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SUMMARY

We study the stability and robustness of a large platoon of vehicles, where each vehicle is modeled as a
double integrator, for two decentralized control architectures: predecessor following and symmetric bidi-
rectional. In the predecessor-following architecture, the control action on each agent only depends on
the information from its immediate front neighbor, whereas in the symmetric bidirectional architecture,
it depends equally on the information from both its immediate front neighbor and back neighbor. We prove
asymptotic stability of the formation for a class of nonlinear controllers with sector nonlinearity, with the
linear controller as a special case. We show that the convergence rate of the predecessor-following architec-
ture is much faster than that of the symmetric bidirectional architecture. However, the predecessor-following
architecture suffers high algebraic growth of initial errors. We also establish scaling laws (withN ) of certain
H1 norms of the formation that measure its robustness to external disturbances for the linear case. It is
shown that the robustness performance grows geometrically in N for predecessor-following architecture but
only polynomially in N for symmetric-bidirectional architecture. Extensive numerical simulations are con-
ducted to verify the predictions for the linear case and empirically estimate the corresponding performance
metrics for a saturation-type nonlinear controller. On the basis of the analytical and numerical results, it is
seen that the symmetric bidirectional architecture outperforms the predecessor-following architecture in all
measures of performance. Within the predecessor-following architecture, the nonlinear controller is seen to
perform better in general than the linear one. A number of design guidelines are provided on the basis of
these conclusions. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cooperative control of multi-agent systems has spurred an extensive interest in the control com-
munity because of its wide range of applications such as in automated highway system [1, 2];
coordination of aerial, ground, and autonomous vehicles for surveillance and rescue [3]; space-
craft formation control for science missions [4]; and in collective behavior of bird flocks and animal
swarms [5]. Among these applications, one of the most well-studied problems is autonomous intel-
ligent cruise control of large vehicular platoons (see [6–9] and references therein). The primary goal
of autonomous intelligent cruise control is to increase traffic throughput and safety.

One of the most important problems in autonomous intelligent cruise control of platoons is string
instability or slinky-type effect [10–12]. To solve this problem, different control policies and control
architectures are considered. In [11], a constant headway control law is developed to insure string
stability. However, the constant headway policy by itself is not enough; the headway has to be large
enough to avoid the problems associated with constant spacing policy [13]. Because one of the main
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motivations for automated platooning is to achieve higher highway capacity by making cars move
with a small inter-vehicle separation, there is a need to study the constant spacing policy. It was
shown in [11, 14, 15] that, with constant spacing policy, the leader’s information need to be broad-
casted to the following vehicles to assure string stability. Nevertheless, the inevitable time delay and
package drop in broadcasting the leader’s information will cause string instability [16]. This leads
to the study of decentralized control architecture, that is, each vehicle can only use measurements
of relative position and/or velocity with respect to its nearest neighbors.

Two decentralized control architectures that are commonly examined are predecessor-following
and bidirectional architectures. In the predecessor-following architecture, the control action on each
vehicle only depends on the relative information from its immediate predecessor, that is, the vehicle
in front of it. In the bidirectional architecture, the control depends on the relative information from
both its immediate predecessor and follower. Within the bidirectional architecture, the most com-
monly analyzed case is the symmetric bidirectional architecture, in which the control at a vehicle
depends on the information from both of its neighbors equally.

A typical issue in distributed/decentralized control is that, as the number of agents in the system
increases, the performance of the closed-loop degrades progressively. It has been established that
the predecessor-following architecture suffers from high sensitivity to external disturbances with
linear control [17, 18]. High sensitivity to external disturbance is typically referred to as slinky-
type effect [19, 20] or string instability [21]. Seiler et al. showed that, with linear control, the poor
robustness performance with the predecessor-following architecture is independent of the design of
the controller but a fundamental artifact of the architecture [14]. The robustness performance can
be improved by nonidentical linear controllers but at the expense of the control gains increasing
without bound as the number of the vehicles increases [11, 22]. It was shown in [14, 15, 21, 23] that
the symmetric bidirectional architecture also suffers from poor sensitivity to external disturbances.

Although a rich literature exists on sensitivity to disturbances for predecessor-following and
symmetric bidirectional architectures with linear control, to the best of our knowledge, a precise
comparison of these two architectures is lacking. Moreover, most of the works on formation control
have been limited to linear control laws, whereas little is known about nonlinear control. Nonlinear
terms in the closed-loop dynamics may arise from either purposefully designed nonlinear control
laws (if beneficial) or unavoidable nonlinearities in the agent dynamics, such as actuator saturation.
Both of these cases can be analyzed by considering linear plant dynamics and nonlinear controllers.

In this paper, we examine the stability and robustness (sensitivity to external disturbances) of a
large platoon of vehicles with linear as well as a class of nonlinear controllers, for both predecessor-
following and symmetric bidirectional architectures. Each vehicle is modeled as a fully actuated
point mass (double integrator). A few authors have used first-order kinematic models by ignor-
ing vehicle inertia. However, in general, kinematic models (single integrator) fail to reproduce the
slinky-type effects that are exhibited by kinetic models (double integrator).

We prove stability of the closed loop with an arbitrary number of agents for a class of nonlinear
controllers where the control gain functions satisfy certain sector conditions. The difference between
the transient responses of the two architectures in case of linear control is explained by the expres-
sions we derive for the least stable eigenvalue of the closed-loop state matrix and its multiplicity.
In particular, we show that the predecessor-following architecture has a larger convergence rate
compared with the symmetric bidirectional architecture: O.1/ versus O.1=N 2/. It is worthwhile to
mention that the convergence rate of the formation with symmetric bidirectional architecture scales
poorly as a function of N even with centralized linear quadratic regulator control [24]. The real part
of the least stable eigenvalue with linear quadratic regulator control scales asO.1=N/. However, the
predecessor-following architecture suffers from algebraic growth of initial conditions because of the
high multiplicity of the least stable eigenvalue. For the nonlinear control, we study the transient per-
formance through numerical simulations. The simulations show that, in the predecessor-following
architecture, the transient response is significantly improved by using a saturation-type nonlinearity
in the control gain instead of a linear control.

Next, we examine the closed loop’s performance in terms of the sensitivity to external distur-
bances. Specifically, we examine the first-to-last amplification factor, defined as the L2 gain from a
disturbance injected at the first vehicle to the position tracking error of the last vehicle, and all-to-all
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amplification factor, which is defined as the L2 gain from the disturbances acting on all the vehi-
cles to their position tracking errors. In case of linear controllers, we show that, when N is large,
the first-to-last amplification factor, which becomes an H1 norm, grows as O.˛N /, ˛ > 1, for
predecessor-following architecture but only as O.N/ for the symmetric bidirectional architecture.
The all-to-all amplification factor scales as O.˛N / for predecessor-following architecture and as
O.N 3/ for the symmetric bidirectional architecture. The first result is known in the literature
[14]. These results establish a precise comparison between the robustness of symmetric bidirec-
tional and predecessor-following architectures with linear control. Namely, symmetric bidirectional
architecture has a much smaller sensitivity to external disturbances.

Establishing scaling laws for robustness metrics with nonlinear controllers is challenging. We
therefore study the response in the nonlinear case through extensive numerical simulations, with
both sinusoidal and random disturbances as inputs, and estimate performance metrics from sim-
ulation data. We observe from these studies that, within the predecessor-following architecture,
a nonlinear controller with a saturation-type nonlinearity performs better than the corresponding
linear one. In the symmetric bidirectional architecture, the difference between the linear and
nonlinear controller’s performance is not significant.

The theoretical as well as numerical simulations lead to certain design guidelines. Compar-
ing all four combinations (linear, nonlinear, predecessor following, and symmetric bidirectional),
we observe that, for the same number of agents, the symmetric bidirectional architecture per-
forms considerably better (both in terms of transient decay and robustness to disturbances) than
the predecessor-following one, and this conclusion is valid for both the linear and nonlinear con-
trol laws. Thus, the added complexity and cost of the symmetric bidirectional architecture due to
additional sensors is justified. If stringent cost considerations allow only the predecessor-following
architecture, then the nonlinear controller should be used over the linear one. Even with a linear
control law, actuator saturation will make the overall system closer to the closed-loop nonlin-
ear system studied. Therefore, the fact that both the linear and nonlinear controllers with sector
nonlinearities are seen to perform comparably in the symmetric bidirectional architecture can be
seen as a ‘robustness to modeling errors’ of this architecture. Some of the results for the linear
predecessor-following case may be known or easily derived from existing results. We nevertheless
include them for the sake of completeness.

