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Abstract— We propose a weight design method to increase
the convergence rate of distributed consensus. Prior works
have focused on symmetric weight design due to computational
tractability. We show that with proper choice of asymmetric
weights, the convergence rate can be improved significantly
over even the symmetric optimal design. In particular, we
prove that the convergence rate in a lattice graph can be
made independent of the size of the graph with asymmetric
weights. A Sturm-Liouville operator is used to approximate
the graph Laplacian of more general graphs. Based on this
continuum approximation, we propose a weight design method.
Numerical computations show that the resulting convergence
rate with asymmetric weight design is improved considerably
over that with symmetric optimal weights and Metropolis-
Hastings weights.

I. I NTRODUCTION

In distributed consensus, each agent in a network updates
its state by aggregating the information from its neighborsso
that all the agents’ states reach a common value. Distributed
consensus has been widely studied in recent times due to its
wide ranging applications such as multi-vehicle rendezvous,
data fusion in large sensor network, coordinated control of
multi-agent system and formation flight of unmanned vehi-
cles and clustered satellites, etc. (see [1]–[5] and references
therein).

The topic of this paper is the convergence rate of dis-
tributed consensus protocols in graphs with fixed (time
invariant) topology. The convergence rate is extremely im-
portant; it determines practical applicability of the protocol.
If the convergence rate is small, it will take many iterations
before the states of all agents are sufficiently close. Com-
pared to the vast literature on design of consensus protocols,
however, the literature on convergence rate analysis is mea-
ger. Convergence rate of distributed consensus have been
studied in [6]–[8]. The related problem of mixing time of
Markov chains is studied in [9]. In [10], convergence rate
for a specific class of graphs, that we call L-Z geometric
graphs, are established as a function of the number of agents.
In general, the convergence rate of consensus algorithms tend
to be slow, and decreases as the number of agents increases.
It is shown in [11] that the convergence rate can be arbitrarily
fast in small-world networks. However, networks in which
communication is only possible between agents that are close
enough are not likely to be small-world.
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One of the seminal works on this subject is convex opti-
mization of weights on edges of the graph to maximize the
consensus convergence rate [12], [13]. Convex optimization
imposes the constraint that the weights of the graph must
be symmetric, which means any two neighboring agents put
equal weight on the information received from each other.
The convergence rate of consensus protocols on graphs with
symmetric weights degrades considerably as the number of
agents in the network increases. In a D-dimensional lattice,
for instance, the convergence rate isO(1/N2/D) if the
weights are symmetric, whereN is the number of agents.
This result follows as a special case of the results in [10].
Thus, the convergence rate becomes arbitrarily small if the
size of the network grows without bound.

In [14]–[16], finite-time distributed consensus protocols
are proposed to improve the performance over asymptotic
consensus. However, in general, the finite time needed to
achieve consensus depends the number of agents in the net-
work. Thus, for large size of networks, although consensus
can be achieved in finite time, the time needed to reach
consensus becomes large.

In this paper, we study the problem of how to increase
the convergence rate of consensus protocols by designing
asymmetricweights on edges. We first consider lattice graphs
and derive precise formulae for the convergence rates in
these graphs. In particular, we show that in lattice graphs,
with proper choice of asymmetric weights, the convergence
rate of distributed consensus can be bounded away from
zero uniformly inN . Thus, the proposed asymmetric design
makes distributed consensus highly scalable. In addition,we
provide exact formulae for asymptotic steady-state consensus
value. With asymmetric weights, the consensus value in
general is not the average of the initial conditions.

