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Approximation error in PDE-based modelling of vehicular platoons

He Hao* and Prabir Barooah

Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA

(Received 17 June 2011; final version received 23 March 2012)

We study the problem of how much error is introduced in approximating the dynamics of a large vehicular
platoon by using a partial differential equation, as was done in Barooah, Mehta, and Hespanha [Barooah, P.,
Mehta, P.G., and Hespanha, J.P. (2009), ‘Mistuning-based Decentralised Control of Vehicular Platoons for
Improved Closed Loop Stability’, IEEE Transactions on Automatic Control, 54, 2100–2113], Hao, Barooah, and
Mehta [Hao, H., Barooah, P., and Mehta, P.G. (2011), ‘Stability Margin Scaling Laws of Distributed Formation
Control as a Function of Network Structure’, IEEE Transactions on Automatic Control, 56, 923–929]. In
particular, we examine the difference between the stability margins of the coupled-ordinary differential equations
(ODE) model and its partial differential equation (PDE) approximation, which we call the approximation error.
The stability margin is defined as the absolute value of the real part of the least stable pole. The PDE model has
proved useful in the design of distributed control schemes (Barooah et al. 2009; Hao et al. 2011); it provides
insight into the effect of gains of local controllers on the closed-loop stability margin that is lacking in the
coupled-ODE model. Here we show that the ratio of the approximation error to the stability margin is O(1/N ),
where N is the number of vehicles. Thus, the PDE model is an accurate approximation of the coupled-ODE
model when N is large. Numerical computations are provided to corroborate the analysis.

Keywords: error analysis; partial differential equation; continuum approximation; stability margin; eigenvalue
approximation; distributed control

1. Introduction

Partial differential equations (PDEs) have been gaining

attention in studying large-scale distributed systems

such as power network, coupled-oscillators, vehicular

platoons and formation control problems (Justh and

Krishnaprasad 2003; Parashar, Thorp, and Seyler

2004; Sarlette and Sepulchre 2009; Frihauf and

Krstic 2010; Hao and Barooah 2010; Yin, Mehta,

Meyn, and Shanbhag 2010). A PDE approximation is

frequently used in the analysis of many-particle

systems in statistical physics and traffic-dynamics (see

Helbing 2001) and the references therein. A similar but

distinct framework based on partial difference equa-

tions defined on graphs has also been proposed in

Trecate, Buffa, and Gati (2006) to study multi-agent

coordination problems. In addition, there are also

extensive literature studying the opposite problem, i.e.

approximate the continuous system by discretisation.

For example, Brockett and Willems (1974) examines

control systems defined on modules by the discretisa-

tion of linear constant-coefficient PDEs. Another

approach based on spatial Fourier transforms has

been used in Bamieh, Paganini, and Dahleh (2002) to

study infinite-dimensional quadratic optimal control

problems for spatially invariant systems.

A typical question in continuum approximation of

a discrete problem or discrete approximation of a

continuum problem is the amount of error that is

introduced by the approximation. A PDE-based

methodology is proposed for the analysis and design

of distributed control laws for a large vehicular

formation in the recent work by Barooah, Mehta,

and Hespanha (2009) and Hao, Barooah, and Mehta

(2011). This article is on the error in the PDE

approximation used in these references. The PDE

model is obtained as a continuum approximation of

the coupled-ODE model of the platoon when the

number of vehicles, N, is large. The PDE provides

insight into the effect of control architecture on the

stability margin, where the stability margin is defined

as the absolute value of the real part of the least stable

closed-loop eigenvalue. Based on the PDE approxima-

tion of a platoon’s dynamics, it is shown in Barooah

et al. (2009) that asymmetric control architecture, in

which a vehicle uses information from its front and

back neighbouring vehicles differently, improves the

stability margin over symmetric control architecture, in

which information from both front and back vehicles

are used with equal weight. More specifically, it is

shown that with a symmetric control, the stability
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margin of the platoon scales as O(1/N2), whereas with
an extremely small amount of front–back asymmetry
in the control gains, this scaling can be improved to
O(�/N ), where � denotes the amount of asymmetry in
the control gains. These scaling laws are obtained by
analysing the stability margin of the PDE model.
Numerical computation of the stability margin of the
coupled-ODE model shows an excellent match
between the prediction of the PDE model and that of
the coupled-ODE model. These results are extended to
the case of higher-dimensional formations (not merely
one-dimensional platoons) in Hao et al. (2011).

