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Abstract— We consider the distributed control of a network
of heterogeneous agents with double integrator dynamics to
maintain a rigid formation in 1D. The control signal at a
vehicle is allowed to use relative position and velocity with its
immediate neighbors. We examine the effect of heterogeneity
and asymmetry on the closed loop stability margin, which
is measured by the real part of the least stable eigenvalue.
By using a PDE approximation, we show that heterogeneity
has little effect while asymmetry has a significant effect on
the stability margin. When control is symmetric, in which
information from front and back neighbors are weighted
equally, the stability margin decays to0 asO(1/N2), whereN is
the number of agents, even when the agents are heterogeneous
in their masses and control gains. In contrast, we show that
arbitrarily small amount of asymmetry in the velocity feedback
gains can improve the decay of the stability margin toO(1/N).
With equal amount of asymmetry in both velocity and position
feedback gains, the closed loop is stable for arbitraryN .
Numerical computations of the eigenvalues are provided that
corroborate the PDE-based analysis.

I. I NTRODUCTION

In this paper we examine the closed loop dynamics of a
system consisting ofN interacting agents arranged in a line,
where the agents are modeled as double integrators and each
agent interacts with its nearest neighbors in the 1D network
through its local control action. This is a problem that is of
primary interest to formation control applications, especially
to platoons of vehicles, where the vehicles are modeled as
point masses. An extensive literature exists on 1D automated
platoons; see [1], [2], [3] and references therein. In the
vehicular platoon problem, each vehicle tries to maintain a
constant gap between itself and its nearest neighbors. The
desired trajectory of the entire network is available only to
agent1.

Although significant amount of research has been con-
ducted on robustness-to-disturbance and stability issuesof
double integrator networks with decentralized control, most
investigations consider the homogeneous case in which each
agent has the same mass and employs the same controller
(exceptions include [4], [5]). In addition, only symmetric
control laws are considered in which the information from
both the neighboring agents are weighted equally, with [6],
[3] being exceptions. Khatiret. al. proposes heterogeneous
control gains to improve string stability (sensitivity to dis-
turbance) at the expense of control gains increasing with-
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out bound asN increases [4]. Middletonet. al. considers
both unidirectional and bidirectional control, and concludes
heterogeneity has little effect on the string stability under
reasonable confines of bounded high frequency response and
integral absolute error [5]. On the other hand, [6] examines
the effect of asymmetry (but not heterogeneity) on the
response of the platoon as a result of sinusoidal disturbances
in the lead vehicle, and concludes the asymmetry makes
sensitivity to such disturbances worse.

In this paper we analyze the case when the agents are
heterogeneousin their masses and control laws used, and also
allow asymmetry in the use of front and back information. A
decentralizedbidirectionalcontrol law is considered that uses
only relative position and relative velocity information from
the nearest neighbors. We examine the effect of heterogeneity
and asymmetry on the stability margin of the closed loop,
which is measured by the absolute value of the real part of
the least stable eigenvalue. The stability margin determines
the decay rate of initial formation keeping errors. Such errors
arise from poor initial arrangement of the agents. The main
result of the paper is that in a decentralized bidirectional
control, heterogeneity has little effect on the stability margin
of the overall closed loop, while even small asymmetry can
have a significant impact. In particular, we show that in the
symmetric case, the stability margin decays to0 asO(1/N2),
whereN is the number of agents. We also show that the
asymptotic trend of stability margin is not changed by agent-
to-agent heterogeneity as long as the control gains do not
have front-back asymmetry. On the other hand, arbitrary
small amount of asymmetry in the way the local controllers
use front and back information can improve the stability
margin toO(1/N)! To achieve such an improvement, each
agent has to weigh relative velocity information from its front
neighbor more heavily than the one behind it.

Most of the results in this paper are established by using
a PDE approximation of the coupled system of ODEs that
model the closed loop dynamics of the network. Compared
to previous work [3], this paper makes two novel contri-
butions. First, we consider heterogeneous agents (the mass
and control gains vary from agent to agent), whereas [3]
consider only homogeneous agents. Secondly, [3] considered
the scenario in which the desired trajectory of the platoon
was one with a constant velocity, and moreover, every
agent knew this desired velocity. In contrast, the control
law we consider requires agents to know only the desired
inter-agent separation; the overall trajectory information is
made available only to agent1. This makes the model
more applicable to practical formation control applications



in which the formation may be required to accelerate or
decelerate occasionally, and the decision to do so is made
solely by the lead agent. It was shown in [3] for the homo-
geneous formation that asymmetry in the position feedback
can improve the stability margin fromO(1/N2) to O(1/N)
while the absolute velocity feedback gain did not affect the
asymptotic trend. In contrast, we show in this paper that with
relative position and velocity feedback, asymmetry in the
velocity feedback gain is the most significant determinant.
Even small amount of asymmetry, when properly chosen,
can lead to significant improvement in stability margin. With
equal amount of asymmetry in both position and velocity
feedback, the closed loop is stable for arbitraryN . The effect
of asymmetry in position feedback alone is an open question,
as is the general case of unequal asymmetry in position and
velocity gains.

