The desired formation geometry of a 1D spatial
platoon with 6 vehicles and 3 reference vehicles.

O X

Y

p
(1)∗
7 (t)

p
(
2
)
∗

7
(t

)

∆
(
2
)

4
,
3

∆
(
2
)

7
,
4

∆
(
2
)

7
,
3

∆
(1)
5,3

1

2

3

4

5

6

7 8 9

(b) The desired formation geometry of a 2D spatial vehi-
cle formation with 6 vehicles and 3 reference vehicles.
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(c) The information graph for both the 1D platoon
and the 2D formation shown in (a) and (b).

Fig. 1. (a, b): Two distinct spatial formations that have the same associated
information graph (c). Red (filled) circles represent reference vehicles and
black (unfilled) circles represent ”real” vehicles. Dashed lines (in (a), (b))
represent desired relative positions, while solid lines represent edges in the
information graph.

axis are not Dirichlet boundaries. For a given N , the choice

of D, Nd and nd (d = 1, . . . , D) specifies the choice of the

information graph and its boundary condition.

Remark 1: The dimension D of the information graph is

distinct from the spatial dimension Ds. Figure 1 shows an

example of two formations in space, one with Ds = 1 and

the other with Ds = 2. The information graph for both the

formations is the same 3 × 3 two-dimensional lattice, i.e.,

D = 2. On account of the fully actuated dynamics and

independence of control gains on d, the spatial dimension

Ds plays no role in the results of this paper. The dimension

of the information graph D, on the other hand, will be shown

to play a crucial role.

III. STABILITY MARGIN AND GROUNDED LAPLACIAN

The dynamics of the i-th vehicle are obtained by com-

bining the open loop dynamics (1) with the control law (2),

which yields (suppressing the superscript d)

p̈i =
∑

j∈Ni

−k(pi − pj − ∆i,j) − b(ṗi − ṗj). (3)

To facilitate analysis, we define the following tracking error:

p̃i(t) := pi(t) − p∗i (t), (4)

where p∗i (t) is the i-th agent’s desired trajectory. Note that

for a rigid formation to be possible, the desired trajectories

must satisfy ṗ∗i −ṗ∗j = 0 for every i, j, which means ṗi−ṗj =
˙̃pi − ˙̃pj . Therefore, substituting (4) into (3), we have

¨̃pi =
∑

j∈Ni

−k(p̃i − p̃j) − b( ˙̃pi − ˙̃pj). (5)

Since the trajectory of a reference vehicle is assumed to be

equal to its desired trajectory, p̃i = 0 if i is a reference ve-

hicle. To express the closed-loop dynamics of the formation

compactly, we define the following state:

x := [p̃1, ˙̃p1, p̃2, ˙̃p2, · · · , p̃N , ˙̃pN ]T

Using (5), the state-space model of the vehicle formation can

now be written compactly as:

ẋ = Ax (6)

where A is the closed-loop state matrix.

Definition 3: The stability margin is the absolute value of

the real part of the least stable eigenvalue of the state matrix

A in (6). �

To facilitate analysis, we define the matrices A1, A2 and

Lg, where

A1 =

[

0 1
0 0

]

, A2 =

[

0 0
−k −b

]

, (7)

and Lg is the grounded (or Dirichlet) Laplacian matrix

of the information graph with reference nodes defining the

grounded nodes. To precisely define this matrix recall that

the Laplacian matrix of a graph G = (V,E) with n nodes

is defined as

[Ln×n]ij =











deg(i) i = j

−1 (i, j) ∈ E

0 otherwise.

(8)

where deg(i) is the number of neighbors of node i in the

graph. The grounded Laplacian Lg matrix of G with respect

to a set of grounded nodes Vg ⊂ V is the submatrix of

L obtained by removing from L those rows and columns

corresponding to the grounded nodes in Vg . This matrix

occurs in the numerical solution of PDEs with Dirichlet

boundary conditions and analysis of electrical networks [14].