The conclusions about the architectures are derived only for the specific control laws we investi-
gated. The local control laws at the vehicles are either of proportional–derivative (PD) type (in the
linear case) or such that their linearization around the origin are of PD type (in the nonlinear case).
Nevertheless, analysis carried out with this controller structure and double-integrator vehicle mod-
els is relevant even if there are additional dynamic elements in the loop (i.e, either in the controller
or in the vehicle dynamic model), at least in the linear case. Reasons for this can be seen from the
results in [23], which considered vehicle models with two integrators in series with an additional
transfer function (to model powertrain dynamics) and arbitrary LTI compensators. First, a dynamic
controller cannot have a zero at the origin because it will result in a pole-zero cancellation causing
the steady-state errors to grow without bound as N increases [23]. Second, a dynamic controller
cannot have an integrator either if the vehicle model has two integrators. For if it does, the closed-
loop platoon dynamics become unstable for sufficiently large values of N [23]. As a result, any
allowable dynamic element in the loop must essentially act as a static gain at low frequencies. The
results of [23] indicate that the principal challenge in controlling a platoon of vehicles arises because
of the presence of a double integrator with its unbounded gain at low frequencies. Hence, the issues
discussed here with a PD controller structure is also relevant to the case where additional dynamic
elements appear in the loop.

In terms of the stability analysis with nonlinear controllers, our work closely parallels that of [25],
which considers arbitrary information graphs (instead of the 1-D graph of a platoon we consider).
However, the results of [25] are not applicable to the scenario considered here, because we con-
sider relative velocity feedback, whereas [25] considers absolute velocity feedback. Furthermore,
the assumption of symmetry made in [25] precludes the predecessor-following architecture from
their formulation. In terms of sensitivity to external disturbances with linear control, our work is
related to [26–30]. In [26, 27], it is shown that, if the information graph used is undirected and has
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bounded degree, the maximum error due to sinusoidal disturbances cannot be made independent of
the size of the formation. In [28], Veerman showed that the first-to-last amplification grows linearly
in N for the symmetric bidirectional case but grows exponentially in N for asymmetric bidirec-
tional architecture, where asymmetric means the information from its front and back neighbors are
weighted differently. Scaling laws of certain H2 norms from disturbance to outputs that quantify a
number of performance measures are examined in [29, 30]. In particular, it was shown that the ‘all-
to-all’ H2 norm scales exponentially in N for predecessor-following architecture (although with
absolute velocity feedback) [30] but as O.N 3/ for the symmetric bidirectional architecture [29],
which is the same as that of the all-to-all H1 norm established in this paper. They also show that
the scaling laws for the H2 norm hold for arbitrary but fixed number of front and back neighbors
and arbitrary stabilizing feedback gains.

The rest of this paper is organized as follows. Section 2 presents the problem statement.
Sections 3 and 4 present the stability and robustness analysis, respectively, along with corresponding
numerical studies. The paper ends with a summary in Section 5.

2. PROBLEM STATEMENT

We consider the formation control of N homogeneous agents that are moving in 1-D Euclidean
space, as shown in Figure 1. The position of the i th agent is denoted by pi , and each agent is
modeled as a double integrator:

Rpi D ui Cwi , i 2 ¹1, 2, � � � ,N º, (1)

where ui is the control input and wi is the external disturbance. This is a commonly used model for
vehicle dynamics in studying vehicular platoons and results from feedback linearization of nonlinear
vehicle dynamics [11, 31].

The control objective is to make the network of agents maintain a rigid formation geometry while
following a desired trajectory. The desired geometry of the formation is specified by the desired
gaps�.i�1,i/ for i 2 ¹1, � � � ,N º, where�.i�1,i/ is the desired value of pi�1.t/�pi .t/. The desired
inter-vehicular gaps �.i�1,i/ are positive constants, and they have to be specified in a mutually con-
sistent fashion, �.i ,k/ D �.i ,j / C �.j ,k/ for every triple .i , j , k/, where i 6 j 6 k. The desired
trajectory of the formation is provided in terms of a fictitious reference agent with index 0, whose
trajectory is denoted by p�0 .t/. The information on the desired trajectory of the formation is only
provided to agent 1. The desired trajectory of the i th agent, p�i .t/, is given by

p�i .t/D p
�
0 .t/��.0,i/ D p

�
0 .t/�

iX
jD1

�.j�1,j /. (2)

In this paper, we consider the following two decentralized control architectures:

(i) Predecessor-following architecture. The control action at the i th agent depends on the rela-
tive position and velocity measurements from its immediate front neighbor. In particular, we
consider the following decentralized control law:

ui D�f .pi � pi�1C�.i�1,i//� g. Ppi � Ppi�1/, (3)

where i 2 ¹1, 2, � � � ,N º and f ,g WR!R are scalar functions.

Figure 1. Desired geometry of a 1-D network ofN double-integrator agents. The reference agent with index
‘0’ need not to be a real agent; it merely provides the reference trajectory of the formation to agent 1.
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(ii) Symmetric bidirectional architecture. The control action at the i th agent depends on the rel-
ative position and velocity measurements from its immediate front and back neighbors, and
the information from its front and back neighbors are weighted equally. In particular, we
consider the following decentralized control law:

ui D�f .pi � pi�1C�.i�1,i//� g. Ppi � Ppi�1/

� f .pi � piC1 ��.i ,iC1//� g. Ppi � PpiC1/,

uN D�f .pN � pN�1C�.N�1,N//� g. PpN � PpN�1/, (4)

where i 2 ¹1, 2, � � � ,N � 1º and f ,g WR!R.

In both architectures, the information needed to compute the control action at each agent can be
easily obtained by on-board sensors such as radars, because only relative position and velocity are
used in the control.

In this paper, we make the following assumptions.

Assumption 1
In the aforementioned controllers (3) and (4), the possibly nonlinear functions f ,g WR!R are odd
functions, which are smooth enough to guarantee the existence of a solution of the coupled ODEs.
Each agent i knows the desired gaps �.i�1,i/ and �.i ,iC1/, whereas only agent 1 knows the desired
trajectory p�0 .t/ of the fictitious reference agent. The reference trajectory is a constant velocity type,
that is, p�0 .t/D v0t C c0 for some constants v0 and c0. The first agent must have access to its own
absolute position and velocity information.

To facilitate analysis, we define the following position tracking error:

Qpi WD pi � p
�
i , (5)

where p�i is given by (2). The closed-loop dynamics for the predecessor-following architecture can
now be expressed as the following coupled-ODE model:

RQpi D�f . Qpi � Qpi�1/� g
�
PQpi � PQpi�1

�
Cwi , i 2 ¹1, 2, � � � ,N º. (6)

The closed-loop dynamics for the symmetric bidirectional architecture are

RQpi D�f . Qpi � Qpi�1/� g
�
PQpi � PQpi�1

�
� f . Qpi � QpiC1/� g

�
PQpi � PQpiC1

�
Cwi , i < N ,

RQpN D�f . QpN � QpN�1/� g
�
PQpN � PQpN�1

�
CwN . (7)

Note that Qp0.t/D PQp0.t/� 0, because the reference agent perfectly tracks its desired trajectory. The
system can be expressed in the state space form,

Px D f.x,w/, (8)

where the state and disturbance vectors are defined as x WD Œ Qp1, PQp1, � � � , QpN , PQpN �T and w WD
Œw1, � � � ,wN �T. The special case f .´/ D k0´ and g.´/ D b0´ (where ´ is the argument, k0 > 0,
and b0 > 0) in the aforementioned coupled ODEs correspond to the case of linear control in each
architecture. In the case of linear control, the closed-loop can be represented as

Px D AxCBw, (9)

where A is the state matrix that depends on k0 and b0, and B is the input matrix with appropriate
dimension.

In this paper, we study the stability of the origin x D 0 of the undisturbed system Px D f.x, 0/ given
in (8) with linear as well as a class of nonlinear controllers for the two architectures. In addition, we
examine the sensitivity of position tracking errors Qp D Œ Qp1, � � � , QpN �T to the external disturbances
w D Œw1, � � � ,wN �T.
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3. STABILITY ANALYSIS

In this section, we present the stability analysis of the origin x D 0 of the undisturbed system
Px D f.x, 0/ given in (8) with both linear and nonlinear controllers. For the linear case, we also derive
formulae showing how the least stable eigenvalue of the state matrix A in (9) changes with increas-
ing size of the formation. This eigenvalue quantifies the system’s convergence rate with respect
to initial errors. For the case of nonlinear controller, we provide sufficient conditions for asymp-
totic stability. Because convergence rates for nonlinear systems are difficult to obtain analytically,
we perform numerical simulations to study the convergence rate with nonlinear controllers and
compare with corresponding linear controllers. All simulations for studying transient performance
correspond to the following scenario: the disturbance acting on each agent is zero; we perturb the
initial position of the first agent from its desired value and observe the position tracking error of
the last agent QpN .t/. For the convenience of comparison, we define the following as a measure of
transient performance:

E WD lim
T!1

1

x20

Z T

0

1

2
k0 Qp

2
N .t/C

1

2
PQp2N .t/ dt , (10)

where k0 > 0 is the linear position gain given as before and x0 is the initial error of the first agent:

Qp1.0/D x0. (11)

The quantity E is called the integral of transient energy. We assume the limit in (10) exists, that is,
the last agent has finite L2 energy. In numerical simulations, we use the following estimate of E:

OE WD
1

x20

Z T

0

1

2
k0 Qp

2
N .t/C

1

2
PQp2N .t/ dt , (12)

where T is sufficiently large such that all the errors die out. We study through numerical simulations
how E scales with the number of agents N and the initial error x0.