Although the PDE approximation is valid only in the limit
N → ∞, numerical comparisons with the original state-
space model shows that the PDE model provides accurate
results even for smallN (5 to 10). PDE approximation is
quite common in many-particle systems analysis in statis-
tical physics and traffic-dynamics; see the article [8] for
an extensive review. The usefulness of PDE approximation
in analyzing multi-agent coordination problems has been
recognized also by researchers in the controls community;
see [9], [10], [3], [11] for examples. A similar but distinct
framework based on partialdifferenceequations has been
developed by Ferrari-Trecateet. al. in [12]

The rest of this paper is organized as follows. Section II
presents the problem statement. Section III describes the
PDE model of the network of agents. Analysis and control
design results together with their numerical corroboration
appear in Sections IV and V, respectively. The paper ends
with a summary in Section VI.

II. PROBLEM STATEMENT

We consider the formation control ofN heterogeneous
agents which are moving in 1D Euclidean space, as shown
in Figure 1 (a). The position and mass of each agent are
denoted bypi ∈ R andmi respectively. The mass of each
agent is bounded,|mi−m0|/m0 ≤ δ for all i, wherem0 > 0
andδ ∈ [0, 1) are constants. The dynamics of each agent are
modeled as a double integrator:

mip̈i = ui, (1)

whereui is the control input.
The information on the desired trajectory of the network is

provided to agent1. We introduce afictitiousreference agent
with index0 that perfectly tracks its desired trajectory, which
is denoted byp∗0(t). Agent1 is allowed to communicate with
the reference agent. The desired geometry of the formation is
specified by thedesired gaps∆i,i−1 for i = 1, . . . , N , where
∆i,i−1 is the desired value ofpi−1(t) − pi(t). The control
objective is to maintain a rigid formation, i.e., to make
neighboring agents maintain their pre-specified desired gaps
and to make agent1 follow its desired trajectoryp∗0(t)−∆1,0.

...

O X∆1,0∆N,N−1

01N − 1N

(a) A pictorial representation of 1D network.

...

0 1 x1/N1/N

DirichletNeumann

(b) A Redrawn graph of the same network.

Fig. 1. Desired geometry of a network withN agents and1 ”reference
agent”, which are moving in 1D Euclidean space. The filled agent in the
front of the network represents the reference agent, it is denoted by ”0”. (a)
is the original graph of the network in thep ∈ [0,∞) coordinate and (b)
is the redrawn graph of the same network in thep̃ ∈ [0, 1] coordinate.

Since we are only interested in maintaining rigid formations
that do not change shape over time,∆i,i−1’s are positive
constants.

In this paper, we consider the followingdecentralized,
bidirectional control law, whereby the control action at the
i-th agent depends on relative position and velocity measure-
ments with its immediate neighbors in the 1D network:

ui = − kf
i (pi − pi−1 + ∆i,i−1) − kb

i (pi − pi+1 − ∆i+1,i)

− bfi (ṗi − ṗi−1) − bbi(ṗi − ṗi+1), (2)

wherei = {1, . . . , N − 1}. kf
(.), k

b
(.) are the front and back

position gains andbf(.), b
b
(.) are the front and back velocity

gains respectively. For the agent with indexN which does
not have an agent behind it, the control law is slightly
different:

ui = − kf
i (pi − pi−1 + ∆i,i−1) − bfi (ṗi − ṗi−1). (3)

Each agenti knows the desired gaps∆i,i−1 and ∆i+1,i,
while only agent1 knows the desired trajectoryp∗0(t) of
the fictitious reference agent. Combining the open loop
dynamics (1) with the control law (2), we get

mip̈i = − kf
i (pi − pi−1 − ∆i,i−1)

− kb
i (pi − pi+1 − ∆i,i+1)