For example, the grounded graph Laplacian of the informa-

tion graph shown in Figure 1 (c), with nodes 7, 8, 9 as the

grounded nodes, is:

Lg =

















1 2 3 4 5 6

1 2 −1 −1 0 0 0
2 −1 3 0 −1 0 0
3 −1 0 3 −1 −1 0
4 0 −1 −1 4 0 −1
5 0 0 −1 0 2 −1
6 0 0 0 −1 −1 3

















. (9)
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It is straightforward to show that

A = IN ⊗ A1 + Lg ⊗ A2, (10)

where IN is the N × N identity matrix and ⊗ is the

Kronecker product.

Theorem 1: The spectrum of A is

σ(A) =
⋃

λℓ∈σ(Lg)

{σ(A1 + λℓA2)}, (11)

=
⋃

λℓ∈σ(Lg)

{

σ

[

0 1
−k0λℓ −b0λℓ

]

}

, (12)

where σ(·) denotes the spectrum of a matrix. �

The proof follows the analysis in [15], please refer to [16]

for the details.

The next theorem, whose proof is also provided in [16],

gives an explicit formula for the eigenvalues of the grounded

Laplacian for the graphs considered in this paper.

Theorem 2: The eigenvalues of the grounded graph Lapla-

cian Lg of a D-dimensional information graph Zn1×...nD
are

positive and are given by the following formula

λℓ := λℓ1,...,ℓD
= 2D − 2

D
∑

d=1

[

I0(xd) cos
(ℓd − 1)π

Nd

+I1(xd) cos
(2ℓd − 1)π

2Nd + 1
+ I2(xd) cos

ℓdπ

Nd + 1

]

, (13)

where ℓd = 1, . . . , Nd (d = 1, . . . , D) and the indicator

function Ij(xd) (j = 0, 1, 2) is defined as:

Ij(xd) =











1, if there are j Dirichlet boundaries

perpendicular to xd axis,

0, otherwise.

(14)

�

It follows from Theorem 2 that the minimum eigenvalue

of the grounded Laplacian is given in the following corollary.

Corollary 1: Consider the D-dimensional information

graph Zn1×···×nD
where D0 is the number of axes in

the information graph that have Dirichlet boundaries (ei-

ther one or two) perpendicular to them. Without loss of

generality, let these coordinates be x1, . . . , xD0 . If Nd ≫
1 for d = 1, . . . , D0, then the minimum eigenvalue

λmin of the grounded Laplacian Lg is O( 1
N2

p
), where

p := arg min
d=1,...,D0

Nd. �

Proof of Corollary 1. Consider the following case first: each

of the first D0 coordinates that have Dirichlet boundaries

perpendicular to them have exactly one Dirichlet boundary.

That is, I1(xd) = 1, I0(xd) = I2(xd) = 0 for d = 1, . . . , D0,

and I0(xd) = 1, I1(xd) = I2(xd) = 0 for d > D0. We get

from Theorem 2 that

λℓ = 2D − 2

D0
∑

d=1

cos
(2ℓd − 1)π

2Nd + 1
− 2

D
∑

d=D0+1

cos
(ℓd − 1)π

Nd
.

The minimum among them is obtained by setting ℓd = 1 for

d = 1, . . . , D, which gives

λmin = 2D0 − 2

D0
∑

d=1

cos
π

2Nd + 1
.

Since Nd ≫ 1 for each d in the summation, we use cosx =
1 − x2/2 + O(x4) when |x| ≪ 1 to obtain cos π

2Nd+1 =

1 − π2

8N2
d

+ O( 1
N4

d

). Hence,

λmin =

D0
∑

d=1

(

π2

4N2
d

+ O(
1

N4
d

)

)

⇒

π2

4N2
p

+ O(
1

N4
p

) ≤ λmin ≤ D0π
2

4N2
p

+ O(
1

N4
p

). (15)

It is straightforward (though tedious) to repeating these

calculations for the other cases (when the number of Dirichlet

boundaries is not exactly one). We see from these calcula-

tions that the asymptotic dependence on Np does not change

from that in (15), only the coefficients differ among the

different cases. This proves the result.

The next result combines the ones establishes so far to give

an explicit formula for the stability margin of the formation.