3.1. Stability analysis with linear control

In the statement of the next theorem, the least stable eigenvalue of a matrix refers to the eigenvalue
with the largest real part.

Theorem 1
Consider a 1-D network of N double-integrator agents with linear control law, that is, f .´/ D k0´
and g.´/ D b0´. If k0 > 0 and b0 > 0, the closed-loop dynamics are exponentially stable for both
the predecessor-following and symmetric bidirectional architectures. Under the same conditions,
the following statements hold.

(i) With predecessor-following architecture, the least stable eigenvalue of the closed-loop state

matrix A is �1 D
�b0C

q
b2
0
�4k0

2
, and this eigenvalue occurs with multiplicity N .

(ii) With symmetric bidirectional architecture, when N is large, the least stable eigenvalue is

given by �1 D�
�2b0
8N2
C=, with multiplicity of 1, where = is an imaginary number.

The first statement of the theorem seems to be well known in the community, although we were
unable to find a reference for it. The proof of Theorem 1 is given in the Appendix.

Although stability guarantees that transients due to initial conditions decay to 0 as t ! 1, the
speed at which the transients decay depends quite strongly on the architecture and the controller
design. For a linear system, an appropriate measure of this convergence rate is the absolute value of
the real part of the least stable eigenvalue of state matrix A, as long as the least stable eigenvalue
is not repeated. If the least stable eigenvalue is repeated, then algebraic growth (peaking) occurs. In
that case, the convergence rate is proportional to tkeRe.�1/t , where k is the algebraic multiplicity
of the least stable eigenvalue �1. It follows from Theorem 1 that the real part of the least stable
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eigenvalue Re.�1/ in predecessor-following architecture is independent of N , whereas it decays to
0 with increasing N in symmetric bidirectional architecture. This makes the predecessor-following
architecture appear to have faster convergence rate than the symmetric bidirectional architecture,
especially for large N . However, the large algebraic multiplicity of the least stable eigenvalue in the
predecessor-following architecture will cause large algebraic growth of the initial conditions before
they decay to 0. Corroboration through numerical simulations is provided in Section 3.3.

3.2. Stability analysis with nonlinear control

The next two theorems are on the stability of the network with nonlinear controllers; their proofs are
given in the Appendix. In the statements of the theorems that follow, we say that a scalar function
f belongs to the sector Œ",K� if "´2 6 ´f .´/ 6 K´2,8 ´ 2 R, and it belongs to the sector .0,1�
if ´f .´/ > 0, 8 ´¤ 0.

Theorem 2
Consider a 1-D network of double-integrator agents with predecessor-following architecture with
controller (3). If f ,g W R! R satisfy the sector conditions f 2 Œ"1,K1� and g 2 Œ"2,K2�, where
0 < "1 6 K1 < 1 and 0 < "2 6 K2 < 1, then the origin x D 0 of the undisturbed dynamics
Px D f.x, 0/ (8) is globally asymptotically stable (GAS).

Theorem 3
Consider a 1-D network of double-integrator agents with symmetric bidirectional architecture with
controller (4). If f ,g W R ! R satisfy the sector conditions f 2 .0,1� and g 2 .0,1�, then the
origin x D 0 of the undisturbed dynamics Px D f.x, 0/ (8) is GAS.

Remark 1
Note that stability with the linear controllers are special cases of Theorems 2 and 3. Comparing
the aforementioned two theorems, we notice that the requirement on the sector condition in the
predecessor-following architecture is stricter than that in the symmetric bidirectional architecture.
However, these sector conditions are only sufficient.

3.3. Numerical comparison between linear and nonlinear controllers for transient decay

Because every practical actuator has saturation limits, saturation-type nonlinearity is of particular
interest. The saturation-type nonlinearity in controlling large platoon is practically important and
draws many researchers’ attention [32,33]. Throughout this section, we consider the following spe-
cific linear and saturation-type nonlinear controllers. The control gain functions f .´/ and g.´/ used
in controllers (3) and (4) are given by

Linear: f .´/D k0´, g.´/D b0´,

Nonlinear: f .´/D B1 tanh.�1´/, g.´/D B2 tanh.�2´/, (13)

where k0 D 1, b0 D 0.5, B1 D 5, �1 D 0.2, B2 D 5, and �2 D 0.1. The parameters have been chosen
in such a way that the slopes of f .´/ and g.´/ near the origin are equal to k0 and b0, respectively.
This is done to make the linear and nonlinear cases comparable to some extent. Note that these
f .´/ and g.´/ do not satisfy the sector conditions assumed in Theorem 2 globally but only satisfy
the sector conditions locally. However, the region in which they satisfy the sector condition can be
made arbitrarily large by choosing sufficiently small "1 and "2.

We compare the convergence rate and transient performance between linear and nonlinear con-
trollers through numerical simulations. Figure 2(a) depicts the transients of the 1-D network with
linear and nonlinear controllers for predecessor-following architecture. The algebraic growth for lin-
ear controller that is predicted by Theorem 1 is observed. We also see that the nonlinear controller
has a much smaller peak error than the linear controller. The transients in the symmetric bidirec-
tional architecture are shown in Figure 2(b). We see that (i) the performance of the nonlinear case is
similar to that of the linear controller and (ii) the peak value of the error is much smaller compared
with that in the predecessor-following architecture, no matter if the controller is linear or nonlinear.
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Figure 2. Comparison of transients of the position tracking error of the last agent for a network of N D 10
agents between linear and nonlinear controllers. The initial condition of the first agent used is x0 D 10.
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Figure 3. Comparison of convergence rate for a network of N D 10 agents between predecessor-following
and symmetric bidirectional architectures. The initial condition of the first agent used is x0 D 10.

Figure 3 shows a ‘zoomed-in’ version of the transient response. We see from the figure that the
convergence rates of the linear and nonlinear controllers in each architecture are similar. In addition,
the error in the predecessor-following architecture is smaller than in the case of symmetric bidirec-
tional architecture for large t . This can be explained in the linear case from the real part of the
least stable eigenvalue: it is much larger in the predecessor-following architecture compared with
in the symmetric bidirectional architecture, O.1/ versus O.1=N 2/ (recall Theorem 1). The similar-
ity between the simulation results in the nonlinear and linear cases indicates that the convergence
rate in the predecessor-following architecture is higher than that in the symmetric bidirectional one,
whether control is linear or nonlinear.

Figures 4 and 5 show the estimate of energy measure OE for T D 104 s (defined in (12)) as a func-
tion of N and x0, respectively. Recall that x0 is the initial position error of the first agent; it is given
in (11). We see that (i) the energy in the predecessor-following architecture has a much worse scal-
ing trend with N or x0 than that in symmetric bidirectional architecture, no matter if the controller
is linear or nonlinear, and that (ii) the nonlinear controller performs better than the linear controller
in the predecessor-following architecture (Figures 4(a) and 5(a)), whereas it performs similarly or
worse in the symmetric bidirectional architecture (Figures 4(b) and 5(b)).
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Figure 4. Comparison of OE between linear and nonlinear controllers as a function of N . The measure E is
estimated by numerically evaluating the integral in (12) for T D 104 s. The initial condition of the first agent

used is x0 D 10.
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Figure 5. Comparison of OE between linear and nonlinear controllers for a network of N D 10 agents as a
function of initial conditions x0. The measure OE is estimated by numerically evaluating the integral in (12)

for T D 104 s.

Table I. Comparison of transient performances between the two architectures.

Predecessor following Symmetric bidirectional

Convergence rate Good Bad
Transient energy Bad Good

3.4. Design guidelines based on transient response

On the basis of the numerical and analytical results, the comparisons of performance are summarized
in Tables I and II. It follows that the predecessor-following architecture has a faster convergence
rate (good) but much higher integral of transient energy E (bad) compared with the symmetric
bidirectional architecture. These conclusions hold irrespective of whether the controller is linear or
nonlinear (Figures 2–5). In fact, the transients are so large with the predecessor-following architec-
ture that it is very likely to lead to collisions even for small initial errors. So if a design choice is to
be made between the two architectures, the symmetric bidirectional should be chosen. Within the
bidirectional architecture, the linear controller seems to perform slightly better than the nonlinear
one, so the linear controller should be chosen. If, for some reason, the predecessor-following archi-
tecture has to be used, the nonlinear control law should be used because it clearly outperforms the
linear one in terms of transient energy.
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Table II. Comparison of transient performances between linear and
nonlinear controllers.