The PDE approximation-based analysis carried out
in Barooah et al. (2009) and Hao et al. (2011),
however, does not answer the question of how large
is the approximation error, which we define to be the
difference between the stability margin of the PDE
model and of the coupled-ODE model. This article
addresses this question. Specifically, we show that the
approximation error with symmetric control is O(1/N3)
and with asymmetric control is O(�/N2). Comparing
these errors to the stability margins themselves, we see
that the ratio of approximation error to the stability
margin itself is O(1/N ), which is negligible for a large
value of N. This provides a rigorous justification of the
PDE approximation used in Barooah et al. (2009) and
Hao et al. (2011). The results in this article, and in fact
those in Barooah et al. (2009) and Hao et al. (2011), are
limited to the case when the asymmetry in control
gains is sufficiently small. This limitation comes from
the use of perturbation techniques to establish the
results.

The rest of this article is organised as follows.
Section 2 describes the coupled-ODE and PDE models
and presents the main results. The proofs of the results
appear in Sections 3 and 4, as well as numerical
verification. This article ends with a summary in
Section 5.

2. Models and main results

2.1 Coupled-ODE and PDE models

The underlying problem is that of the formation
control of N homogeneous vehicles moving in a
straight line, as shown in Figure 1(a). The position of
each vehicle is denoted by pi2R (i2 {1, 2, . . . ,N}), and
the dynamics of each vehicle are modelled as a double
integrator: €pi ¼ ui, where ui is the control input. The
control objective is that vehicles maintain a desired
formation geometry while following a constant-
velocity-type desired trajectory. The information on
the desired trajectory of the platoon is given in terms of
a fictitious reference vehicle, which perfectly tracks its
desired trajectory p�0ðtÞ. The desired geometry of the

formation is specified by the desired gaps D(i�1,i) for

i2 {1, . . . ,N}, where D(i�1,i) is the desired value of

pi�1(t)� pi(t).
We consider the following decentralised control law

used in Barooah et al. (2009), whereby the control

action at the i-th vehicle depends on the relative

position measurements with its immediate neighbours

in the platoon, its own velocity and the desired velocity

v* of the platoon, which is assumed to be known to

every vehicle:

ui ¼ �k
f
ið pi � pi�1 þ Dði�1,iÞÞ � kbi ð pi � piþ1 � Dði,iþ1ÞÞ

� bið _pi � v�Þ, ð1Þ

where i2 {1, . . . ,N� 1}, and kfi , k
b
i are the front and

back position gains and bi is the velocity gain of the i-th

vehicle. For the vehicle with index N, the control law is

uN ¼ �k
f
Nð pN � pN�1 þ DðN�1,NÞÞ � bNð _pN � v�Þ, ð2Þ

since it does not have a neighbour behind it. Each

vehicle i knows the desired gaps D(i�1,i), D(i,iþ1), while

only vehicle 1 knows the desired trajectory p�0ðtÞ of the

fictitious reference vehicle. For the ease of analysis, the

tracking error ~pi :¼ pi � p�i is introduced. The closed-

loop dynamics can now be expressed as the following

coupled-ODE model (see Barooah et al. (2009)) for

more details):

€~pi þ bi _~pi ¼ �k
f
i ð ~pi � ~pi�1Þ � kbi ð ~pi � ~piþ1Þ,

i 2 f1, . . . ,N� 1g,

€~pN þ bN _~pN ¼ �k
f
N ð ~pN � ~pN�1Þ: ð3Þ

Using the fact that ~p0ðtÞ � 0, the coupled-ODEs (3) can

be represented in the following state space form:

_X ¼ AX, ð4Þ

with state vector X ¼ ½ ~p1, _~p1, . . . , ~pN, _~pN� 2 R
2N. The

eigenvalues of A appear in (real or conjugate) pairs,

they are denoted by &�‘ , ‘2 {1, . . . ,N}, and the least

O X
Δ(0,1)Δ(N−1,N )

01N − 1N

0 1 x1/N1/N

DirichletNeumann(b)

(a)