We next propose a weight design scheme for arbitrary
2-dimensional geometric graphs, i.e., graphs consisting of
nodes inR

2. Here we use the idea of continuum approx-
imation to extend the asymmetric design from lattices to
geometric graphs. We show how a Sturm-Liouville operator
can be used to approximate the graph Laplacian in the case
of lattices. The spectrum of the Laplacian and the conver-
gence rate of consensus protocols are intimately related. The
discrete weights in lattices can be seen as samples of a
continuous weight function that appears in the S-L operator.
Based on this analogy, a weight design algorithm is proposed
in which a nodei chooses the weight on the edge to a
neighborj depending on the relative angle betweeni andj.
Numerical simulations show that the convergence rate with
asymmetric designed weights in large graphs is an order



of magnitude higher than that with (i) optimal symmetric
weights, which are obtained by convex optimization [12],
[13], and (ii) asymmetric weights obtained by Metropolis-
Hastings method, which assigns weights uniformly to each
edge connecting itself to its neighbor. The proposed weight
design method is decentralized, every node can obtain its
own weight based on the angular position measurements with
its neighbors. In addition, it is computationally much cheaper
than obtaining the optimal symmetric weights using convex
optimization method. The proposed weight design method
can be extended to geometric graphs inR

D, but in this paper
we limit ourselves toR2.

The rest of this paper is organized as follows. SectionII
presents the problem statement. Results on size-independent
convergence rate on lattice graphs with asymmetric weight
are stated in SectionIII . Asymmetric weight design method
for general graphs appear in SectionIV. The paper ends with
conclusions and future work in SectionV.

II. PROBLEM STATEMENT

To study the problem of distributed linear consensus in
networks, we first introduce some terminologies. The net-
work of N agents is modeled by a graphG = (V,E) with
vertex setV = {1, . . . , N} and edge setE ⊂ V×V. We use
(i, j) to represent a directed edge fromi to j. A nodei can
receive information fromj if and only if (i, j) ∈ E. In this
paper, we assume that communication is bidirectional, i.e.
(i, j) ∈ E if and only if (j, i) ∈ E. For each edge(i, j) ∈ E

in the graph, we associate a weightWi,j > 0 to it. The set
of neighbors ofi is defined asNi := {j ∈ V : (i, j) ∈ E}.
The Laplacian matrixL of an arbitrary graphG with edge
weightsWi,j is defined as

Li,j =











−Wi,j i 6= j, (i, j) ∈ E,
∑N

k=1 Wi,k i = j, (i, k) ∈ E,

0 otherwise.

A linear consensus protocol is an iterative update law:

xi(k + 1) = Wi,i xi(k) +
∑

j∈Ni

Wi,j xj(k), i ∈ V, (1)

with initial condition xi(0) ∈ R, wherek = {0, 1, 2, · · · }
is the discrete time index. Following standard practice we
assume the weight matrixW is a stochastic matrix, i.e.
Wi,j ≥ 0 andW1 = 1, where1 is a vector with all entries
of 1. The distributed consensus protocol (1) can be written
in the following compact form:

x(k + 1) = Wx(k), (2)

where x(k) = [x1(k), x2(k), · · · , xN (k)]T is the states of
the N agents at timek. It’s straightforward to obtain the
following relationL = I−W , whereI is theN×N identity
matrix andL is the Laplacian matrix associated with the
graph withWi,j as its weights on the directed edge(i, j). In
addition, their spectra are related byσ(L) = 1 − σ(W ),
i.e. µℓ(L) = 1 − λℓ(W ), where ℓ ∈ {1, 2, · · · , N} and
µℓ, λℓ are the eigenvalues ofL and W respectively. The

linear distributed consensus protocol (2) implies x(k) =
W kx(0). We assumeW is strong connected (irreducible)
and primitive. In that case the spectral radius ofW is 1
and there is exactly one eigenvalue on the unit disk. Let
π ∈ R

1×N be the left Perron vector ofW corresponding to
the eigenvalue of1, i.e. πW = π, πi > 0 and

∑N
i=1 πi = 1,

we havelimk→∞ W k = 1π. Therefore, all the states of the
N agents asymptotically converge to a steady state valuex̄
ask → ∞,

lim
k→∞

x(k) = 1πx(0) = 1x̄,

wherex̄ =
∑N

i=1 πixi(0).
One of the most important feature of linear distributed

consensus is the rate of convergence to its steady state value.
It’s well known that for a primitive stochastic matrix, the
rate of convergenceR can be measured by the spectral gap
R = 1 − ρ(W ), whereρ(W ) is the essential spectral radius
of W , which is defined as

