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Abstract— We consider the distributed control of a network  out bound asN increases [4]. Middletoret. al. considers
of heterogeneous agents with double integrator dynamics to poth unidirectional and bidirectional control, and conlea
maintain a rigid formation in 1D. The control signal at a heterogeneity has little effect on the string stability end

vehicle is allowed to use relative position and velocity wht its bl fi b ded hiah f d
immediate neighbors. We examine the effect of heterogengit reasonable confines of bounded high frequency response an

and asymmetry on the closed loop stability margin, which integral absolute error [5]. On the other hand, [6] examines
is measured by the real part of the least stable eigenvalue. the effect of asymmetry (but not heterogeneity) on the

By using a PDE approximation, we show that heterogeneity response of the platoon as a result of sinusoidal distugsanc

has little effect while asymmetry has a significant effect on i, the |ead vehicle, and concludes the asymmetry makes
the stability margin. When control is symmetric, in which itivity t h disturb
information from front and back neighbors are weighted Sensitivity to such disturbances worse.

equally, the stability margin decays to0 asO(1/N?), where N is In this paper we analyze the case when the agents are
the number of agents, even when the agents are heterogeneousheterogeneous their masses and control laws used, and also
in their masses and control gains. In contrast, we show that allow asymmetry in the use of front and back information. A
arbitrarily small amount of asymmetry in the velocity feedback 4o centralizedidirectionalcontrol law is considered that uses
gains can improve the decay of the stability margin toO(1/N). . o . o .

With equal amount of asymmetry in both velocity and position only relative PF’S'“O” and relatlvg velocity informatiorofn .
feedback gains, the closed loop is stable for arbitraryN. the nearest neighbors. We examine the effect of heteroyenei
Numerical computations of the eigenvalues are provided tha and asymmetry on the stability margin of the closed loop,
corroborate the PDE-based analysis. which is measured by the absolute value of the real part of
the least stable eigenvalue. The stability margin detezmin

the decay rate of initial formation keeping errors. Sucloesr

In this paper we examine the closed loop dynamics of grise from poor initial arrangement of the agents. The main
system consisting oV interacting agents arranged in a liné o1t of the paper is that in a decentralized bidirectional

where the agents are modeled as double integrators and egghiro|, heterogeneity has little effect on the stabilitamgin

agent int_eracts with its nearest nei_ghbors in the 1D ”eFWO'S‘f the overall closed loop, while even small asymmetry can

through .|ts local control qcuon. This is a.prolblem that IS Oiwave a significant impact. In particular, we show that in the

primary interest to formation control applications, esakye symmetric case, the stability margin decay8 asO(1/N?),

to platoons of vehicles, where the vehicles are modeled @here N is the number of agents. We also show that the

point ma'sses. An extensive literature exists on 1D,a“tmmatﬁsymptotic trend of stability margin is not changed by agent

platoons; see [1], [2], [3] and references therein. In the, 5 ent heterogeneity as long as the control gains do not
vehicular platoon problem, each vehicle tries to maintain g, e front-back asymmetry. On the other hand, arbitrary
constant gap between itself and its nearest neighbors. Thg || amount of asymmetry in the way the local controllers

desired trajectory of the entire network is available oy tuse front and back information can improve the stability

agentl. margin toO(1/N)! To achieve such an improvement, each

Although significant amqunt of research ha_s. bgen CO'?igenthas to weigh relative velocity information from itsrit
ducted on robustness-to-disturbance and stability issfies neighbor more heavily than the one behind it.

double integrator networks with decentralized controlstno  \1o<t of the results in this paper are established by using

investigations consider the homogeneous case in which eaghbpE approximation of the coupled system of ODEs that
agent has the same mass and employs the same controligfye| the closed loop dynamics of the network. Compared
(exceptions include [4], [5]). In addition, only symmetric;, previous work [3], this paper makes two novel contri-