Theorem 3: Let λmin be the minimum eigenvalue of the

grounded Laplacian Lg . The stability margin of the closed

loop with N vehicles is

S =
λminb

2
, (16)

when Np ≫ 1, where Np is defined in Corollary 1. �

Proof. From Theorem 1, it follows that the eigenvalues of

state matrix A, denoted by s, satisfy:

s2 + λℓbs + λℓk = 0, (17)

where λℓ ∈ σ(Lg). From Theorem 2, we see that λℓ is

positive. Since k > 0 and b > 0, it follows that A is Hurwitz.

Moreover, it follows from (17) that the least stable eigenvalue

of A, denoted by s+
1 , is given by:

s+
1 = −λminb

2

(

1 +

√

1 − 4k

λminb2

)

(18)

It follows from Corollary 1 that λmin can be arbitrarily

small for sufficiently large Np. For a large formation, more

specifally, Np is large enough so that λmin < 4k
b2 , it makes

the term inside the square root in (18) negative. Following

the definition of stability margin, we obtain

S = |Re(s+
1 )| =

λminb

2
.

IV. SCALING LAWS FOR STABILITY MARGIN

The main result of the paper is the following.

Theorem 4: Consider an N -vehicle formation with a D-

dimensional information graph Zn1×···×nD
, with vehicle

dynamics (1) and control law (2), where D0 is the number of

axes in the information graph that have Dirichlet boundaries
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(either one or two) perpendicular to them. The closed-loop

stability margin is given by

S =
π2b

2

D0
∑

d=1

[I1(xd)

4
+ I2(xd)

] 1

N2
d

, (19)

when Np ≫ 1, where Np is defined in Corollary 1. �

Proof. Follows from Theorem 3 and Corollary 1.

The implication of the theorem is discussed next.

A. Stability Margin with Square Information Graphs

In interpreting Theorem 4, it is useful to start with the

special case of a square information graph, which has equal

number of real vehicles/nodes along each coordinate axis in

the drawing of the information graph.

Definition 4: An information graph is said to be square if

N1 = N2 = . . . = ND. �

For a square information graph, Nd = N
1
D for every d,

which gives us the following corollary to Theorem 4.

Corollary 2: The stability margin of a vehicle forma-

tion with D-dimensional square information graph has the

asymptotic trend S = O(1/N2/D), when N1/D ≫ 1. �

This result shows that for a square information graph,

stability margin approaches 0 with an asymptotic decay of

O(1/N2/D), irrespective of on which boundary (boundaries)

the lead vehicles are present. The stability margin scales as

O(1/N2) in an 1D information graph, as O(1/N) in a 2D

information graph, and as O(1/N2/3) in a 3D information

graph. Thus, for the same control gains and arrangements

of lead vehicles, increasing the dimension of the informa-

tion graph improves the stability margin significantly. In

practice, increasing the dimension of the graph may require

a communication network with long range connections in

the physical space. The reason is that two nodes that are

neighbors in the information graph need not be physically

close. Thus, one can strike a trade-off between the cost

of long-range communication vis-a-vis the improvement in

stability margin.

B. Stability Margin with Non-square Information Graphs

For ease of description, we describe the idea for non-

square information graph with only one Dirichlet boundary.

The information graph with other boundary configurations

can be interpreted in a similar manner. The following corol-

lary is immediate from Theorem 4.

Corollary 3: Suppose only one of the boundaries of the

information graph has lead vehicles, and let this boundary

be perpendicular to x1 axis, without loss of generality. Then,

the stability margin is given by S = π2b/(8N2
1 ). �

It follows from this result that by choosing the structure of

the information graph in such a way that N1 increases slowly

in relation to N , the loss of the stability margin as a function

of N can be slowed down. In fact, when N1 is held at a

constant value independent of N , the stability margin is a

constant independent of the total number of vehicles!

More generally, if N1 = O(N c), where c ∈ [0, 1] is a fixed

constant, it follows from Corollary 3 that S = O(1/N2c) as

N → ∞. If c < 1
D , the resulting reduction of S with N is

slower than that obtained for a square lattice; cf. Corollary 2.