ρ(W ) := max{|λ| : λ ∈ σ(W ) \ {1}}.
If the eigenvalues ofW are real and they are ordered in a
non-increasing fashion such that1 = λ1 ≥ λ2 ≥ · · · ≥ λN ,
then the convergence rate ofW is given by

R = 1 − ρ(W ) = min{1 − λ2, 1 + λN}. (3)

In addition, from Gerschgorin circle theorem, we have that
λN ≥ −1 + 2 maxi Wii. If maxi Wii 6= 0, then 1 + λN

is a constant bounded away from0. Therefore, the key to
find a lower bound for the convergence rate ofW is to
find an upper bound on the second largest eigenvalueλ2 of
W . Equivalently, we can find a lower bound of the second
smallest eigenvalueµ2 of the associated Laplacian matrixL,
sinceµ2 = 1 − λ2.

Definition 1: We say a graphG hassymmetricweights if
Wi,j = Wj,i for each pair of neighboring agents(i, j) ∈ E.
Otherwise, the weights are calledasymmetric. �

If the weights are symmetric, the matrixW is doubly
stochastic, meaning that each row and column sum is1.

The following theorem summaries the results in [10],
[17] on the convergence rate of consensus with symmetric
weights in a broad class of graphs that include lattices. A
D-dimensional lattice, specifically aN1 × N2 × · · · × ND

lattice, is a graph withN = N1 × N2 × · · · × ND nodes,
in which the nodes are placed at the integer unit coordinate
points of theD-dimensional Euclidean space and each node
connects to other nodes that are exactly one unit away from
it. A D-dimensional lattice is drawn inRD with a Cartesian
reference frame whose axes are denoted byx1, x2, · · · , xD.
We call a graph is aL-Z geometric graphif it can be seen
as a perturbation of regular lattice inD-dimensional space;
each node connects other nodes within a certain range. The
formal definition is given in [10].

Theorem 1:Let G be a D-dimensional connected L-Z
geometric graph or lattice and letW be any doubly stochastic
matrix compatible withG. Then

c1

N2/D
≤ R ≤ c2

N2/D
, (4)
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Fig. 1. Information graph for a 1-D lattice ofN agents.

whereN is the number of nodes in the graphG and c1, c2

are some constants independent ofN . �

The above theorem states that for any connected L-Z ge-
ometric/lattice graphG, the convergence rate of consensus
with symmetric weights cannot be bounded away from0
uniformly with the sizeN of the graph. The convergence
rate of the network becomes arbitrarily slow asN increases
without bound. The loss of convergence rate with sym-
metric information graph has also been observed in the
vehicular formation [18], [19]. In fact, another important
conclusion of the result above is that heterogeneity in weights
among nodes, as long asW is symmetric, does not change
the asymptotic scaling of the convergence rate. At best it
can change the constant in front of the scaling formula
(see [9] also). Therefore, even centralized weight optimiza-
tion scheme proposed in [12], [13] - that constrain the
weights to be symmetric in order to make the optimization
problem convex - will suffer from the same issue as that of
un-optimized weights on the edges. Namely, the convergence
rate will decay asO(1/N2/D) in a D-dimensional lattice/L-
Z geometric graph even with the optimized weights. In the
rest of the paper, we study the problem of speeding up the
convergence rate by designingasymmetricweights.

III. FAST CONSENSUS OND-DIMENSIONAL LATTICES

First we present technical results (whose proofs are given
in [20, Appendix]) on the spectrum and Perron vectors ofD-
dimensional lattices with asymmetric weights on the edges.
We then summarize their design implications at the end of
sectionIII-A .