Figure 1. Desired geometry of a platoon with N vehicles and
1 ‘reference vehicle’, moving in 1D Euclidean space. The
‘filled’ vehicle in the front of the platoon represents the
reference vehicle, whose index is ‘0’. (a) The platoon shown in
the original p coordinate. (b) The platoon redrawn in the ~p
coordinate.
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stable eigenvalue (the one closest to the imaginary axis)

is denoted by &min :¼ &þ1 .
In Barooah et al. (2009), a PDE was derived as

an approximation of the coupled-ODE model (3) for

large N. We provide a sketch of the deviation of this

PDE model, interested readers are referred to Barooah

et al. (2009) for the details. We first rewrite the couple-

ODE model (3) as

€~pi þ bi _~pi ¼
kfi � kbi

N

ð ~pi�1 � ~piþ1Þ

2ð1=NÞ

þ
kfi þ kbi
2N2

ð ~pi�1 � 2 ~pi þ ~piþ1Þ

1=N2
: ð5Þ

To facilitate the analysis, we redraw the graph of the

1D platoon shown in Figure 1(a), so that the position

of the vehicles in the graph are always located in the

interval [0, 1], irrespective of the number of vehicles in

the platoon. The i-th agent in the ‘original’ graph is

now drawn at the position (N� i)/N in the new graph

Figure 1(b). Figure 1 shows an example. In the limit

when N!1, Equation (5) can be seen as a finite

difference discretisation of the following PDE:

@2 ~pðx, tÞ

@t2
þ bðxÞ

@ ~pðx, tÞ

@t
¼

kfðxÞ � kbðxÞ

N

@ ~pðx, tÞ

@x

þ
kfðxÞ þ kbðxÞ

2N2

@2 ~pðx, tÞ

@x2
, ð6Þ

with boundary conditions

@ ~p

@x
ð0, tÞ ¼ 0, ~pð1, tÞ ¼ 0, ð7Þ

where kf(x), kb(x), b(x) : [0, 1]!Rþ are the continuous

approximations of the gains kfi , k
b
i , bi with the following

stipulation:

kfi ¼ kfðxÞjx¼N�i
N
, kbi ¼ kbðxÞjx¼N�i

N
, bi ¼ bðxÞjx¼N�i

N
:

ð8Þ

The PDE model (6)–(7) is an approximation of the

coupled-ODE model (3) in the sense that a finite

difference discretisation of the PDE yields (3).

Existence of solution of the PDE is examined in

Barooah, Mehta, and Hespanha (2008).
The situation considered in Barooah et al. (2009)

was bi¼ b04 0 for all i (correspondingly b(x)¼ b0). To

define stability margin of the resulting PDE model, we

take the Laplace transform of both sides with respect

to the time variable to obtain

ðs2 þ b0sÞ�ðx, sÞ ¼ P�ðx, sÞ, ð9Þ

where �ðx, sÞ :¼ Lð ~pðx, tÞÞ is the Laplace transform of
~pðx, tÞ and the operator P is defined as

P :¼
kfðxÞ � kbðxÞ

N

@

@x
þ
kfðxÞ þ kbðxÞ

2N2

@2

@x2
: ð10Þ

Using the method of separation of variables
(Haberman 2003; Evans 2010), we assume a solution
of the form �ðx, sÞ ¼

P1
‘¼1 HðsÞ�‘ ðxÞ, where the

eigenpairs (�‘(x), ��‘) solve the continuous (Sturm–
Liouville) eigenvalue problem

P�‘ ðxÞ ¼ ��‘�‘ ðxÞ, ‘ ¼ 1, 2, . . . : ð11Þ

From (9)–(11), we have the following characteristic
equation for the PDE model

s2 þ b0sþ k0�‘ ¼ 0: ð12Þ

For each ‘2 {1, 2, . . . }, the two roots of the charac-
teristic equations are denoted by ��‘ . The one that is
closer to the imaginary axis is denoted by �þ‘ , and is
called the less stable eigenvalue between the two. The
set [‘�

�
‘ constitutes the eigenvalues of the PDE (6).

The least stable eigenvalue among them is �min :¼ �þ1 .

2.2 Main results

We formally define symmetric control, homogeneity
and stability margin before stating the main results,
i.e. the stability margin approximation errors of the
platoon with symmetric and asymmetric control.

Definition 2.1: The control law (1) is symmetric if
each agent uses the same front and back position gains:
kfi ¼ kbi , for all i2 {1, 2, . . . ,N� 1}, and is called
homogeneous if kfi ¼ kfj , k

b
i ¼ kbj for every pair (i, j )

and bi¼ b0 for some b0 for each i.

Definition 2.2: The stability margin of the coupled-
ODE model, denoted by So, is the absolute value of the
real part of the least stable eigenvalue of A in (4), i.e.
So :¼ jRe(&min)j. The stability margin of the PDE
model (6)–(7), denoted by Sp, is the absolute value of
the real part of the least stable eigenvalue of the PDE,
i.e. Sp :¼ jRe(�min)j.