− bfi (ṗi − ṗi−1) − bbi(ṗi − ṗi+1), (4)

wherei ∈ {1, . . . , N − 1}. The dynamics of theN -th agent
are obtained by combining (1) and (3), which are slightly
different from (4). The desired trajectory of thei-th agent
is p∗0(t) −

∑1
j=i ∆j,j−1 =: p∗i (t). To facilitate analysis, we

define the tracking error:

p̃i := pi − p∗i ⇒ ˙̃pi = ṗi − ṗ∗i . (5)

Substituting (5) into (4), and usingp∗i−1(t)−p∗i (t) = ∆i,i−1,
we get

mi
¨̃pi = − kf

i (p̃i − p̃i−1) − kb
i (p̃i − p̃i+1)

− bfi ( ˙̃pi − ˙̃pi−1) − bbi( ˙̃pi − ˙̃pi+1), (6)

where we have used the fact thatp̃0(t) ≡ 0 since the trajec-
tory of the reference agent is equal to its desired trajectory.



By defining the stateψ := [p̃1, ˙̃p1, p̃2, ˙̃p2, · · · , p̃N , ˙̃pN ]T , the
closed loop dynamics of the network can now be written
compactly from (6) as:

ψ̇ = Aψ (7)

whereA is the closed-loop state matrix. The stability margin
of the network, which is denoted byS, is defined as the
absolute value of the real part of the least stable eigenvalue
of A. In this paper, most of analysis and design is performed
using a PDE approximation of the state space model (7),
which is described next.

III. PDE MODEL OF THE NETWORK

We now derive a continuum approximation of the closed
loop dynamics (7) in the limit of largeN , by following the
steps involved in a finite-difference discretization in reverse.
We definekf+b

i := kf
i +kb

i , kf−b
i := kf

i −kb
i , bf+b

i := bfi +bfi ,
bf−b
i := bfi − bbi . Substituting these into (6),

mi
¨̃pi =

− kf+b
i + kf−b

i

2
(p̃i − p̃i−1) −

kf+b
i − kf−b

i

2
(p̃i − p̃i+1)

− bf+b
i + bf−b

i

2
( ˙̃pi − ˙̃pi−1) −

bf+b
i − bf−b

i

2
( ˙̃pi − ˙̃pi+1).

(8)

To facilitate analysis, we redraw the graph of the 1D network,
so that the position error̃pi are defined in the interval[0, 1],
irrespective of the number of agents. Thei-th agent in the
“original” graph, is now drawn at position(N − i)/N in the
new graph. Figure 1 shows an example.

The starting point for the PDE derivation is to consider a
function p̃(x, t) : [0, 1]× [0, ∞) → R that satisfies:

p̃i(t) = p̃(x, t)|x=(N−i)/N , (9)

such that functions that are defined at discrete pointsi will
be approximated by functions that are defined everywhere
on [0, 1]. The original functions are thought of as samples
of their continuous approximations. We formally introduce
the following scalar functionskf (x), kb(x), bf (x), bb(x) and
m(x) : [0, 1] → R defined according to the stipulation:

kf
i = kf (x)|x=(N−i)/N , kb

i = kb(x)|x=(N−i)/N ,

bfi = bf(x)|x=(N−i)/N , bbi = bb(x)|x=(N−i)/N ,

mi = m(x)|x=(N−i)/N . (10)

In addition, we define functionskf+b(x), kf−b(x), bf+b(x),
bf−b(x) : [0, 1]D → R as

kf+b(x) := kf (x) + kb(x), kf−b(x) := kf (x) − kb(x),

bf+b(x) := bf (x) + bb(x), bf−b(x) := bf(x) − bb(x).

Due to (10), these satisfy

kf+b
i = kf+b(x)|x=(N−i)/N , kf−b

i = kf−b(x)|x=(N−i)/N

bf+b
i = bf+b(x)|x=(N−i)/N , bf−b

i = bf−b(x)|x=(N−i)/N .

To obtain a PDE model from (8), we first rewrite it as

mi
¨̃pi =

kf−b
i

N

(p̃i−1 − p̃i+1)

2(1/N)
+
kf+b

i

2N2

(p̃i−1 − 2p̃i + p̃i+1)

1/N2

bf−b
i

N

( ˙̃pi−1 − ˙̃pi+1)

2(1/N)
+
bf+b
i

2N2

( ˙̃pi−1 − 2 ˙̃pi + ˙̃pi+1)

1/N2
.