This shows that within the class of D dimensional lattices

(for a fixed D), certain information graphs provide better

scaling of the stability margin than others. The price one

pays for improving stability margin by reducing N1 is an

increase in the number of lead vehicles. This is because the

number of lead vehicles, Nr, is related to N1 (under the

assumptions in Corollary 3) by Nr = N/N1. There is thus

a trade-off between improved stability margin and cost of

having a large number of lead vehicles.

It is important to stress that not all non-square graphs are

advantageous. For example, if N1 = O(N), which means

N2 through ND are O(1), it follows from Corollary 3 that

the stability margin is S = O(1/N2). This is the same trend

as in a 1-D information graph. In this case, we can say that

the D dimensional information graph effectively behaves as

a one dimensional graph.

Figure 2 shows a few examples of information graph that

are relevant to the discussion above. Figure 3 provides nu-

merical corroboration of the discussion above. It is clear from

the figure that the prediction from Corollary 3 and Theorem 4

match very well with numerical computed eigenvalues of the

state matrix A.

25 50 100 200 400 700

10
−4

10
−3

10
−2

 

 

N

S

N1 = 5 (SSM)
N1 = 5 (Corollary 3)
N1 = N/5 (SSM)
N1 = N/5 (Corollary 3)
N1 =

√
N (SSM)

N1 =
√

N (Theorem 4)

Fig. 3. Stability margin for a vehicle formation with information graphs of
various “shapes” as shown in Figure 2. The legend ”SSM” means computed
from the ”state space model” (6), which is presented in Section II. For the
first case, N1 = 5 and N2 = N/5. Corollary 3 predicts that in this case
S = O(1) even as N → ∞. In the second case, N2 = 5 and N1 = N/5,
which leads to S = O(1/N2). The third case is that of a square information

graph, N1 = N2 =
√

N , which leads to S = O(1/N). Corollary 3 and
Theorem 4 predict the stability margin quite accurately in each of the cases.
The control gains used in all the calculations are k = 0.1 and b = 0.5.

V. CONCLUSION AND DISCUSSION

We study the problem of distributed control of a large

network of double-integrator agents with D-dimensional

information graph. The controller used is a linear PD con-

troller which depends on information on relative position

and velocity from its neighbors to compute its own control.
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(c) Square information graph, S = O(1/N)

Fig. 2. (a) A 2D information graph in which the first dimension is held constant, resulting in a stability margin that is independent of N , S = O(1). (b)
A 2D information graph that is ”asymptotically” 1D (as N → ∞) since the size of the first dimension increases linearly with N , resulting in a stability
margin scaling law S = O(1/N2), which is the same as that with an 1D information graph. (c) A 2D information graph in which both sides are of length

O(
√

N), for which we have S = O(1/N).

We showed that the stability margin scales as O(1/N2/D)
for a D-dimensional square information graph. Therefore,

increasing the dimension of the information graph can im-

prove the stability margin by a considerable amount. For

non-square information graph, the stability margin can be

made independent of the number of agents by choosing the

“aspect ratio” appropriately. However, it should be taken into

account that increasing the dimension of the information

graph or choosing a beneficial aspect ratio may require

long range communication or entail an increase in the

number of lead vehicles. Thus, a larger stability margin

can be achieved by designing the graph (and its boundary

conditions) appropriately, but that may be accompanied by

the increased cost of long-range communication or large

number of lead vehicles. These results are therefore useful

to the designer in making trade-offs between performance

and cost in designing information exchange architectures for

decentralized control.

Our results for square D-lattices are complementary to

those of [11], in which the effect of graph dimension on

the response of the closed loop to stochastic disturbances

is quantified in terms of “microscopic” and “macroscopic”

measures. It was shown in [11] that for D > 5, these

performance measures become independent of N , while for

smaller D, the performance becomes worse without bound

as the number of vehicles increase. In contrast, we showed

that the stability margin decays to 0 as N increases in every

D. Though the decay is slower for larger D, it is never

independent of N . To achieve a size-independent stability

margin, the graph needs to be non-square. Since the analysis

of [11] is done in the spatial Fourier domain, it is not clear

if non-square lattices with boundaries can be handled in that

framework.
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