Linear controller Nonlinear controller

Predecessor following Bad Good
Symmetric bidirectional Good Bad

4. ROBUSTNESS (SENSITIVITY TO EXTERNAL DISTURBANCES)

In this section, we study the sensitivity of the network to external disturbances. Specifically, we
examine appropriate gains from (i) a disturbance on the first agent w1 2 R to the position tracking
error of the last agent QpN 2R and from (ii) disturbances acting on all agentsw 2RN to the position
tracking errors of all agents Qp 2 RN . Both sinusoidal and random disturbances are considered. For
the first scenario, we consider the metric first-to-last amplification factor (AFTL), defined as the L2
gain from input w1 to output QpN :

Alinear or nonlinear
FTL D sup

k QpN kL2.�/
kw1kL2.�/

, (14)

where the L2 norm in the aforementioned expression is defined in the extended space [34], that is,

kekL2.�/ WD
qR �

0 ke.t/k
2 dt for a large but finite � . In the linear case, denoting by GFTL.s/ the

SISO transfer function from w1 to QpN , this is the same as the H1 norm of GFTL.s/ [34], that is,

Alinear
FTL Dmax

!
jGFTL.j!/j D jGFTL.j!p/j, where !p WD arg max

!
jGFTL.j!/j (15)

and where we have assumed for the moment that the maximum is achieved at a finite frequency.
The justification will be provided later. In the nonlinear case, we use the following quantity as a
conservative estimate of the amplification factor:

OAnonlinear
FTL D

k QpN kL2.�/
kw1kL2.�/

, (16)

where w1 D a1 sin.!pt /, a1 is a positive constant, and !p is the peak frequency for the linear case
that is defined in (15).

For the second scenario (effect of disturbances acting on every agent on their position track-
ing errors), we define the all-to-all amplification factor AATA as the L2 gain from the vec-
tor of disturbances w.t/ D Œw1.t/, � � � ,wN .t/� to the position tracking error vector Qp.t/ D
Œ Qp1.t/, � � � , QpN .t/�:

Alinear or nonlinear
ATA D sup

k QpkL2.�/
kwkL2.�/

. (17)

In the linear case, this is the H1 norm of the MIMO transfer function GATA.s/ from w to Qp:

Alinear
ATA Dmax

!
�max.GATA.j!//D �max.GATA.j!p//,

where we have assumed the maximum is achieved, !p WD arg max! �max.GATA.j!//, and �max

denotes the maximum singular value. In the nonlinear case, evaluating Anonlinear
ATA is intractable, so

we use following conservative estimate:

OAnonlinear
ATA WD

k QpkL2.�/
kwkL2.�/

, (18)

where w D Œa1 sin.!pt C �1/, � � � , aN sin.!pt C �N /� and a D Œa1, � � � , aN � and � D Œ�1, � � � , �N �
are the parameters that achieve the L2 norm in the linear case. The choice of these parameters is
given in Theorem 4 and Corollary 1. Note from (14), (16), (17), and (18) that the estimates for the
nonlinear case are lower bounds: OAnonlinear

FTL 6 Anonlinear
FTL and OAnonlinear

ATA 6 Anonlinear
ATA .
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We also examine the effect of random disturbances. Specifically, let w.t/ in the closed-loop
dynamics (8) be a scalar (or vector) of white noise with zero mean and autocorrelation function
EŒw.t/w.tC �/T�D �0ı.�/I ,8 t ,8 � , where �0 is a constant, ı.�/ is the Dirac delta function, and
I is the identity matrix with appropriate dimension. Similar to sinusoidal disturbances, we define
the following two metrics (i) first-to-last ratio and (ii) all-to-all ratio:

Rlinear or nonlinear
FTL WD lim

t!1

q
E. Qp2N .t//

�0
, Rlinear or nonlinear

ATA WD lim
t!1

p
E. Qp.t/T Qp.t//

�0
, (19)

whereE../ denotes the expected value and we have assumed the aforementioned limits exist. Notice
that, in the linear case, the aforementioned ratios are exactly the H2 norms of the appropriate trans-
fer functions from the white noise disturbances to the position tracking errors. The steady-state
covariance matrix of the state Qp.t/ of the system (9) that is driven by a white noise process w.t/ is
given by solution P of the following Lyapunov equation [35, Chapter 4]:

AP CPAT D�Q,

where Q D �0BB
T, and B is the appropriate input matrix given in (9). Because A is Hurwitz, it

guarantees the limit in (19) exists [35]. The steady-state expectations E. Qp2N .t// and E. Qp.t/T Qp.t//
given in (19) can be obtained by extracting the second last diagonal entry of P and summing the
odd diagonal entries of P respectively, which yields

Rlinear
FTL D

p
P.2N � 1, 2N � 1/

�0
, Rlinear

ATA D

qPN
iD1 P.2i � 1, 2i � 1/

�0
. (20)

It should be pointed out that these results are not as analytical as the results in [29, 30, 36].
Our study of random disturbances with linear control is closely related to the works by Bamieh,
Jovanovic, and their coworkers [29, 30]. They derived scaling laws of all-to-all ratio for both
predecessor-following and symmetric bidirectional architectures, which are similar to the scaling
laws of H1 norms established in this paper (see Remark 2 for more details).

For the nonlinear controllers as well as linear controllers, we use the following estimate of the
ratio defined in (19), which can be computed from simulation data:

ORlinear or nonlinear
FTL WD

q
E. Qp2N .T //

�0
, ORlinear or nonlinear

ATA WD

p
E. Qp.T /T Qp.T //

�0
, (21)

where T is sufficiently large such that the transients die out. Monte Carlo simulations are used
to estimate the first-to-last and all-to-all ratios. For example, to compute the first-to-last ratio for
the predecessor-following architecture with nonlinear controller, the noise-driven system (6) is
converted into a standard stochastic differential equation form:

d Qp1 D PQp1dt , d PQp1 D�f . Qp1/dt � g. PQp1/dt C �0dW.t/,

d Qpi D PQpidt , d PQpi D�f . Qpi � Qpi�1/dt � g. PQpi � PQpi�1/dt , (22)

where � D 2, : : : ,N and W.t/ is a standard Wiener process. Sample paths of the states are com-
puted by using the Euler–Maruyama method to numerically integrate the stochastic differential
equation (22) [37]. The metric ORnonlinear

FTL is now estimated by performing appropriate averaging
over a large number of simulations, after letting each simulation proceed sufficiently long to allow
transients to die out.

4.1. Sensitivity to disturbance with linear control

As stated earlier, analytical results on the sensitivity to disturbances are possible only for the
linear case. The first result is on the sensitivity of the predecessor-following architecture with
linear control.
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Theorem 4
Consider a 1-D network of N double-integrator agents with predecessor-following architecture.
With linear controllers f .x/D k0x and g.x/D b0x in (3), the first-to-last amplification Alinear

FTL and
the all-to-all amplification Alinear

ATA satisfy

ˇ1˛
N�1 6 Alinear

FTL 6 ˇ2˛N�1, ˇ1˛
N�1 6 Alinear

ATA 6
ˇ2.˛

N � 1/

˛ � 1
,

where ˛ D jT .j!T /j > 1, ˇ1 D jS.j!T /j, and ˇ2 D jS.j!S /j, in which T .s/ D
b0sCk0

s2Cb0sCk0
,S.s/ D 1

s2Cb0sCk0
, and !T and !S are the peak frequencies of T .s/ and S.s/,

respectively.
Furthermore, when N � 1,

Alinear
FTL � ˇ1˛

N�1, Alinear
ATA � ˇ1

s
.˛2N � 1/

˛2 � 1
, !p �

rq
k40 C 2k

3
0b
2
0 � k

2
0

b0
. (23)

Moreover, a sufficient condition for a disturbance w D Œw1, � � � ,wN � D Œa1 sin.!t C �1/, � � � ,
aN sin.!t C �N /� to yield the worst amplification factors is a D Œa1, � � � , aN � D Œa1, 0, � � � , 0�,
where a1 is an arbitrary constant and ! D !p, � D Œ�1, � � � , �N �D 0.

The proof of this theorem is omitted here, because it is similar to the proof of Lemma 1 in [14].
The interested reader can find a detailed proof in [38].

The next theorem is the corresponding result for the symmetric-bidirectional architecture.

Theorem 5
Consider a 1-D network of N double-integrator agents with symmetric bidirectional architec-
ture. With linear controller f .x/ D k0x and g.x/ D b0x in (4), the first-to-last and all-to-all
amplifications satisfy �

16

	3b0
p
k0

�
N 6 Alinear

FTL 6
�
	3C 18	

12b0
p
2k0

�
N , when N � 1,�

1

b0
p
k0	3

�
.2N C 1/3 6 Alinear

ATA 6
�

1

4b0
p
2k0

�
.2N C 1/3, 8 N .

Furthermore, when N � 1, the all-to-all amplification and its peak frequency are asymptotically

Alinear
ATA �

8N 3

p
k0b0	3

, !p �

p
k0	

2N
.

The asymptotic formulae for the first-to-last amplification and its peak frequency with symmetric
bidirectional architecture are conjectured as follows. The argument for the conjecture is given in the
end of the Appendix.