(11)

Using the following finite difference approximations for
every i ∈ {1, . . . , N − 1}:

[ p̃i−1 − p̃i+1

2(1/N)

]

=
[∂p̃(x, t)

∂x

]

x=(N−i)/N
,

[ p̃i−1 − 2p̃i + p̃i+1

1/N2

]

=
[∂2p̃(x, t)

∂x2

]

x=(N−i)/N
,

[ ˙̃pi−1 − ˙̃pi+1

2(1/N)

]

=
[∂2p̃(x, t)

∂x∂t

]

x=(N−i)/N
,

[ ˙̃pi−1 − 2 ˙̃pi + ˙̃pi+1

1/N2

]

=
[∂3p̃(x, t)

∂x2∂t

]

x=(N−i)/N
,

Eq. (11) is seen as a finite difference approximation of the
following PDE:

m(x)
( ∂2

∂t2

)

p̃(x, t) =
(kf−b(x)

N

∂

∂x
+
kf+b(x)

2N2

∂2

∂x2
+

bf−b(x)

N

∂2

∂x∂t
+
bf+b(x)

2N2

∂3

∂x2∂t

)

p̃(x, t). (12)

The boundary conditions of PDE (12) depend on the ar-
rangement of reference agent in the information graph. For
our case, the boundary conditions are of the Dirichlet type at
x = 1 where the reference agent is, and Neumann atx = 0:

p̃(1, t) = 0,
∂p̃

∂x
(0, t) = 0. (13)

IV. ROLE OF HETEROGENEITY ON STABILITY MARGIN

We first study the role of heterogeneity on the stability
margin of the network with symmetric control.

Definition 1: The control law (2) issymmetric if each
agent uses the same front and back control gains:kf

i =
kb

i , b
f
i = bbi , for all i ∈ {1, 2, . . . , N − 1}. �

The first main result of the paper is the following.
Theorem 1:Consider anN -agent heterogeneous network

with dynamics (1) and control law (2), (3), where the mass
and the control gains of each agent satisfy|mi −m0|/m0 ≤
δ, |k(·)

i − k0|/k0 ≤ δ and |b(·)i − b0|/b0 ≤ δ where
m0, k0 and b0 are positive constants, andδ ∈ [0, 1) denotes
the amount of heterogeneity. With symmetric control, the
stability marginS of the network satisfies the following:

(1 − 2δ)
π2b0
8m0

1

N2
≤ S ≤ (1 + 2δ)

π2b0
8m0

1

N2
, (14)

whenδ ≪ 1. �

The result above is also provable for an arbitraryδ < 1
(not necessarily small) when there is only heterogeneity in
mass using standard results on Sturm-Liouville theory [13].
For that case, the result is given in the following lemma, and
its proof is provided in [7].



Lemma 1:Consider anN -agent heterogeneous network
with dynamics (1) and control law (2), (3), where the mass
and the control gains of each agent satisfy0 < mmin ≤
mi ≤ mmax, kf

i = kb
i = k0 andbfi = bbi = b0, wherem0, k0

and b0 are positive constants. The stability marginS of the
network satisfies the following:

π2b0
8mmax

1

N2
≤ S ≤ π2b0

8mmin

1

N2
. (15)

�

The main implication of the above results is thathetero-
geneity of masses and control gains plays no role in the
asymptotic trend of the stability margin withN as long as the
control gains are symmetric. Note that theO(1/N2) decay
of the stability margin described above has been shown for
homogeneous platoons (all agents have the same mass and
use the same control gains) independently in [14].

To prove Theorem 1, the starting point of our analysis is
the investigation of the homogeneous and symmetric case:
mi = m0, k

(·)
i = k0, b

(·)
i = b0 for some positive constants

m0, k0, b0, for i ∈ {1, . . . , N}. Using the notation introduced
earlier, we getm(x) = m0, k

f+b(x) = 2k0, k
f−b(x) =

0, bf+b(x) = 2b0, b
f−b(x) = 0.