A. Asymmetric weights in lattices

We first consider distributed consensus on a 1-dimensional
lattice. This will be useful in generalizing toD-dimensional
lattices. Each agent interacts with its nearest neighbors in the
lattice (one on each side). Its information graph is depicted
in Figure1. The updating law of agenti is given by

xi(k + 1) = Wi,ixi(k) + Wi,i−1xi−1(k) + Wi,i+1xi+1(k).

where i ∈ {2, 3, · · · , N − 1}. The updating laws of the
1-st andN -th agents are slightly different from the above
equation, since they only have one neighbor.

The weight matrixW (1) for the 1-dimensional lattice is
tridiagonal, its spectral property is given in the following
lemma.

Lemma 1:Let W (1) be the weight matrix associated with
the1-dimensional lattice with the weights given byWi,i+1 =
c, Wi+1,i = a, wherea 6= c are positive constants anda+c ≤
1. Then its eigenvalue are

λ1 = 1, λℓ = 1 − a − c + 2
√

ac cos
(ℓ − 1)π

N
,

whereℓ ∈ {2, · · · , N}, and its left Perron vector is

π =
1 − c/a

1 − (c/a)N
[1, c/a, (c/a)2, · · · , (c/a)N−1]. �

We next consider consensus on aD-dimensional lattice
with the following weights

Wi,id+ = cd, Wi,id− = ad, (5)

wheread 6= cd are positive constants and
∑D

d=1 ad +cd ≤ 1.
The notationid+ denotes the neighbor on the positivexd axis
of nodei and id− denotes the neighbor on the negativexd

axis of nodei.
Lemma 2:Let W (D) be the weight matrix associated with

theD-dimensional lattice with the weights given in (5). Then
its eigenvalues are given by

λ~ℓ (W (D)) = 1 −
D

∑

d=1

(1 − λℓd
(W

(1)
d )),

where~ℓ = (ℓ1, ℓ2, · · · , ℓD), in which ℓd ∈ {1, 2, · · · , Nd}
and W

(1)
d is the Nd × Nd weight matrix associated with a

1-dimensional lattice with the weights given byW (1)
d (i, i +

1) = cd, W
(1)
d (i + 1, i) = ad and i ∈ {1, · · · , Nd − 1}. Its

left Perron vector isπ = π
(1)
D ⊗ π

(1)
D−1 ⊗ · · · ⊗ π

(1)
1 , where

π
(1)
d is the left Perron vector ofW (1)

d . �

The next theorem shows the implications of the preceding
technical results on the convergence rates ofD-dimensional
lattices.

Theorem 2:Let G be aD-dimensional lattice graph and
let W (D) be an asymmetric stochastic matrix compatible
with G with the weights given in (5). Then the convergence
rate satisfies

R ≥ c0, (6)

wherec0 ∈ (0, 1) is a constant independent ofN . �

Remark 1:Recall from Theorem1, for any L-Z geomet-
ric or lattice graphs, as long as the weight matrixW is
symmetric, no matter how do we design the weightsWi,j ,
the convergence rate becomes progressively smaller as the
number of agentsN increases, and it cannot be uniformly
bounded away from0. In contrast, Theorem2 shows that
for lattice graphs, asymmetry in the weights makes the con-
vergence rate uniformly bounded away from0. In fact, any
amount of asymmetry along the coordinate axes of the lattice
(ad 6= cd), will make this happen. Asymmetric weights thus
make the linear distributed consensus law highly scalable.It
eliminates the problem of degeneration of convergence rate
with increasingN .