We first summarise the results from Barooah et al.
(2009) that were derived by analysing the PDE model.
Apart from symmetric and homogeneous control,
(Barooah et al. 2009) examined the question of optimal
design of gain profiles kf(x), kb(x) subject to the
constraint of small asymmetry and inhomogeneity:
jkf(x)� k0j/k05 �, jkb(x)� k0j/k05 �, where k04 0 is
the nominally symmetric position gain and � is a small
positive number, denoting the amount of asymmetry.1

We use Sð0Þo ,Sð�Þo (resp., Sð0Þp ,Sð�Þp ) to denote the stability
margin for the coupled-ODE (resp., PDE) with sym-
metric control and the ‘optimal’ asymmetric control,
respectively, which are described next.

Proposition 2.3 (Corollaries 1 and 3 of Barooah et al.
2009): Consider an N-vehicle platoon with closed-
loop dynamics (4).

International Journal of Control 3
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(1) With symmetric control, the stability margin of
the PDE model (6)–(7) is Sð0Þp ¼ Oð1=N2Þ.

(2) The optimal control gains, in the limit of small
�, are given by kf(x)¼ k0(1þ �), kb(x)¼
k0(1� �), and the resulting stability margin of
the PDE model (6)–(7) is Sð�Þp ¼ Oð�=NÞ.

œ

Remark 2.4: Proposition 2.3 shows that with sym-
metric control, the stability margin decays to 0 as
O(1/N2), irrespective of how the control gains k0 and b0
are chosen (as long as they are constants independent
of N ). The reason why we have the O(1/N2) scaling
trend is because with symmetric control the coefficient
of the @2=@x2 term in the PDE (6) is Oð1=N2Þ and the
coefficient of the @=@x term is 0. However, any
asymmetry between the forward and the backward
position gains will lead to non-zero kf(x)� kb(x) and a
presence of Oð1NÞ term as the coefficient of @=@x. By a
judicious choice of asymmetry, there is thus a potential
to improve the stability margin from Oð1=N2Þ to
Oð1=NÞ. Proposition 2.3 shows that this can indeed
be achieved, and provides a control design that leads to
the maximal improvement in the stability margin
within the prespecified bounds on the control gains.
Note that the coupled ODE-model provides no such
insight into the effect of asymmetric control gains on
the stability margin. Another interesting fact that
comes out of the PDE-based design is that heteroge-
neity is not crucial for the control design. In fact, the
control design that leads to the maximal improvement
in the stability margin is a homogeneous one. œ

The topic of this article is the approximation
error in modelling the coupled ODE (3) with the
PDE model (6). Though the design in Barooah et al.
(2009) was based on the PDE model, and the design
was numerically corroborated, the error introduced in
the PDE approximation was not analysed. This leaves
the question open on how much the results from PDE-
based analysis can be trusted. The next theorem, which
is the main result of this article, provides an answer to
this question.

The proof of the theorem is provided in the
subsequent sections. The theorem quantifies the dif-
ference So�Sp between the stability margin of the
coupled-ODE (3) and the PDE (6)–(7), and thereby the
error introduced in approximating the stability margin
of the coupled-ODE by that of the PDE. We therefore
call this difference the approximation error.

Theorem 2.5: Consider an N-vehicle platoon with
closed-loop dynamics (4). With the asymmetric control
gains specified in Proposition 2.3, we have
jSð�Þp � Sð�Þo j ¼ Oð�=N2Þ þOð�2Þ þOð1=N3Þ, where the
results hold in the limit N!1 and �! 0. œ

The following corollaries are immediate.

Corollary 2.6: With symmetric and homogeneous

control, we have jSð0Þp � Sð0Þo j ¼ Oð1=N3Þ, where the

results hold in the limit N!1. œ

Corollary 2.7: In both the symmetric and asymmetric

cases, we have ðjSð�Þp � Sð�Þo jÞ=ðS
ð�Þ
o Þ ¼ Oð1=NÞ, where the

results hold in the limit N!1 and �! 0. œ

These results show that the error due to the PDE

approximation is negligible as long as the number of

vehicles N is large.