The PDE (12) simplifies to:

m0
∂2p̃(x, t)

∂t2
=

k0

N2

∂2p̃(x, t)

∂x2
+

b0
N2

∂3p̃(x, t)

∂x2∂t
. (16)

This is a wave equation with Kelvin-Voight damping. Taking
a Laplace transform of the above equation, we get

(m0s
2 − b0s+ k0

N2

∂2

∂x2
)η(s, x) = 0 (17)

whereη(x, s) is the Laplace transform of̃p(x, t). φℓ(x) =

cos(2ℓ−1
2 πx) is theℓ-th eigenfunction of the Laplacian∂

2

∂x2

with the boundary conditionη(1, s) = 0, ∂
∂xη(0, s) = 0,

which come from the boundary condition (13). The associ-
ated eigenvalues are

λℓ = π2 (2ℓ− 1)2

4
, ℓ = 1, 2, . . . (18)

Plugging the expansionη(x, s) =
∑∞

ℓ=1 φℓ(x)βℓ(s), where
βℓ are weights into (17), we get the characteristic equation
m0s

2 + b0s+k0

N2 λℓ = 0, so that the eigenvalues of the PDE
are

s±ℓ = − λℓb0
2m0N2

± 1

2m0N

√

λ2
ℓb

2
0

N2
− 4λℓm0k0. (19)

For smallℓ and largeN so thatN > (2ℓ−1)πb0/(4
√
m0k0),

the discriminant is negative, making the real part of the
eigenvalues equal to−λℓb0/(2m0N

2). The least stable
eigenvalue, the one closest to the imaginary axis, is obtained
with ℓ = 1:

s±1 = −π
2b0

8m0

1

N2
⇒ S =

π2b0
8m0N2

. (20)

Now recall that for a heterogeneous network with sym-
metric control we have

kf
i = kb

i , bfi = bbi , ∀i ∈ {1, . . . , N}.

In this case, using the notation introduced earlier, we have

kf−b(x) = 0, bf−b(x) = 0,

The PDE (12) is simplified to:

m(x)
∂2p̃(x, t)

∂t2
=
kf+b(x)

2N2

∂2p̃(x, t)

∂x2
+
bf+b(x)

2N2

∂3p̃(x, t)

∂x2∂t
.

(21)

The proof of Theorem 1 follows from a perturbation analysis
of the eigenvalues of the above PDE starting with the results
of homogeneous and symmetric case. The interested reader
is referred to [7] for the details of the proof.

A. Numerical comparison

We now present numerical computations that corroborates
the PDE-based analysis. We consider the following mass and
control gain profile:

kf
i = kb

i = 1 + 0.2 sin(2π(N − i)/N),

bfi = bbi = 0.5 + 0.1 sin(2π(N − i)/N),

mi = 1 + 0.2 sin(2π(N − i)/N). (22)

In the associated PDE model (21), this corresponds to
kf+b(x) = 2 + 0.4 sin(2πx), bf+b(x) = 1 + 0.2 sin(2πx),
m(x) = 1 + 0.2 sin(2πx). The eigenvalues of the PDE,
that are computed numerically using a Galerkin method with
Fourier basis, are compared with that of the state space model
to check how well the PDE model captures the closed loop
dynamics. The interested reader is referred to [7] for detailed
comparisons. Here we only present comparisons for the least
stable eigenvalue, which is shown in Figure 2 as a function
of N . We see from Figure 2 that the closed-loop stability
margin of the controlled formation is well captured by the
PDE model. In addition, the plot corroborates the predicted
bound (14).

V. ROLE OF ASYMMETRY ON STABILITY MARGIN

The second main result of this work is that the stability
margin can be greatly improved by introducing front-back
asymmetry in the velocity-feedback gains. We call the result-
ing designmistuning-based design because it relies on small
changes from the nominal symmetric gainb0. In addition,
a poor choice of such asymmetry can also make the closed
loop unstable.

Theorem 2:For anN -agent network with dynamics (1)
and control law (2), (3), withmi = m0 for all i, consider
the problem of maximizing the stability margin by choosing
the control gains with the constraint|b(.)i − b0|/b0 ≤ ε for
all i, with ε being a positive constant, andk(f)

i = k
(b)
i = k0.

For vanishingly small values ofε, the optimal gains are

bfi = (1 + ε)b0, bbi = (1 − ε)b0, (23)

which result in the stability margin

S =
εb0
m0

1

N
+O(

1

N2
). (24)
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Fig. 2. The stability margin of the heterogeneous formationwith symmetric
control as a function of number of agents: the legends of SSM,PDE and
lower bound, upper bound stand for the stability margin computed from
the state space model, from the PDE model, and the asymptoticlower and
upper bounds (14) in Theorem 1. The mass and control gains profile are
given in (22).

The formula is asymptotic in the sense that it holds when
N → ∞ andε→ 0. �

Similar to Theorem 1, the proof of Theorem 2 also relies on
a perturbation method. Please refer to [7] for the details of
the proof.