The second question is where do the node states converge
to with asymmetric weights? Recall that the asymptotic
steady state value of all agents isx̄ =

∑N
i=1 πixi(0). For

a lattice graph, its Perron vectorπ is given in Lemma1 and
Lemma 2. Thus we can determine the steady state value
x̄ if the initial value x(0) is given. This information is
particularly useful to find the rendezvous position in multi-
vehicle rendezvous problem. On the other hand, we see from
Lemma1 and Lemma2 that if ad 6= cd, thenπi 6= 1

N , which
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Fig. 2. Comparison of convergence rate of1-D lattice between asymmetric
design and convex optimization (symmetric optimal).

implies the steady-state value is not the average of the initial
values. The asymmetric weight design is not applicable to
distributed averaging problem. �

B. Numerical comparison

In this section, we present the numerical comparison of
the convergence rates of the distributed protocol (2) between
asymmetric designed weights (Theorem2) and symmetric
optimal weights obtained from convex optimization [12],
[13]. For simplicity, we take the1-D lattice as an ex-
ample. The asymmetric weights used areWi,i+1 = c =
0.3, Wi+1,i = a = 0.2. We see from Figure2 that the
convergence rate with asymmetric designed weights is much
larger than that with symmetric optimal weights. In addition,
given the asymmetric weight valuesc = 0.3, a = 0.2,
we obtain from Lemma1 that λ2 ≤ 0.5 + 2

√
0.06, λN ≥

0.5 + 2
√

0.06, which implies

R = min{1 − λ2, 1 + λN} ≥ 0.5 − 2
√

0.06. (7)

We see from Figure2 that the convergence rateR is indeed
uniformly bounded below by (7).

IV. FAST CONSENSUS IN GENERAL GRAPHS

In this section, we study how to design the weight
matrix W to increase the convergence rate of consensus
in graphs that are more general than lattices. We use the
idea of continuum approximation. Under some “niceness”
properties, a graph can be thought of as approximation of
a D-dimensional lattice, and by extension, of the Euclidean
space corresponding toRD [21]. These properties have to do
with the graph not having arbitrarily large holes etc. Precise
conditions under which a graph can be approximated by
the D-dimensional lattice are explored in [22] (for infinite
graphs) and in [10] (for finite graphs). The dimensionD of
the corresponding lattice/Euclidean space is also determined
by these properties.

The key is to embed the discrete graph problem into a
continuum-domain problem. We use a Sturm-Liouville oper-
ator to approximate the Laplacian matrix of aD-dimensional
geometric graph. A D-dimensional geometric graph is simply
a graph with a mapping of nodes to points inR

D. Based
on this approximation, we re-derive the asymmetric weights
for lattices described in the previous section as values of
continuous functions defined overRD along the principal

axes inR
D. In a lattice, the neighbors of a node lie along

the principal canonical axes ofRD. For an arbitrary graph,
the weights are now chosen as samples of the same functions,
along directions in which the neighbors lie.

The method is applicable to arbitrary dimension, but we
only consider the 2-D case in this paper. Graphs with 2-D
drawings are one of the most relevant classes of graphs for
sensor networks where consensus is likely to find application.

A. Continuum approximation

Recall that the convergence rate is intimately connected to
the Laplacian matrix. We will show that the Laplacian matrix
associated with a large 2-D lattice with certain weights can
be approximated by a Sturm-Liouville operator defined on a
2-D plane. Thus it’s reasonable to suppose that the Sturm-
Liouville operator is also a good (continuum) approximation
of the Laplacian matrix of large graphs with 2-D drawing.
We start from 2-D lattice graph and derive a Sturm-Liouville
operator. We then use this operator to approximate the graph
Laplacian of more general graphs.

For ease of description, we first consider a 1-D lattice,
with the following asymmetric weights inspired by [23],

Wi,i+1 = c =
1 + ε

2
, Wi+1,i = a =

1 − ε

2
, (8)

wherei ∈ {1, 2, · · · , N−1} andε ∈ (0, 1) is a constant. The
graph Laplacian corresponding to the weights given in (8) is
given by

L(1) =















1+ε
2

−1−ε
2

−1+ε
2 1 −1−ε

2
. . .

. . .
. . .

−1+ε
2 1 −1−ε

2
−1+ε

2
1−ε
2















. (9)

Recall that to find a lower bound of the convergence rate of
the weight matrixW (1), it’s sufficient to find a lower bound
of the second smallest eigenvalue of the associate Laplacian
matrix L(1).