3. Stability margins of the coupled-ODE and PDE

models

3.1 Stability margin of the coupled-ODE model

We first consider the optimal asymmetric control case,

where kfi ¼ ð1þ �Þk0, k
b
i ¼ ð1� �Þk0, bi¼ b0, where

k04 0, b04 0 are the nominally symmetric position

and velocity gains, respectively. Note that symmetric
control is a special case, obtained by setting �¼ 0. By

defining the vector  :¼ ½ ~p1, ~p2, . . . , ~pN�
T
2 R

N, the

closed-loop dynamics of the platoon can now be

written compactly from (3) as

€ þ B _ ¼ �k0L
ð�Þ , ð13Þ

where B¼ b0I, with I being the N�N identity matrix,

and L(�) is given by

Lð�Þ ¼

2 �1þ �
�1� � 2 �1þ �

. .
. . .

. . .
.

�1� � 2 �1þ �
�1� � 1þ �

2
66664

3
77775: ð14Þ

We assume that �ð�Þ‘ (‘2 {1, 2, . . . ,N}) solves the

discrete eigenvalue problem

Lð�Þv
ð�Þ
‘ ¼ �

ð�Þ
‘ v
ð�Þ
‘ , ð15Þ

with an associated eigenvector v
ð�Þ
‘ . Substituting (15)

into (13) and taking the Laplace transform with respect

to the time variable, we obtain the following charac-

teristic equation for the coupled-ODE model:

s2 þ b0sþ k0�
ð�Þ
‘ ¼ 0: ð16Þ

The two roots are &�‘ :¼ 1
2 ð�b0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 � 4k0�

ð�Þ
‘

q
Þ. If the

discriminant is positive, both the eigenvalues are real-
valued, with &þ‘ being the less stable between the two.

The least stable eigenvalue is then

&min ¼ min
‘
&þ‘ ¼

�b0 þ b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k0�

ð�Þ
1 =b

2
0

q
2

, ð17Þ
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where �ð�Þ1 is the principal (smallest) eigenvalue of L(�).
For small �ð�Þ1 , a Taylor series expansion of the square
root term leads to the following expression for the
stability margin of the coupled-ODE model (3)

Sð�Þo :¼ jReð&minÞj ¼
k0�
ð�Þ
1

b0
þO �ð�Þ1

� �2� �
, ð18Þ

which will be used in the subsequent analysis.

3.2 Stability margin of the PDE model

For optimal asymmetric control gains given in
Proposition 2.3, we have kf(x)þ kb(x)¼ 2k0, kf(x)�
kb(x)¼ 2�k0, b(x)¼ b0. Substituting these into the PDE
model (6), we have

@2 ~pðx, tÞ

@t2
þ b0

@ ~pðx, tÞ

@t
¼ �

2k0
N

@ ~pðx, tÞ

@x
þ

k0

N2

@2 ~pðx, tÞ

@x2
:

ð19Þ

Using separation of variables, we assume a solution
of the form ~pðx, tÞ ¼

P1
‘¼1 �

ð�Þ
‘ ðxÞh‘ ðtÞ, we obtain the

following:

€h‘ ðtÞ þ b0 _h‘ ðtÞ þ �
ð�Þ
‘ k0 ¼ 0, ð20Þ

where �ð�Þ‘ solves the following continuous (Sturm–
Liouville) eigenvalue problem:

d�ð�Þ‘ ðxÞ

dx2
þ �2N

�ð�Þ‘ ðxÞ

dx
þ �ð�Þ‘ N2�ð�ÞðxÞ ¼ 0, ð21Þ

with the following boundary condition, which comes
from (7):

d�ð�Þ‘ ð0Þ

dx
¼ 0, �ð�Þ‘ ð1Þ ¼ 0: ð22Þ

Taking a Laplace transform of (20), we obtain the
characteristic equation for the PDE model:

s2 þ b0sþ k0�
ð�Þ
‘ ¼ 0, ‘ ¼ 1, 2, . . . : ð23Þ

Following the same analysis as the coupled-ODE
model, we obtain the following expression for the
stability margin of the PDE model (6)–(7):

Sð�Þp ¼
k0�

ð�Þ
1

b0
þO �ð�Þ1

� �2� �
: ð24Þ

Comparing (18) with (24), we see that the stability
margin approximation error is given by

Sð�Þp � Sð�Þo ¼
k0
b0

�ð�Þ1 � �
ð�Þ
1

� �
þO �ð�Þ1

� �2� �
þO �ð�Þ1

� �2
:

ð25Þ

Estimates of the discrete and continuous eigenvalues
�ð�Þ1 and �ð�Þ1 are obtained in the next section.