Conjecture 1
Assume the conditions of Theorem 5 hold. WhenN � 1, the first-to-last amplification and the peak
frequency of the 1-D network are asymptotically

Alinear
FTL �

8N
p
k0b0	2

, !p D !1 �

p
k0	

2N
.

The following result is a corollary of Theorem 5; it provides sufficient conditions for an input to
achieve the L2 gain in the all-to-all scenario.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2012)
DOI: 10.1002/rnc



STABILITY AND ROBUSTNESS OF LARGE PLATOONS OF VEHICLES

Corollary 1
Assume the conditions of Theorem 5 hold. If the disturbance input satisfies w D Œw1, � � � ,wN � D
v1 sin.!1t /, where v1 and !1, given in (A.11) and (A.15), respectively, are the eigenvector and the
peak frequency corresponding to the principal eigenvalue 
1 of L given in (A.9), then

Alinear
ATA D

k QpkL2.�/
kwkL2.�/

.

The aforementioned corollary indicates that a sufficient condition for a disturbance w D
Œw1, � � � ,wN � D Œa1 sin.!t C �1/, � � � , aN sin.!t C �N /� to yield the all-to-all amplification fac-
tor for the symmetric bidirectional architecture is a D Œa1, � � � , aN � D v1, ! D !1, and
� D Œ�1, � � � , �N � D 0. This result will be used to compute the estimate of all-to-all amplification

factor OAnonlinear
ATA for nonlinear controllers, which is defined in (14).

Remark 2
On the basis of the analytical results in Theorems 4 and 5 (and Conjecture 1), we summarize the
robustness results in Table III. We observe that symmetric bidirectional architecture has much bet-
ter robustness than predecessor-following architecture. In particular, the first-to-last amplification
scales geometrically inN asO.˛N /,˛ > 1, for predecessor-following architecture but only linearly
inN asO.N/ for symmetric bidirectional architecture. The all-to-all amplification scales asO.˛N /
for predecessor-following architecture, whereas it scales as O.N 3/ for symmetric bidirectional
architecture. Similar to the results on H1 norms established in this paper, it is worthy to men-
tion that, with predecessor-following architecture, the ‘all-to-all’ ratio/H2 norm of the 1-D network
also scales exponentially with the number of agents N , even with absolute velocity feedback [30],
although we consider in this paper the relative velocity feedback case. For the symmetric bidi-
rectional architecture, Bamieh et al. showed in [29] that the ‘all-to-all’ ratio/H2 norm scales only
as O.N 3/.

4.2. Numerical comparison of sensitivity to disturbances between linear and nonlinear controllers

In this section, we present robustness metrics of the 1-D network with linear and nonlinear con-
trollers empirically estimated using numerical computations. The analytical predictions of the
performance metrics for the linear controllers are also presented to verify these predictions. The
controllers used are the ones given by (13).

Figure 6 shows the first-to-last amplification factor as a function ofN : Figure 6(a) is for predeces-
sor following and Figure 6(b) is for symmetric bidirectional. The following observations are made.
(i) The lower and upper bounds and asymptotic formulae derived are quite accurate, especially for
the predecessor-following case. For the symmetric bidirectional architecture, Conjecture 1 is quite
accurate. (ii) In the predecessor-following architecture, the growth of the first-to-last amplification
factor with respect to N is much slower with the nonlinear controller than with the linear controller,
as readily seen in Figure 6(a). In the symmetric bidirectional architecture, there is little difference
between the two controllers for this sinusoidal disturbance, as seen from Figure 6(b). (iii) Compar-
ing Figure 6(a) and (b), we see that the symmetric bidirectional architecture has a much smaller
first-to-last amplification factor than the predecessor-following architecture, when the controller is
linear. However, when nonlinear controller is applied, the symmetric bidirectional architecture has
a slightly worse scaling trend than the predecessor-following case. The same conclusions can be
drawn to the case of all-to-all amplification factor, whose numerical results are shown in Figure 7.

Table III. Comparison of robustness performances between the two architectures.

Predecessor following Symmetric bidirectional

First-to-last amplification Bad (O.˛N /,˛ > 1) Good (O.N/)
All-to-all amplification Bad (O.˛N /,˛ > 1) Good (O.N 3/)
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Linear (UB Theorem 5)
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Figure 6. First-to-last amplification: sinusoidal disturbances. Comparison of first-to-last amplification fac-
tor with linear and nonlinear controllers. The sinusoidal disturbance on the first agent used is 0.1 sin.!pt /.

LB and UB stand for ‘lower bound’ and ‘upper bound’, respectively.
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Figure 7. All-to-all amplification: sinusoidal disturbances. Comparison of all-to-all amplification factor
with linear and nonlinear controllers. The sinusoidal disturbances used is v1 sin.!pt /, where v1 is the first

eigenvector of L given in (A.11). LB and UB stand for ‘lower bound’ and ‘upper bound’, respectively.
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Figure 8. First-to-last ratio: random disturbance (�0 D 1), for both linear and nonlinear controllers.

To examine the effect of random disturbances, we compute the estimate OR that is defined in (21)
for T D 3000 s, through Monte Carlo simulations for both linear and nonlinear cases. For the first-
to-last ratio, Figure 8 shows ORFTL versus N for a fixed �0, whereas Figure 9 shows ORFTL versus
�0, the strength of the noise, for a fixed N . Numerical and analytical (20) results on the all-to-all
ratio are shown in Figures 10 and 11. The conclusion of robustness to random noise that drawn from
Figures 8–11 is the same as that for robustness to sinusoidal disturbances. We omit the discussion
because of space limit.
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Figure 9. First-to-last ratio: random disturbances. Comparison of the ratios RFTL and ORFTL of a network
of 10 agents as a function of the standard deviation �0 of the white noises.
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Figure 10. All-to-all ratio: random disturbances. Comparison of the ratios RATA and ORATA as a function
of the number of agents N with white noise disturbances. The value of �0 used is 1.
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Figure 11. All-to-all ratio: random disturbances. Comparison of the ratios RATA and ORATA of a platoon of
10 agents as a function of the standard deviation �0 of the white noises.

4.3. Design guidelines based on robustness

On the basis of the empirical as well as the analytical results, the robustness performance results
are summarized in Tables III and IV. A few broad conclusions that are useful for making design
choices can be arrived at. (i) By comparing part (a) with part (b) for Figures 8–11, we conclude
that the predecessor-following architecture has poorer performance compared with the symmetric
bidirectional one, and the difference becomes more pronounced as N increases. Moreover, this
conclusion holds irrespective of whether the disturbance is sinusoidal or random and whether the
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Table IV. Comparison of robustness performances between linear and
nonlinear controllers.

Linear controller nonlinear controller

Predecessor following Bad Good
Symmetric bidirectional Good Bad

first-to-last ratio or the all-to-all ratio is used as a metric of robustness. (ii) If symmetric bidirec-
tional architecture is indeed used, both the linear and nonlinear control laws have almost identical
robustness. The only exception is when the strength of the disturbance is large, in which case, the
nonlinear control law performs poorly compared with the linear one. Thus, a designer can use the
linear control law because of its simplicity without losing performance. Because actuator satura-
tion will be present in practice, the resulting closed-loop system even with a linear control law will
be closer to the nonlinear system studied here. The previous observation therefore tells us that the
symmetric bidirectional architecture is robust to modeling errors as well and therefore preferable
from a practical standpoint. (iii) If the predecessor architecture is to be used because of other con-
straints such as cost, the nonlinear control law has better robustness to disturbance than its linear
counterpart; see part (a) of Figures 8–11. Therefore, in this case, the nonlinear controller should
be used.

5. SUMMARY

We studied the stability and robustness of large 1-D networks of double-integrator agents for two
different decentralized architectures: predecessor following and symmetric bidirectional. Both lin-
ear and nonlinear controllers with certain sector nonlinearities were examined. For the linear case,
we obtained exact formulae for convergence rates of the closed loop, whereas for the nonlinear
case, closed-loop stability was proved. It was shown that the predecessor-following architecture
with linear control has much faster convergence rate than the symmetric bidirectional architecture,
but it suffers from high algebraic growth of initial errors. To compare performance with the nonlin-
ear controller for which convergence rate could not be computed, an ‘integral of transient energy’
measure was proposed. Simulations showed that the symmetric bidirectional architecture has a
better transient performance than the predecessor-following one, whether the controller is linear
or nonlinear.

The robustness (sensitivity to external disturbances) of the closed loop is studied through two met-
rics, called the first-to-last amplification factor and the all-to-all amplification factor (called ratios
instead of amplification factors when the disturbance is random instead of sinusoidal). In case of
linear control, we derived scaling laws of the amplification factors of the 1-D network with respect
to the number of agents for both architectures. For the nonlinear control case, the amplification
factors were examined by extensive numerical simulations. The overall conclusion derived from
a mix of analysis and simulations was that the symmetric bidirectional architecture’s performance
scales with N much better than that of the predecessor-following architecture. Simulations show
that, in the case of the predecessor-following architecture, a class of saturation-type nonlinear con-
trollers perform better compared with the linear control, both in terms of transient performance and
sensitivity to external disturbances.