control laws are considered in which the information from, yions First, we consider heterogeneous agents (the mass
both the neighboring agents are weighted equally, with [6},,4 control gains vary from agent to agent), whereas [3]
[3] being exceptions. Khatiet. al. proposes heterogeneousy,nsiger only homogeneous agents. Secondly, [3] considere
control gains to improve string stability (sensitivity W88 he scenario in which the desired trajectory of the platoon
turbance) at the expense of control gains increasing withzo< one with a constant velocity, and moreover, every
H. Hao and P. Barooah are with Department of Mechanical an@gent knew _thiS des"_’ed velocity. In contrast, the Con_tr0|
Aerospace Engineering, University of Florida, GainesyilFL 32611, law we consider requires agents to know only the desired
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N N -1 1 0
in which the formation may be required to accelerate or Q OE]O Q !
decelerate occasionally, and the decision to do so is made O LANN—1 | 2w | x
solely by the lead agent. It was shown in [3] for the homo- (a) A pictorial representation of 1D network.
geneous formation that asymmetry in the position feedback neymann Dirichlet
can improve the stability margin fro@(1/N?) to O(1/N) ] ] ] m
while the absolute velocity feedback gain did not affect the 00 0O o0 oo _
asymptotic trend. In contrast, we show in this paper that wit O /N | . L
relative position and velocity feedback, asymmetry in the (b) A Redrawn graph of the same network.

velocity feedback gain is the most significant determinanfzig. 1. Desired geometry of a network with' agents and “reference

Even small amount of asymmetry, when properly choseRgent, which are moving in 1D Euclidean space. The fillednade the
can lead to significant improvement in stability margin. Wit front of the network represents the reference agent, itietdel by 0”. (a)

; it inis the original graph of the network in the € [0, c0) coordinate and (b)
equal amount of asymme,try in both pOS.ItIOI’l and Ve|OCIt¥§ the redrawn graph of the same network in fhe [0, 1] coordinate.
feedback, the closed loop is stable for arbitrafyThe effect
of asymmetry in position feedback alone is an open question,

as is the general case of unequal asymmetry in position aghce we are only interested in maintaining rigid formasion

velocity gains. S . ~_that do not change shape over tim&; ;_;’s are positive
Although the PDE approximation is valid only in the limit -ynstants. ’

N — oo, numerical comparisons with the original state- |n this paper, we consider the followindecentralized,

space model shows that the PDE model provides accurgigjirectional control law, whereby the control action at the

results even for smallV (5 to 10). PDE approximation is ; th agent depends on relative position and velocity measure

quite common in many-particle systems analysis in staligyents with its immediate neighbors in the 1D network:
tical physics and traffic-dynamics; see the article [8] for

an extensive review. The usefulness of PDE approximationt; = — k! (pi — pi—1 + Aiic1) — kX — pi1 — Dit1i)

in analyzing multi-agent coordination problems has been _ bf(z'% — pic1) — bR (i — Pis1), )
recognized also by researchers in the controls community;

see [9], [10], [3], [11] for examples. A similar but distinct wherei = {1,...,N — 1}. k{), kf.) are the front and back
framework based on partialifferenceequations has been position gains and/ ,, 4, are the front and back velocity

. ; (.
developed by Ferrari-Trecag. al.in [12] gains respectively. Por t?1e agent with inddx which does

The rest of this paper is organized as follows. Section ot have an agent behind it, the control law is slightly
presents the problem statement. Section Il describes tQgferent:

PDE model of the network of agents. Analysis and control f o .
design results together with their numerical corroboratio  ui = — k; (pi = pi—1 + Aii—1) = b; (Pi — pi-1).  (3)
appear in Sections IV and V, respectively. The paper en

%Sach agent knows the desired gapd;;_1 and A1,
with a summary in Section VI. g 9apa;.i—1 +1’

while only agentl knows the desired trajectoryf(t) of
Il. PROBLEM STATEMENT the fictitious reference agent. Combining the open loop

We consider the formation control oV heterogeneous dynamics (1) with the control law (2), we get

agents which are moving in 1D Euclidean space, as shown mips = — kI (pi — pi1 — Niii1)
in Figure 1 (a). The position and mass of each agent are K (ps — piot — Avsir)
denoted byp; € R andm; respectively. The mass of each P WP T Pl T Bdit

agent is boundedin; —mo|/mo < ¢ for all i, wheremg > 0 — bl (pi — pi-1) — B (Bi — Pis1), 4)
andd € [0,1) are constants. The dynamics of each agent a(g, ..o, € {1,...,N —1}. The dynamics of thev-th agent

modeled as a double integrator: are obtained by combining (1) and (3), which are slightly
mipi = ui, (1) different from (4). The desired trajectory of thieth agent