4. Stability margin approximation errors

We will now develop the stability margin approxima-
tion errors in terms of N and � based on the expression
in (25) derived in the previous section. With symmetric
control, explicit formulae can be found for the discrete
and continuous eigenvalues �ð0Þ1 and �ð0Þ1 . However, for
asymmetric control, in general there are no explicit
solutions. We will use perturbation methods to derive
accurate bounds for �ð�Þ1 and �ð�Þ1 under the assumption
that � is sufficiently small.

4.1 Stability margin approximation error with
symmetric control

The proof of the main theorem requires certain
intermediate result that leads to Corollary 2.6 first.
We present the result here. In the case of symmetric
control, �¼ 0, and so we have from (14):

Lð0Þ ¼

2 �1

�1 2 �1

. .
. . .

. . .
.

�1 2 �1

�1 1

2
66666664

3
77777775
: ð26Þ

The principal eigenvalue of L(0) and the corresponding
eigenvector are given by Yueh (2005)

�ð0Þ1 ¼ 4 sin2
� �

2ð2Nþ 1Þ

�
,

v
ð0Þ
1 ðkÞ ¼ sin

� k�

2Nþ 1

�
, k 2 f1, . . . ,Ng: ð27Þ

By a Taylor series expansion, we have

�ð0Þ1 ¼
�2

4N2
�
�2

4N3
þO

1

N4

� �
: ð28Þ

For the PDE model, to get an explicit expression
for �(0), we consider the following continuous eigen-
value problem with the same boundary condition as
(22), which is obtained by setting �¼ 0 in (21):

d2�ð0Þ‘ ðxÞ

dx2
þ �ð0Þ‘ N2�ð0Þ‘ ðxÞ ¼ 0: ð29Þ

Following straightforward algebra (Haberman 2003),
the smallest eigenvalue and its corresponding eigen-
function are given by

�ð0Þ1 ¼
�2

4N2
, �ð0Þ1 ðxÞ ¼ cos

��
2
x
�
: ð30Þ

Upon obtaining the above results for �ð0Þ1 and �ð0Þ1 ,
the proof of Corollary 2.6 is straightforward.
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Proof 4.1 (Proof of Corollary 2.6): Using (28) and

(30) in (25), we get

Sð0Þo � Sð0Þp ¼
k0
b0
�
�2

4N3

� �
þO

1

N4

� �
¼ O

1

N3

� �
,

which proves the result. œ

4.2 Stability margin approximation error with
asymmetric control

When the control is asymmetric (� 6¼ 0), it is easy to see
that L(�) can be expressed as Lð�Þ ¼ Lð0Þ þ � ~L, where

~L ¼

0 1
�1 0 1

. .
. . .

. . .
.

�1 0 1
�1 1

2
66664

3
77775: ð31Þ

From Ngo (2005), we have that for j�j	 1, the
perturbed eigenvalue �ð�Þ1 of L(�) can be written as

�ð�Þ1 ¼ �
ð0Þ
1 þ �

v
ð0Þ
1 , ~Lv

ð0Þ
1

D E
v
ð0Þ
1 , v

ð0Þ
1

D E þOð�2Þ, ð32Þ

where h. , .i denotes the standard inner product and �ð0Þ1
is the principal eigenvalue of L(0) and v

ð0Þ
1 is its

associated eigenvector given in (27). It is straightfor-

ward to show that

~Lv
ð0Þ
1 ¼ 2 sin

�

2Nþ 1

h
cos

�

2Nþ 1
, . . . , cos

N�

2Nþ 1

i
:

We now have

v
ð0Þ
1 , ~Lv

ð0Þ
1

D E
¼ sin

�

2Nþ 1

XN
k¼1

sin
2k�

2Nþ 1

¼
1

2
þ
1

2
cos

�

2Nþ 1
, ð33Þ

v
ð0Þ
1 , v

ð0Þ
1

D E
¼
XN
k¼1

sin2
k�

2Nþ 1

¼
N

2
�
1

2

XN
k¼1

cos
2k�

2Nþ 1
¼

2Nþ 1

4
, ð34Þ

where the last equalities in (33) and (34) follow from
the following facts (Lin 2001):

XN
i¼1

sinðixÞ ¼
cos x2 � cosðNþ 1

2Þx

2 sin x
2

,

XN
i¼1

cosðixÞ ¼
sinðNþ 1

2Þx� sin x
2

2 sin x
2

:

Combining the above results, we have the following

expression for �ð�Þ1 :