It should be noticed that the conclusions—and design guidelines—drawn from robustness con-
siderations are consistent with the design guidelines drawn purely from transient response con-
siderations; compare with Sections 4.3 and 3.4. Another important conclusion of these studies is
the following: architecture has a more profound impact on performance than linearity or nonlin-
earity of the plant dynamics/control. The symmetric bidirectional architecture is seen to perform
better than the predecessor-following architecture in almost all cases, with linear or nonlinear con-
trol, for various metrics of performance, and with sinusoidal or random disturbance. The only
exception is convergence rate. Everything else being equal, the predecessor-following architec-
ture has a faster convergence rate than the symmetric bidirectional. However, this comes with the
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associated cost of higher peak transients and higher transient energy, so that, with the predecessor-
following architecture, collisions between agents can be avoided only if the initial spacial errors are
extremely small.

Some of the simplifying assumptions made in this paper for the ease of exposition can be removed
without much technical difficulty. Here, we have limited ourselves to a homogeneous network: each
agent in the network has the same open-loop dynamics and uses the same control law. Convergence
rate results in the linear case remain the same asymptotically (for large N ) even in the case of a
heterogeneous network, in which the masses and control gains vary from one agent to another. It
was shown in [39] that, in the linear symmetric bidirectional case, heterogeneity in agent masses and
control gains do not affect the asymptotic scaling (withN ) of the convergence rate; they only change
the coefficient. The nonlinear stability analysis in this paper can also be extended in a straightfor-
ward manner to the heterogeneous network. The linear stability results of this paper can be extended
to formations with more general information graphs—compared with the 1-D formation studied
here—by using the methodology of [38, 40].

The scaling laws for the convergence rate and robustness metrics for the linear case can also be
extended to a more general class of agent models and dynamic compensators. In particular, when
the agent model H.s/ (transfer function from input to position) is not simply 1=s2 but 1=s2P.s/,
where P.s/ is a transfer function with 0 < P.0/ <1, the analysis can be carried out in a manner
similar to that in [14] for the predecessor-following case and [23] for the symmetric bidirectional
case. As shown in [23], the key attribute of the model that determines robustness scaling is the num-
ber of integrators in the loop; additional dynamics only affect the high-frequency portion, whereas
the robustness scaling with N is determined only by the low-frequency portion of the frequency
response of the loop transfer function. The reason for the importance of the low-frequency band is
the unbounded gain and �180ı phase of 1=s2 at dc. As a result, the worst-case amplification occurs
at a progressively lower frequency as N increases. Recall Theorem 5: the peak frequencies for the
symmetric bidirectional case is O.1=N/.

It should be emphasized that the results for the symmetric architecture obtained here do not extend
to the asymmetric case, in which an agent uses information from its predecessor (front neighbor)
differently than the information from its follower (back neighbor). One can introduce a mistuning
parameter � 2 Œ�1, 1� to quantify this asymmetry: � D 0 corresponds to the case of symmetric bidi-
rectional case, whereas � D 1 corresponds to the predecessor-following architecture, with 0 < � < 1
corresponding to a case when the front neighbor’s information is weighted more heavily than that
of the back neighbor and with �1 < � < 0 corresponding to the opposite. The difference between
the two architectures established here already provides evidence that asymmetry has a nonnegligible
effect. Recent works have shown that even small amount of asymmetry can have a huge impact, on
both convergence rate [39,41] and robustness in terms of, respectively,H1 norm [28] andH2 norm
[30]. It was shown in [28, 30, 39] that asymmetry can either significantly improve or deteriorate the
system’s convergence rate and robustness, depending on the choice of asymmetry. These works have
studied the linear case. Analysis of stability with general asymmetric nonlinear control is an open
problem. In fact, analysis of the sensitivity to disturbance with general asymmetric control (linear
or nonlinear) is also an open problem.

APPENDIX

Proof of Theorem 1
For the predecessor-following architecture with linear controller, it follows from straightforward

algebra that the state matrix A can be written as

AD

2
6664
A1
A2 A1

. . .
. . .
A2 A1

3
7775 , A1 D

�
0 1

�k0 �b0

�
, A2 D

�
0 0

k0 b0

�
. (A.1)
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The state matrix A is a lower block triangular matrix, whose eigenvalues are determined by the

block matrix A1 on the diagonal. The eigenvalues of A1 are
�b0˙

q
b2
0
�4k0

2
. Because there are N

such block matrices on the diagonal of A, its eigenvalues have multiplicity N . Because the least

stable eigenvalue is the one closest to the imaginary axis, it is given by �1 D
�b0C

q
b2
0
�4k0

2
, and

this eigenvalue occurs with multiplicity N .
The result for the symmetric bidirectional architecture follows from Theorem 4 in [42] in a

straightforward manner and is therefore omitted. �

The proof of Theorem 2 will use the following proposition.

Proposition 1
Consider the second-order autonomous system Py1 D y2, Py2 D �f .y1 � u1/ � g.y2 � u2/, where
y1,y2,u1,u2 2 R and the odd functions f ,g W R ! R lie in the sectors f 2 Œ"1,K1� and
g 2 Œ"2,K2�, where 0 < "1 6 K1 < 1 and 0 < "2 6 K2 < 1. The origin of the unforced
system (with u.t/ D Œu1.t/,u2.t/�T � 0) is globally exponentially stable (GES), and the system is
input-to-state stable (ISS) with u as the input.

Proof of Proposition 1
First, we consider the unforced system with state y D Œy1,y2�T:

Py1 D y2, Py2 D�f .y1/� g.y2/. (A.2)

Consider the following Lyapunov function candidate:

V.y/D
1

2
yTPy C �

Z y1

0

f .´/d´, (A.3)

where P D

�
1 1

1 �

�
and � > max

°
1, 1
"2
C .1CK2/

2

"1"2

±
, which ensures that P is positive def-

inite. From the Rayleigh–Ritz theorem [34], we have the inequality 
min.P /kyk
2 6 yTPy 6


max.P /kyk
2, where 
min.P / > 0 and 
max.P / > 0 are the minimum and maximum eigenvalues

of P , respectively. This shows that V.y/ is radially unbounded and satisfies the following:

V.y/6 
max.P /

2
kyk2C

�K1

2
y21 6


max.P /C �K1

2
kyk2, (A.4)

where the second inequality follows from the fact that the function f .´/ belongs to the sector
Œ"1,K1�. The derivative of V along the trajectory of (A.2) is given by

PV D yTP Py C �f .y1/y2 D�y1f .y1/� �y2g.y2/C y
2
2 C y1y2 � y1g.y2/

6 �"1y21 � .�"2 � 1/y22 C .1CK2/jy1jjy2j

6 �1
2

�
"1y

2
1 C .�"2 � 1/y

2
2

	
�
1

2



"1y

2
1 � 2.1CK2/jy1jjy2j C .�"2 � 1/y

2
2/
�

6 �1
2

�
"1y

2
1 C .�"2 � 1/y

2
2

	
6 �1

2
min¹"1, .�"2 � 1/ºkyk

2, (A.5)

where the second last inequality follows from � > max
°
1, 1
"2
C .1CK2/

2

"1"2

±
, upon a completion of

squares. Because V is radially unbounded and satisfies (A.4), it follows from (A.5) that the origin
y D 0 of (A.2) is GES. Because the functions f and g are assumed to be smooth enough, the ISS
property follows from the fact that a GES system with input u is ISS [34, Lemma 4.6]. �
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Proof of Theorem 2
We first consider the subsystem consisted of only the first agent. Its closed-loop dynamics can be

written as follows by using the fact Qp0 D PQp0 � 0:

RQp1 D�f . Qp1 � Qp0/� g
�
PQp1 � PQp0

�
) RQp1 D�f . Qp1/� g

�
PQp1

�
) x.1/ D f1

�
x.1/

�
,

where x.1/ D Œ Qp1, PQp1�T. From Proposition 1, we have that the origin x.1/ D 0 of the subsystem
x.1/ D f1.x.1// is GES. Next, we consider the subsystem consisted of the first two agents. Its
closed-loop dynamics can be written as8<

:
RQp1 D�f . Qp1/� g

�
PQp1

�
,

RQp2 D�f . Qp2 � Qp1/� g
�
PQp2 � PQp1

�
,
) x.1C2/ D f1C2

�
x.1C2/

�
,

where x.1C2/ D Œ Qp1, PQp1, Qp2, PQp2�T. The aforementioned dynamics can be divided into two parts:

x.1C2/ D f1C2
�
x.1C2/

�
)

8<
:
x.1/ D f1

�
x.1/

�
,

x.2/ D f2
�
x.2/, x.1/

�
,

(A.6)

where x.2/ D Œ Qp2, PQp2�T. The unforced system x.2/ D f2.x.2/, 0/ is given by

x.2/ D f1
�
x.2/, 0

�
) RQp2 D�f . Qp2/� g

�
PQp2

�
.