_ ) is p§(t) — Z;:i Aj ;-1 =: pi(t). To facilitate analysis, we

wherew; is the control input. define the tracking error:
The information on the desired trajectory of the network is )

provided to agent. We introduce dictitiousreference agent Pi =pi —Dp; = Pi = Di — ;- (5)
with index0 that perfectly tracks its desired trajectory, which - . . Wi
is denoted by (t). Agent1 is allowed to communicate with Substituting (5) into (4), and using_, (£) —p; (t) = Aii-1,

the reference agent. The desired geometry of the formation'i e get
specified by thelesired gaps\; ;_; fori = 1,..., N, where mips = — kI (B — Pi_1) — k2 (Bs — Pir1)
A; 1 is the desired value of;,_;(t) — p;(t). The control B bf(ﬁ- — - bl-’(ﬁ- —13'+1) 6)

objective is to maintain a rigid formation, i.e., to make
neighboring agents maintain their pre-specified desirgs gawhere we have used the fact thatt) = 0 since the trajec-
and to make agentfollow its desired trajectory(t)—A; 0.  tory of the reference agent is equal to its desired trajgctor



By defining the state) := [j1, p1, p2, bo, - - - PN, Dn|’, the To obtain a PDE model from (8), we first rewrite it as
closed loop dynamics of the network can now be written

f=b/~ = b= oz | =
compactly from (6) as: map _ ki Pica = Piva) Lk (Pi—1 — 2Pi + Dit1)
. N 2(1/N) IN? 1/N?
V=AY (7) bgib (Pie1 — Dit1) n sz+b (Die1 — 20 + Pit1)
whereA is the closed-loop state matrix. The stability margin N 2(1/N) 2N? 1/N?

of the network, which is denoted by, is defined as the (1)
absolute value of the real part of the least stable eigeavalysing the following finite difference approximations for
of A. In this paper, most of analysis and design is performegleryi ¢ {1,...,N -1}

using a PDE approximation of the state space model (7),

which is described next. [ﬁi—l —ﬁi+1} _ {Bﬁ(x,t)'
2(1/N) Oz la=N-iy/N’

I1l. PDE MODEL OF THE NETWORK {ﬁi_l — 2P +Dit1] r0%p(x, )7
We now derive a continuum approximation of the closed 1/N? 1oL 022 Ja=(N—iyN’

loop dynamics (7) in the limit of larg&V, by following the []51-_1 — P11 [0%P(x, 1)
steps involved in a finite-difference discretization ineese. 21/N) 1 L 0xzdt la=(N—i)/N’
We definek! ™" := k/ +-kb, kI 70 o= kS kb, b/ = b 0],

TR 107 ]ji—l — 2]51 + ]ji-f-l 1 '83]5(1', t)'
f=b._3f b Ot i =
b " :=b; — b;. Substituting these into (6), { 1/N? 1 = 170220t Jomvoiyn’
mip; = Eqg. (11) is seen as a finite difference approximation of the
RELIY I _gfe following PDE:
- ———(pi — Di-1) — ——=—"—(Di — Pit+1) 5 b b 2
L2 2 &N . kI=bx) & kItP(x) O
LA L N i ST N @ (5p)0e0 = (55 + o7 7
B Pi — Pi—1 5 Di — Pit+1)- bfib(x) 92 bf+b($) 93

(8) N ozoi | an? aﬁat)f’(“”t)' (12)

To facilitate analysis, we redraw the graph of the 1D networkrhe boundary conditions of PDE (12) depend on the ar-
so that the position errgy; are defined in the interval, 1, rangement of reference agent in the information graph. For
irrespective of the number of agents. Thth agent in the our case, the boundary conditions are of the Dirichlet type a

“original” graph, is now drawn at positioV —4)/N in the z =1 where the reference agent is, and Neumann at0:
new graph. Figure 1 shows an example. 95