�ð�Þ1 ¼ 4 sin2
�

2ð2Nþ 1Þ
þ �

2ð1þ cos �
2Nþ1Þ

2Nþ 1

¼
�2

4N2
�
�2

4N3
þ �

2

N
� �

1

N2
þO �2

� �
þO

1

N4

� �
: ð35Þ

For the PDE model, the analysis of the continuous

eigenvalue problem (21) also proceeds by a perturba-

tion method when � 6¼ 0. For vanishingly small �, we
assume the smallest eigenvalue and its eigenfunction of

the form (Haberman 2003; Chapter 9)

�ð�Þ1 ¼ �
ð0Þ
1 þ � ~�1 þOð�2Þ,

�ð�Þ1 ðxÞ ¼ �
ð0Þ
1 ðxÞ þ �

~�1ðxÞ þOð�2Þ: ð36Þ

Substituting the above result into (21), and doing an

O(1) balance, we have

d2�ð0Þ1 ðxÞ

dx2
þ �ð0Þ1 N2�ð0Þ1 ðxÞ ¼ 0: ð37Þ

This is the continuous eigenvalue problem for sym-

metric control case (�¼ 0) whose solution is given in

(30). Doing an O(�) balance, we have the following:

d2 ~�1ðxÞ

dx2
þ �ð0Þ1 N2 ~�1ðxÞ ¼ �2N

d�ð0Þ1 ðxÞ

dx

� ~�1N
2�ð0Þ1 ðxÞ ¼: R: ð38Þ

From the Fredholm alternative (refer to Haberman

(2003; Chapter 9)), for a solution ~�1ðxÞ to exist, R must

be orthogonal to �ð0Þ1 , so we haveZ 1

0

�ð0Þ1 ðxÞ 2N
d�ð0Þ1 ðxÞ

dx
þ ~�1N

2�ð0Þ1 ðxÞ

 !
dx ¼ 0, ð39Þ

which yields ~�1 ¼
2
N, and therefore

�ð�Þ1 ¼
�2

4N2
þ �

2

N
þO �2

� �
: ð40Þ

We are now ready to present the proofs of

Theorem 2.5 and Corollary 2.7.

Proof 4.2 (Proof of Theorem 2.5): Using (35) and (40)

in (25), we obtain

Sð�Þo � Sð�Þp ¼ �
k0
b0

�

N2
þO

1

N3

� �
þO

�2

N2

� �
¼ O

�

N2

� �
,

where the last equality follows from the assumptions

that N is large and � is small. œ

Proof 4.3 (Proof of Corollary 2.7): By substituting

(28) and (35) into (18) and ignoring the higher order

terms, we have that for symmetric and asymmetric

controls, the stability margins of the coupled-ODE
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model are, respectively, Sð0Þo ¼ Oð1=N2Þ and

Sð�Þo ¼ Oð�=NÞ. The proof follows immediately by

using Corollary 2.6 and Theorem 2.5. œ

4.3 Numerical comparison

Figure 2 depicts the comparison between the stability

margins of the couple-ODE model (3) and the PDE

model (6). The stability margin of the coupled-ODE

model is obtained by evaluating the eigenvalues of the

closed-loop state matrix A. For the PDE model, we use

the Galerkin projection method to compute the stabil-

ity margin (Canuto, Hussaini, Quarteroni, and Zang

1983). Figure 2(a) shows the stability margin compar-

ison result with symmetric control where the control

gains for the coupled-ODE model are specified as

kfi ¼ kbi ¼ k0 ¼ 1 and bi¼ b0¼ 0.5. The corresponding

control gains for the PDE model are

kf(x)¼ kb(x)¼ k0¼ 1 (which lead to kf(x)� kb(x)¼ 0,

kf(x)þ kb(x)¼ 2k0¼ 2) and b(x)¼ b0¼ 0.5; Figure 2(b)

shows the stability margin comparison result for

an asymmetric control case where the amount of

asymmetry is given by �¼ 0.1. The control gains

for the coupled-ODE are kfi ¼ ð1þ �Þk0 ¼ 1:1, kbi ¼
ð1� �Þk0 ¼ 0:9 and bi¼ b0¼ 0.5. For the correspond-

ing PDE model, the control gains become

kf(x)� kb(x)¼ 2�k0¼ 0.2, kf(x)þ kb(x)¼ 2k0¼ 2 and

b(x)¼ b0¼ 0.5. We can see from Figure 2 that for

both the symmetric and asymmetric control cases,

the stability margin of the PDE model is an accu-

rate approximation of the stability margin of the

coupled-ODE model when N is large, which verifies the
results of this article.