According to Proposition 1, the origin x.2/ D 0 of the unforced system x.2/ D f2.x.2/, 0/ is GES,
and it is ISS with x.1/ as the input. We now invoke [34, Lemma 4.7]: the origin of the cascade
system x.1C2/ D f1C2.x.1C2// given in (A.6) is GAS. We now prove that the origin of the whole
system is GAS by induction. Suppose the origin x.1C���CN�1/ D 0 of the subsystem consisted of the
first N �1 agents x.1C���CN�1/ D f1C���CN�1.x.1C���CN�1// is GAS; we consider the whole system,
whose dynamics is given by

Px D f.x/ ) x.1C���CN/ D f1C���CN
�
x.1C���CN/

�
.

The aforementioned dynamics can be divided into two parts:

x.1C���CN/ D f1C���CN
�
x.1C���CN/

�
, )

x.1C���CN�1/ D f1C���CN�1
�
x.1C���CN�1/

�
,

x.N/ D fN
�
x.N/, x.1C���CN�1/

�
,

(A.7)

The unforced system x.N/ D fN .x.N/, 0/ is given by

x.N/ D fN
�
x.N/, 0

�
) RQpN D�f . QpN /� g. PQpN /.

According to Proposition 1, the origin x.N/ D 0 of the unforced system x.N/ D fN .x.N/, 0/ is GES,
and it is ISS with x.1C���CN�1/ as the input. Invoking [34, Lemma 4.7] again, we see that the origin
x D x.1C���CN/ D 0 of the whole system whose dynamics is given in (A.7) is GAS. This completes
the proof by induction. �

Proof of Theorem 3
For the 1-D network of double-integrator agents with symmetric bidirectional architecture, we

consider the following Lyapunov function candidate, which is inspired by the one used in [25]:

V.x/D

NX
iD1

Z Qpi� Qpi�1
0

f .´/d´C
1

2

NX
iD1

PQp2i ,

where x D Œ Qp1, PQp1, Qp2, PQp2, � � � , QpN , PQpN �. The derivative of V along the trajectory of (7) with
wi D 0 is

PV D

NX
iD1

f . Qpi � Qpi�1/. PQpi � PQpi�1/C

NX
iD1

PQpi RQpi D�

NX
iD1

. PQpi � PQpi�1/g. PQpi � PQpi�1/6 0.
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If PV D 0, then we have PQpi D 0 for all i , because g.´/ satisfies ´g.´/ > 0,8x ¤ 0 and PQp0 D 0,
by definition. Asymptotic stability now follows from LaSalle’s Invariance Principle. In addition, we
have V.x/!1 as kxk !1. Therefore, the Lyapunov function V is radially unbounded, and we
have global asymptotic stability. �

Proof of Theorem 5
Take the Laplace transform of the coupled-ODE model (7) and assume zero initial conditions; the

transfer function from the disturbance w D Œw1, � � � ,wN �T to position error Qp D Œ Qp1, � � � , QpN �T is
given by

G.s/D
�
s2I C .b0sC k0/L

	�1
, (A.8)

where I is the N �N identity matrix and L is given by

LD

2
66664

2 �1
�1 2 �1

. . .
. . .

. . .
�1 2 �1

�1 1

3
77775 . (A.9)

Following Theorem 3.1 of [43], the eigenvalues of L and its corresponding orthonormal eigenvec-
tors are given by


` D 2� 2 cos

�
.2`� 1/	

2N C 1

�
D 4 sin2

�
.2`� 1/	

2.2N C 1/

�
, (A.10)

v` D
2

p
2N C 1

�
sin

�
.2`� 1/	

2N C 1

�
, � � � , sin

�
.2`� 1/N	

2N C 1

��T
. (A.11)

(i) For the case of first-to-last amplification, the transfer function GFTL from disturbance w1 on
the first agent to the position error of the last agent QpN is GFTL D �

T
NG.s/�1, where �i is

the i th canonical basis vector of RN whose i th entry is 1 and the rest are all 0’s. Therefore,

GFTL.s/D �
T
NM.s

2I C .b0sC k0//
�1MT�1

D �T
NM

2
64

1
s2C�1b0sC�1k0

. . .
1

s2C�N b0sC�N k0

3
75MT�1

D
4

2N C 1

NX
`D1

�
sin

.2`� 1/N	

2N C 1
sin

.2`� 1/	

2N C 1
G`.s/

�
, (A.12)

where M D Œv1, v2, � � � , vN � and D diag.
1,
2, � � � ,
N / such that LDMMT and

G`.s/ WD
1

s2C 
`b0sC 
`k0
. (A.13)

It can be shown using straightforward calculus that, for each eigenvalue 
`, the maximum
amplitude and its peak frequency of G`.s/ are as follows:

A` WDmax
!
jG`.j!/j D

8̂̂̂
<
ˆ̂̂:

2



3=2

`
b0

q
4k0 � 
`b

2
0

if 
` 6 2k0=b20 ,

1


`k0
otherwise.

(A.14)
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!` WD arg max jG`.j!/j D

8̂<
:̂
q
4
`k0 � 2


2
`
b20

2
if 
` 6 2k0=b20 ,

0 otherwise.

(A.15)

From (A.10), 
1 < 
2 < � � � < 
N , which can be used to show by straightforward algebra
that A1 > A2 > � � �> AN . For future use, we have from 2

�
� 6 sin � 6 � ,8 � 2 Œ0, �

2
�, that

4.2`� 1/2

.2N C 1/2
6 
` 6

.2`� 1/2	2

.2N C 1/2
. (A.16)

We first express GFTL.s/ in (A.12) as

GFTL.s/D T .s/CZ.s/, (A.17)

where

T .s/D
4

2N C 1
sin

N	

2N C 1
sin

	

2N C 1
G1.s/, (A.18)

Z.s/D
4

2N C 1

NX
`D2

�
sin

.2`� 1/N	

2N C 1
sin

.2`� 1/	

2N C 1
G`.s/

�
. (A.19)

Now,

sup
!
jGFTL.j!/j6 sup

!
jT .j!/j C sup

!
jZ.j!/j D jT .j!1/j C sup

!
jZ.j!/j,

sup
!
jGFTL.j!/j> jT .j!1/CZ.j!1/j> jT .j!1/j � jZ.j!1/j,

where !1 is given in (A.15). Combining the aforementioned two inequalities, we obtain

jT .j!1/j � jZ.j!1/j6 sup
!
jG.j!/j6 jT .j!1/j C sup

!
jZ.j!/j. (A.20)

We now derive an upper bound for sup! jZ.j!/j. With the use of triangle inequality, it
follows that (A.19) satisfies

sup
!
jZ.j!/j6 4

2N C 1

NX
`D2

�
sin

.2`� 1/N	

2N C 1
sin

.2`� 1/	

2N C 1
sup
!
jG`.j!/j

�

6 4

2N C 1

NX
`D2

�
sin

.2`� 1/	

2N C 1
A`

�
6 4

2N C 1

NX
`D2

.2`� 1/	

2N C 1
A`, (A.21)

where the last inequality follows from the fact that sin � 6 � for � 2 Œ0,	=2� and
.2`�1/�
2NC1

2 Œ0,	=2� for 2 6 ` 6 N . From (A.14), we notice that, depending on whether

` 6 2k0=b20 or not, the expressions of A`’s are different. First, we have


` 6 2k0=b20 )
1

4k0 � 
`b
2
0

6 1

2k0
and 
` > 2k0=b

2
0 )

1


`
<
b20
2k0

. (A.22)

Let Nc be in the index so that ` 6 Nc ) 
` 6 2k0=b20 and ` > Nc ) 
` > 2k0=b
2
0 . The

inequality in (A.21) can be written as

sup
!
jZ.j!/j6 4

2N C 1

0
B@ NcX
`D2

.2`� 1/	

2N C 1

2



3=2

`
b0

q
4k0 � 
`b

2
0

C

NX
`DNc

.2`� 1/	

2N C 1

1


`k0

1
CA

6 4

.2N C 1/2

NX
`D2

 
.2`� 1/	
p
2k0b0

2



3=2

`

C .2`� 1/	
b20
2k20

!
. (A.23)
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From (A.16), we have 1

�
3=2

`

6 .2NC1/3

8.2`�1/3
. The inequality (A.23) becomes

sup
!
jZ.j!/j6 	.2N C 1/p

2k0b0

NX
`D2

1

.2`� 1/2
C

2b20	

k20.2N C 1/
2

NX
`D2

.2`� 1/

6 	.2N C 1/
4
p
2k0b0

1X
`D2

1

.`� 1/2
C

2b20	

k20.2N C 1/
2

NX
`D2

.2`� 1/

6 	.2N C 1/
4
p
2k0b0

�
	2

6
� 1

�
C

2b20	

k20.2N C 1/
2
.N 2 � 1/, (A.24)

where the last inequality follows from
P1
`D1

1
`2
D �2

6
and

PN
`D1 .2`� 1/DN

2. This proves
an upper bound for sup! jZ.j!/j.

We now obtain an upper bound for jT .j!1/j:

jT .j!1/j D
4

2N C 1
sin

N	

2N C 1
sin

	