The starting point for the PDE derivation is to consider a p(1,t) =0, 8—(0,t) =0. (13)
functionp(z, ) : [0,1] x [0, o) — R that satisfies: t
IV. ROLE OF HETEROGENEITY ON STABILITY MARGIN
pi(t) = D&, o=/ ©) We first study the role of heterogeneity on the stability
such that functions that are defined at discrete paintsll ~ Margin of the network with symmetric control.
be approximated by functions that are defined everywhere Definition 1: The control law (2) issymmetricif each
on [0,1]. The original functions are thought of as sample§gdent uses the same front and back control galils =

of their continuous approximations. We formally introducet?,b) = b?, for all i € {1,2,...,N — 1}, O
the following scalar functions” (z), k*(z), b/ (z), b°(z) and The first main result of the paper is the following.
m(z) : [0,1] — R defined according to the stipulation: Theorem 1:Consider anV-agent heterogeneous network
with dynamics (1) and control law (2), (3), where the mass
k] =k (@)oeiv—oyn. K= K@) am(v—iy/Ns and the control gains of each agent satisfy; — mj|/mo <
b = b (@) o veiyyns BE = 0@ [ty 5, [k — kol/ko < 6 and b\ — bol/bo < & where

(10) Mo ko andb, are positive constants, arde [0,1) denotes
the amount of heterogeneity. With symmetric control, the

In addition, we define functions’ t?(x), k/~(x), b/*?(x), stability marginS of the network satisfies the following:

b/ =0(x) 1 [0,1]° - R as

m; = m(x)|m:(N7i)/N-

Y LA NPy il (14)
0 (z) =k (2) + KO (z), k/0(2) =k (2) — KO (), 8mo N2 =~ 7 8mo N2’
VIt (2) =0 (2) + 00(2), b U(2) =0 (2) — bP(x).  whend < 1. O
_ The result above is also provable for an arbitrary 1
Due to (10), these satisfy (not necessarily small) when there is only heterogeneity in

b L f+b . F=b 1 f—b . mass using standard results on Sturm-Liouville theory.[13]
k; . B @) lamv—ins B . K@) a=v-0/N For that case, the result is given in the following lemma, and
I = b (@) o voiyyn, b =0T (@) o= (v—iyn- its proof is provided in [7].



Lemma 1:Consider anN-agent heterogeneous network
with dynamics (1) and control law (2), (3), where the masn this case, using the notation introduced earlier, we have
and the control gains of each agent satify< my;, < _ .
mi < Mumasx, kI = kY = ko andb! = b2 = by, wheremy, ko k0 x) =0, /") =0,
andb, are positive constants. The stability margirof the  The PDE (12) is simplified to:
network satisfies the following: 925 LI 825 B () 955
7T2b0 1 7T2b0 1 m(a:) p(I,t) _ (QI) p(:Z?,t) (.CC) p(x,t).
<S< —. (15) ot? 2N 2 2N2  0x20t
87nmax N2 8"nmin N2 (21)
O
The main implication of the above results is thwegdtero-
geneity of masses and control gains plays no role in th
asymptotic trend of the stability margin wiffi as long as the
control gains are symmetridNote that theO(1/N?) decay
of the stability margin described above has been shown f@r, Numerical comparison

homogeneous platoons (all agents have the same mass anﬁ/e now present numerical computations that corroborates

use the same control gains) independently in [14]. the PDE-based analysis. We consider the following mass and
To prove Theorem 1, the starting point of our analysis igontrol gain profile:

the investigation of the homogeneous and symmetric case:

The proof of Theorem 1 follows from a perturbation analysis
of the eigenvalues of the above PDE starting with the results
& homogeneous and symmetric case. The interested reader
is referred to [7] for the details of the proof.