The theorem says that with arbitrary small change in
the front-back asymmetry in velocity feedback, so that the
velocity information from the front is weighted more heavily
than the one from the back, the stability margin improves
significantly.

The astute reader may inquire at this point what are the
effects of introducing asymmetry in the position-feedback
gains while keeping velocity gains symmetric, or introducing
asymmetry in both position and velocity feedback gains. It
turns out when equal asymmetry in both position and velocity
feedback gains are introduced, the closed loop is stable for
arbitraryN . We state the result in the next theorem.

Theorem 3:The closed loop dynamics of theN -agent
network with the following asymmetry in controlkf

i = (1+

ρ)k0, kb
i = (1−ρ)k0, bfi = (1+ρ)b0, bbi = (1−ρ)b0, where

ρ is a constant satisfyingρ ∈ (−1, 1], are exponentially
stable. �

The result above is for a equal amount (as a fraction of the
nominal value) of asymmetry in the position feedback and
velocity feedback gains. This constraint of equal asymmetry
in position and velocity feedback is imposed in order to
make the analysis tractable. Veerman proved a very similar
result [6, Theorem 4.2], though the model was slightly
different: theN -th agent’s control law wasuN = kf (pN−1−
pN ) − bf(ṗN−1 − ṗN ). Our proof (provided in [7]) follows
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Fig. 3. Stability margin improvement by mistuning design. The nominal
control gains arek0 = 1, b0 = 0.5, and the mistuned gains used are
the ones given by (23) in Theorem 2 withε = 0.1. The legends “Nominal
SSM” and “Nominal PDE” stand for the stability margin computed from the
state-space model and the PDE model, respectively, with symmetric control.
The legends “Mistuned SSM” and “Mistuned PDE” stand for the stability
margin computed from the state-space model and PDE model, respectively,
with mistuned control.

a similar line of attack, by analyzing the role of asymmetry
on the least stable eigenvalue of state matrixA.

The analysis of the stability margin in the following cases
are open problems: (i) unequal asymmetry in position and
velocity feedback, (ii) velocity feedback gains are kept at
their nominal symmetric values and asymmetry is introduced
in the position feedback gains only.

A. Comparison of stability margin computed from mistuned
state-space and PDE models

Figure 3 depicts the numerically obtained mistuned and
nominal stability margins for both the PDE and state-space
models. The nominal control gains arek0 = 1, b0 = 0.5, and
the mistuned velocity gains used are the ones given by (23)
in Theorem 2 withε = 0.1.

The figure shows that i) the closed-loop least stable
eigenvalue match the PDE’s accurately, even for small values
of N ; ii) the mistuned eigenvalues show large improvement
over the symmetric case even though the velocity gains differ
from their nominal values only by±10%. The improvement
is particularly noticeable for large values ofN , while being
significant even for small values ofN .

For comparison, the figure also depicts the asymptotic
eigenvalue formula given in Theorem 2. The improvement
in the stability margin with mistuning is remarkable even
the velocity gains are changed from their symmetric values
by only ±10%. Another interesting aspect of the result
in Theorem 2 is that the improvement fromO(1/N2) to
O(1/N) can be achieved byarbitrarily small changesto the



nominal velocity gains.

VI. SUMMARY

We studied the role of heterogeneity and control asym-
metry on the stability margin of a large1D network of
double-integrator agents. The control is decentralized; the
control signal at every agent depends on the relative position
and velocity measurements from its nearest neighbors. It is
shown that heterogeneity does not effect how the stabil-
ity margin scales withN , the number of agents, whereas
asymmetry plays a significant role. As long as control is
symmetric, meaning information on relative position and
velocity from both neighbors are weighed equally, agent-to-
agent heterogeneity does not change theO(1/N2) scaling
of stability margin. If front-back asymmetry is introduced
in the velocity feedback gains, even by an arbitrarily small
amount, the stability margin can be improved toO(1/N).
This is a significant improvement, especially for largeN .
In addition, the optimal asymmetric (mistuned) gain profile
is quite simple to implement. With a maximum allowable
variation of±10% from the symmetric velocity gains, the
optimal gains are obtained by letting the front gains to be
10 percent larger than the nominal gain and letting the back
gains to be10 percent smaller.

The general case of asymmetry in both position and ve-
locity feedback gains is an open problem. Some preliminary
answers are available in the special case when equal amount
of asymmetry in both position and velocity feedback is
introduced, which is parameterized byρ. We showed that in
this case the closed loop is exponentially stable for arbitrary
N . The stability margin as a function ofρ is also an open
problem.
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