2N C 1
A1 6

4

2N C 1

	

2N C 1
A1

6 4

2N C 1

	

2N C 1

2



3=2
1 b0

q
4k0 � 
1b

2
0

C
4

2N C 1

	

2N C 1

1


1k0

6 4	

.2N C 1/2
.2N C 1/3

4b0
p
2k0
C

4	

.2N C 1/2
b20
2k20
6 	.2N C 1/

b0
p
2k0

C
2b20	

k20.2N C 1/
2

,

(A.25)

Substituting inequalities (A.24) and (A.25) into (A.20), we obtain an upper bound for
sup! jGFTL.j!/j:

sup
!
jGFTL.j!/j6

�
	3C 18	

12b0
p
2k0

�
N C c1, (A.26)

where c1 is a constant independent of N .
To prove the lower bound for jT .j!1/j, we first use the fact that 2

�
� 6 sin � ,8 � 2 Œ0, �

2
�,

jT .j!1/j D
4

2N C 1
sin

N	

2N C 1
sin

	

2N C 1
A1

> 4

2N C 1

2

	

N	

2N C 1

2

	

	

2N C 1
A1 >

16N

.2N C 1/3
A1. (A.27)

For any fixed k0 and b0, when N is large, we have 
1 < 2k0=b20 , which implies

A1 D
2



3=2
1 b0

q
4k0 � 
1b

2
0

> 1



3=2
1 b0

p
k0
> 1

b0
p
k0

.2N C 1/3

	3
, (A.28)

where the last inequality is obtained from (A.16). The inequality (A.27) now becomes

jT .j!1/j>
16N

	3b0
p
k0

. (A.29)

In addition, we have

jZ.j!1/j6
4

2N C 1

NX
`D2

�
.2`� 1/	

2N C 1
jG`.j!1/j

�

6 4

2N C 1

NX
`D2

 
.2`� 1/	

2N C 1

1


`k0
p
.1� 
1=
2/2

!
.
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From (A.16), we obtain that 1
�`
6 .2NC1/2

4.2`�1/2
, �1
�2
6 �2

36
. Thus, the aforementioned inequality

can be simplified to

jZ.j!1/j6 2c2
NX
`D2

�
.2`� 1/

.2N C 1/2
.2N C 1/2

4.2`� 1/2

�
6 2c2

NX
`D2

�
1

.2`� 1/

�
6 c2

N�1X
`D1

1

`
,

where c2 D �

2k0

p
.1��2=36/2

is a constant independent of N . Moreover,
PN�1
`D1

1
`
D

1C
PN�1
`D2

1
`
6 1C

R N�1
1

1
s
ds, and we have

PN�1
`D1

1
`
6 1C ln.N � 1/. Thus, we have

jZ.j!1/j6 c2 ln.N � 1/C c2. (A.30)

Substituting inequalities (A.30) and (A.29) into (A.20), we obtain a lower bound for
sup! jGFTL.j!/j:

sup
!
jGFTL.j!/j>

16N

	3b0
p
k0
� c2 ln.N � 1/� c2. (A.31)

In addition, when N is large, the constants c1 and c2 and the O.ln.N � 1// term are domi-
nated by the O.N/ term; therefore, we ignore them in (A.26) and (A.31), respectively, and
we obtain �

16

	3b0
p
k0

�
N 6 Alinear

FTL 6
�
	3C 18	

12b0
p
2k0

�
N .

(ii) For the case of all-to-all amplification, the transfer function from the disturbance w D
Œw1, � � � ,wn� on all the agents to their position tracking errors Qp D Œ Qp1, � � � , QpN � is given
by

GATA.s/DG.s/D
�
s2I C .b0sC k0/L

	�1
DM.s2I C .b0sC k0//

�1MT

DM

2
64
G1.s/

. . .
GN .s/

3
75MT, (A.32)

where G`.s/ is given in (A.13) and M is the orthonormal matrix given as before. The H1
norm of GATA.s/ (i.e., Alinear

ATA ) is now given by

kGATAkH1D sup
!
kGATA.j!/k2Dsup

!

q

max.G

�
ATA.j!/GATA.j!//

D sup
!

max
`

1q
.�!2C
`k0/2Cb

2
0!

2
2
`

Dmax
!

max
`
kG`.j!/kDmax

`
A`DA1,

where A1 is given in (A.14). Again, for large N , we obtain from (A.28) the following:

A1 >
1

b0
p
k0

.2N C 1/3

	3
. (A.33)

In addition, using 
1 < 2k0=b20 and 1

�
3=2

`

6 .2NC1/3

8
, we have

A1 D
2



3=2
1 b0

q
4k0 � 
1b

2
0

6 2



3=2
1 b0

p
2k0
6 .2N C 1/

3

4b0
p
2k0

. (A.34)

Combining (A.33) and (A.34), we obtain�
1

b0
p
k0	3

�
.2N C 1/3 6 Alinear

ATA 6
�

1

4b0
p
2k0

�
.2N C 1/3, 8 N .
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To have the asymptotic formula, when N is large, we use the approximation 
1 � �2

4N2
.

Therefore, 
1 < 2k0=b
2
0 is true for large enough N irrespective of the values of k0 and

b0. Substituting 
1 � �2

4N2
into (A.14) and (A.15), we obtain that A1 � 8N3p

k0b0�3
and

!p D !1 �
p
k0�
2N

. Because Alinear
ATA D A1, this concludes the proof.

�

Proof of Corollary 1
We first rewrite the coupled-ODE model (7) with linear controller as

RQpC b0L PQpC k0L Qp D v1 sin.!1t /, (A.35)

where L is given in (A.9) and v1 is the eigenvector of L corresponding to the smallest eigenvalue 
1
given in (A.11). By the method of eigenfunction expansion [44], we can write Qp.t/D

PN
`D1 v`h`.t/,

where v`’s are the eigenvectors of L given in (A.11). Substituting it into (A.35), we obtain

NX
`D1

�
v` Rh`.t/C b0Lv` Ph`.t/C k0Lv`h`.t/

�
D v1 sin.!1t /.

Because of the superposition property of linear system, the aforementioned equation can be split
into N ODEs by using Lv` D 
`v`:

Rh1.t/C b0
` Ph1.t/C k0
`h1.t/D sin.!1t /,

Rh`.t/C b0
` Ph`.t/C k0
`h`.t/D 0, ` 2 ¹2, � � � ,N º.

Following straightforward algebra, the steady-state response of each h`.t/ is given by

h1.t/D A1 sin.!1t C 1/, h`.t/D 0, ` 2 ¹2, � � � ,N º,

where A1 is given in (A.14). Thus, the steady-state response of Qp is given by Qp D v1A1 sin.!1t C

 1/, which yields
k QpkL2
kwkL2

D A1. Recall from Theorem 5 that Alinear
ATA D A1; we complete the

proof. �

A ‘proof’ of the conjecture is as follows. First, notice that

Alinear
FTL D sup

!
jGFTL.j!/j6 sup

!
jT .j!/j C sup

!
jZ.j!/j D jT .j!1/j C sup

!
jZ.j!/j.

When N is large, the smallest eigenvalue 
1 � �2

4N2
and sin N�

2NC1
� 1. The expression jT .j!1/j is

then approximately given by

jT .j!1/j �
4

2N C 1

	

2N C 1
A1 �

4

2N C 1

	

2N C 1

.2N C 1/3

b0
p
k0	3

�
8N

p
k0b0	2

. (A.36)

Under the assumption that N is large, the O.N/ term in the upper bound of sup! jZ.j!/j, which is
given in (A.24), dominates the O.1/ term. Moreover, this O.N/ term is still smaller than jT .j!1/j
given in (A.36). Notice that this upper bound is obtained by letting each term in jZ.j!/j containing
G`.j!/ (` 2 ¹1, 2, � � � ,N º) to achieve their maximum. In fact, the maximum of jGFTL.j!/j can be
only achieved at a single frequency. We thus conjecture that this frequency should be equal to !1,
with the peak frequency corresponding to the principal model 
1. This idea is similar to that a wave
equation’s resonance is achieved at the peak frequency and corresponds to its principle mode [44],
and its H1 norm is determined by the peak response of the principle mode. Now, the H1 norm of
GFTL.s/ is given by kGFTL.j!/k D jG.j!1/j. Thus, from (A.17), we have

jT .j!1/j � jZ.j!1/j6 sup
!
jG.j!/j6 jT .j!1/j C jZ.j!1/j

When N � 1, the lower and upper bounds will be dominated by the term jT .j!1/j, because
jZ.j!1/j isO.ln.N �1// but jT .j!1/j isO.N/. Thus, theH1 norm of GFTL.s/ is determined by
jT .j!1/j. From (A.36), we have the firs-to-last amplification Alinear

FTL � jT .j!1/j D
8Np
k0b0�2

.
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