m; = mo, k) = ko, b\ = b, for some positive constants k] =k} = 1402sin(2r(N —i)/N),
mo, ko, bo, fori € {1,..., N}. Using the notation introduced b{ =b% = 0.54 0.1sin(2n(N —i)/N),
earlier, we getm(z) = mo, k/T0(z) = 2ko, k! 0(2) = mi = 14 0.2sin(27(N —i)/N). 22)
0,b7tb(x) = 209, b/ ~b(x) = 0. ’
The PDE (12) simplifies to: In the associated PDE model (21), this corresponds to
2~ 2~ 3~ kE/*o(x) = 2 4+ 0.4sin(27z), b/ (z) = 1 + 0.2sin(277),
mO% = %% %%. (16) m(z) = 1+ 0.2sin(27z). The eigenvalues of the PDE,

. . . : _ ) . that are computed numerically using a Galerkin method with
This ISI awave efquano? Vr‘]”th I;elvm-Vmght damping. Takingeq,rier hasis, are compared with that of the state spacelmode
a Laplace transform of the above equation, we get to check how well the PDE model captures the closed loop

5 bos+ ko 07 _0 17 dynamics. The interested reader is referred to [7] for tktai
(mos™ = N2 @)n(s’ z) = (17) comparisons. Here we only present comparisons for the least
wheren(z, s) is the Laplace transform gf(z,t). ¢¢(z) = stable eigenvalue, which is shown in Figure 2 as a function

of N. We see from Figure 2 that the closed-loop stability
margin of the controlled formation is well captured by the
PDE model. In addition, the plot corroborates the predicted

cos(L;lm) is the ¢-th eigenfunction of the Laplaciaﬁg;
with the boundary conditiom(1,s) = 0,-27(0,s) = 0,

which come from the boundary condition (13). The assoc

ated eigenvalues are bound (14).
5 (20 —1)? V. ROLE OF ASYMMETRY ON STABILITY MARGIN
M=r"——"— [(=12... (18) ] i ) -
4 The second main result of this work is that the stability

Plugging the expansion(z, s) = >, ¢«(z)B(s), where margin can be greatly improved by introducing front-back
B, are weights into (17), we get the characteristic equatioasymmetry in the velocity-feedback gains. We call the tesul
mos? + b“jv—tk“/\g = 0, so that the eigenvalues of the PDEing designmistuningbased design because it relies on small
are changes from the nominal symmetric gdin In addition,

TR a poor choice of such asymmetry can also make the closed
sF=— Acbo T \/ Acby _ 4Nemoko.  (19) loop unstable.
¢ 2moN2 ~ 2moN V N2

Theorem 2:For an N-agent network with dynamics (1)
For small? and largeN so thatN > (2¢—1)wby/(4v/moko), and control law (2), (3), withm; = my for all i, consider
the discriminant is negative, making the real part of théhe problem of maximizing the stability margin by choosing
eigenvalues equal to-Asbo/(2meN?). The least stable the control gains with the constraifit’ — by|/by < & for
eigenvalue, the one closest to the imaginary axis, is o&tain || ;, with ¢ being a positive constant, amng) — kO — k.

i =

with £ = 1: For vanishingly small values aof, the optimal gains are
2 2
+ ™ bo 1 s bo f b
=-S5 = . 20 S = b _ (1 —
1T TSy N2 7 T BmoN? (20) bj = (1 +€)bo, B=(1-eb, (23)
Now recall that for a heterogeneous network with symwhich result in the stability margin
metric control we have cby 1 ]

S="2_4+0

). 24
=k, bf =80, vie{1,...,N}. mo N (32 24)
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) . . . . Fig. 3. Stability margin improvement by mistuning desigteThominal
Fig. 2. The stability margin of the heterogeneous formatidth symmetric  ~gntrol gains areko = 1, by = 0.5, and the mistuned gains used are

control as a function of number of agents: the legends of SBRE and  hg gpes given by (23) in Theorem 2 with= 0.1. The legends “Nominal

lower bound, upper bound stand for the stability margin cote¢h from  gS\” and “Nominal PDE” stand for the stability margin comedifrom the

the state space model, from the PDE model, and the asymfitat®r and  giate-space model and the PDE model, respectively, withmstric control.

upper bounds (14) in Theorem 1. The mass and control gairf8epeve  The |egends “Mistuned SSM” and “Mistuned PDE” stand for thebiity

given in (22). margin computed from the state-space model and PDE modglectvely,
with mistuned control.