5. Conclusion

We studied the error introduced in modelling the
closed-loop dynamics of a large vehicular platoon by
using a PDE. The value of the PDE approximation is
that it provides powerful insights into the effect of
control architecture on the stability margin, in partic-
ular, the beneficial effect of front-back asymmetry
(refer to Remark 2.4). The insight from the PDE was
used in prior works by Barooah et al. (2009) and Hao
et al. (2011) to design an asymmetric control architec-
ture that improves the stability margin of the closed
loop to Oð1=NÞ from the much poorer scaling law of
Oð1=N2Þ that results from symmetric control.

The aforementioned papers, however, provided no
rigorous analysis on how well the PDE model approx-
imates the coupled ODE model. Instead, a design
derived from the PDE model was directly implemented
on the coupled-ODE model and the resulting improve-
ment was numerically verified. The contribution of
this article is to provide a rigorous analysis of the
approximation error. The main results of this article
(Theorem 2.5 and its corollaries) show that the error
due to the continuum approximation is negligible if N
is large.

The results of this article, and in fact those in
Barooah et al. (2009) and Hao et al. (2011), hold only
for the case of small asymmetry, i.e. when � is
vanishingly small. This is due to the use of

10 20 50 100

10
−3

10
−2

10
−1

N

S

Coupled-ODE model
PDE model

Symmetric control ( = 0)

10 20 50 100
0.02

0.04

0.08

0.14

N

S

Coupled-ODE model
PDE model

Asymmetric control ( = 0.1)

(b)(a)

Figure 2. Stability margin comparisons between the coupled-ODE and PDE models with symmetric and asymmetric control. In
the above figures, S denotes stability margin and N denotes the number of vehicles in the platoon.
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perturbation-based analysis to obtain the results for
the asymmetric case (� 6¼ 0). Analysis of the approxi-
mation error between the two models for non-
vanishing asymmetry and arbitrary choice of control
gains is the subject of ongoing work. Another topic of
interest is to study the eigenvalue approximation error
between general Sturm–Liouville operator and its
discretisation.

The analysis in this article is limited to a specific
boundary condition (Dirichlet–Neumann) that corre-
sponds to the scenario when there is a fictitious lead
vehicle in front of the platoon. Similar results hold for
the Dirichlet–Dirichlet boundary condition that corre-
sponds to the scenario when there are fictitious lead
and follow vehicles on both ends of the platoon. The
analysis can be carried out in a manner exactly
analogous to that in this article. Numerical verification
of this statement is provided in Barooah et al. (2009;
Figure 6).

Whereas the PDE model in this article corresponds
to a platoon where each vehicle uses a relative position
and an absolute velocity feedback, a slightly different
PDE is obtained if one considers relative position and
relative velocity feedback (Hao and Barooah 2010).
The approach that led to the control design based on
the PDE (6) in Barooah et al. (2009) also led to an
improved control design in Hao and Barooah (2010).
While the PDE (6) is for a one-dimensional platoon, a
corresponding PDE was derived in Hao et al. (2011)
for a d-dimensional vehicular formation. Again, a
PDE-based design was carried out that led to an
improved stability margin over the symmetric design.
Thus, the PDE-based approach for a distributed
control design is useful to a range of distributed
control problems involving double-integrator agents.

Besides stability margin, the asymmetric designs
that were arrived by the PDE-based analysis were also
found to improve the closed-loop’s robustness to
external disturbances (Barooah et al. 2009; Hao and
Barooah 2010; Lin, Fardad, and Jovanovic 2012).
Thus, the PDE model is beneficial in studying multiple
aspects of the distributed control design (both stability
and robustness). In this article we limited ourselves to
the question of PDE approximation error for the
stability margin. A more comprehensive investigation
that includes the robustness question is a subject of
future work.

Acknowledgements

This work was supported by the National Science
Foundation through Grant CNS-0931885 and ECCS-
0925534.

Note

1. The case considered in Barooah et al. (2009) was, in fact,
jkf(x)� k0j5 �, jkb(x)� k0j5 �. It is straightforward,
however, to re-derive the results if the constraints are
changed to the form used here: jkf(x)� k0j/k05 �,
jkb(x)� k0j/k05 �. In this paper we consider the latter
case since it makes the analysis cleaner without changing
the results of Barooah et al. (2009) significantly.
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