The formula is asymptotic in the sense that it holds when
N — oo ande — 0. O o . )
Similar to Theorem 1, the proof of Theorem 2 also relies ot Similar line of attack, by analyzing the role of asymmetry

a perturbation method. Please refer to [7] for the details & the least stable eigenvalue of state makix
the proof. The analysis of the stability margin in the following cases

The theorem says that with arbitrary small change iA"€ OPen problems: (i) unequal asymmetry in position and
the front-back asymmetry in velocity feedback, so that thielocity feedback, (ii) velocity feedback gains are kept at
velocity information from the front is weighted more hegvil (heir nominal symmetric values and asymmetry is introduced
than the one from the back, the stability margin improvell! the position feedback gains only.

significantly. A. Comparison of stability margin computed from mistuned

The astute reader may inquire at this point what are théfate-space and PDE models
effects of introducing asymmetry in the position-feedback Figure 3 depicts the numerically obtained mistuned and
gains while keeping velocity gains symmetric, or introagci  nominal stability margins for both the PDE and state-space
asymmetry in both position and velocity feedback gains. knodels. The nominal control gains dtg= 1, by = 0.5, and
turns out when equal asymmetry in both position and velocihe mistuned velocity gains used are the ones given by (23)
feedback gains are introduced, the closed loop is stable figr Theorem 2 withe = 0.1.
arbitrary N. We state the result in the next theorem. The figure shows that i) the closed-loop least stable
Theorem 3:The closed loop dynamics of th&/-agent eigenvalue match the PDE’s accurately, even for small galue
network with the following asymmetry in contr@lif = (1+ of N;ii) the mistuned eigenvalues show large improvement
p)ko, k2 = (1= p)ko, bf = (14 p)bo, b2 = (1—p)bo, Wwhere  over the symmetric case even though the velocity gainsrdiffe
p is a constant satisfying € (—1,1], are exponentially from their nominal values only by-10%. The improvement
stable. O is particularly noticeable for large values of, while being
The result above is for a equal amount (as a fraction of thagnificant even for small values df.
nominal value) of asymmetry in the position feedback and For comparison, the figure also depicts the asymptotic
velocity feedback gains. This constraint of equal asymynetreigenvalue formula given in Theorem 2. The improvement
in position and velocity feedback is imposed in order tan the stability margin with mistuning is remarkable even
make the analysis tractable. Veerman proved a very simil#iie velocity gains are changed from their symmetric values
result [6, Theorem 4.2], though the model was slighthpy only +10%. Another interesting aspect of the result
different: theN-th agent's control law wasy = &/ (py_1—  in Theorem 2 is that the improvement fro®(1/N?) to
pn) — b (pn_1 — pn). Our proof (provided in [7]) follows O(1/N) can be achieved barbitrarily small changesgo the



nominal velocity gains.

VI. SUMMARY

We studied the role of heterogeneity and control asynj,

metry on the stability margin of a largéD network of
double-integrator agents. The control is decentralizéd; t

control signal at every agent depends on the relative positi ;3

and velocity measurements from its nearest neighbors. It is

shown that heterogeneity does not effect how the stabift4!

ity margin scales withV, the number of agents, whereas
asymmetry plays a significant role. As long as control is
symmetric, meaning information on relative position and
velocity from both neighbors are weighed equally, agent-to
agent heterogeneity does not change ¢hg/N?) scaling
of stability margin. If front-back asymmetry is introduced
in the velocity feedback gains, even by an arbitrarily small
amount, the stability margin can be improved@g1/N).
This is a significant improvement, especially for large
In addition, the optimal asymmetric (mistuned) gain profile
is quite simple to implement. With a maximum allowable
variation of +10% from the symmetric velocity gains, the
optimal gains are obtained by letting the front gains to be
10 percent larger than the nominal gain and letting the back
gains to bel0 percent smaller.

The general case of asymmetry in both position and ve-
locity feedback gains is an open problem. Some preliminary

answers are available in the special case when equal amount

of asymmetry in both position and velocity feedback is
introduced, which is parameterized pyWe showed that in
this case the closed loop is exponentially stable for ahyjtr
N. The stability margin as a function ¢f is also an open
problem.
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