We now use a Sturm-Liouville operator to approximate
the Laplacian matrixL(1). We first consider the finite-
dimensional eigenvalue problemL(1)φ = µφ. Expanding the
equation, it can be written as

− 1

2N2

φi−1 − 2φi + φi+1

1/N2
− ε

N

φi+1 − φi−1

2/N
= µφi,

wherei ∈ {1, 2, · · · , N} andφ0 = φ1, φN+1 = φN .
The starting point for the continuum approximation is to

consider a functionφ(x) : [0, 1] → R that satisfies:

φi = φ(x)|x=i/(N+1), (10)

such that functions that are defined at discrete pointsi will
be approximated by functions that are defined everywhere in
[0, 1]. The original functions are thought of as samples of
their continuous approximations. Under the assumption that
N is large, using the following finite difference approxima-
tions:

[φi−1 − 2φi + φi+1

1/N2

]

=
[∂2φ(x, t)

∂x2

]

x=i/(N+1)
,



[φi+1 − φi−1

2/N

]

=
[∂φ(x, t)

∂x

]

x=i/(N+1)
,

the finite-dimensional eigenvalue problem can be approxi-
mated by the following Sturm-Liouville eigenvalue problem

L(1)φ(x) = µφ(x), L(1) = − 1

2N2

d2

dx2
− ε

N

d

dx
, (11)

with the following Neumann boundary conditions

dφ(0)

dx
=

dφ(1)

dx
= 0. (12)

Lemma 3:The eigenvalues of the Sturm-Liouville opera-
tor L(1) (11) with boundary condition (12) for 0 < ε < 1
are real and the first two smallest eigenvalues satisfy

µ1(L(1)) = 0, µ2(L(1)) ≥ ε2/2. �

We see from Lemma3 that the second smallest eigenvalue
of the Sturm-Liouville operatorL(1) is uniformly bounded
away from zero.

We now consider the distributed consensus on D-
dimensional lattices. In particular, we consider the following
weights on the graph

W
(D)

i,id+ = cd =
1 + ε

2D
, W

(D)

i,id−
= ad =

1 − ε

2D
, (13)

whereε ∈ (0, 1) is a constant.
The Laplacian matrix of the D-dimensional square lattices

with the weights given in (13) is given byL(D) = I−W (D).
Following the similar procedure as the1-dimensional lattice,
the second smallest eigenvalue of the Laplacian matrixL(D)

can be approximated by that of the following Sturm-Liouville
operator

L(D) = −
D

∑

ℓ=1

(
1

2DN2
d

d2

dx2
d

+
ε

DNd

d

dxd
), (14)

with the following Neumann boundary conditions

∂φ(~x)

∂xd

∣

∣

∣

xd=0 or 1
= 0, (15)

whered = {1, 2, · · · , D} and~x = [x1, x2, · · · , xD]T .
The continuum approximation has been used to study the

stability margin of large vehicular platoons [23], [24], in
which the continuum model gives more insight on the effect
of asymmetry on the stability margin of the systems. In this
paper, we use the second smallest eigenvalue of the Sturm-
Liouville operatorL(D) to approximate that of the Laplacian
matrix L(D).

Theorem 3:The second smallest eigenvaluesµ2(L(D))
of the Sturm-Liouville operatorL(D) (14) with boundary
condition (15) for 0 < ε < 1 is real and satisfies

µ2(L(D)) ≥ ε2

2D
, (16)

which is a positive constant independent ofN . �
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Fig. 3. Weight design for general graphs.

B. Weight design for 2-D general graphs

The inspiration of the proposed method comes from the
design for lattices. The4 weights for each nodei in a
2-dimensional lattice can be re-expressed as samples of a
continuous functiong : [0, 2π) → [ 1−ǫ

4 , 1+ǫ
4 ]:

Wi,i1+ = g(θi,i1+), Wi,i2+ = g(θi,i2+),

Wi,i1− = g(θi,i1−), Wi,i2− = g(θi,i2−)

whereθi,j is the relative angular position ofj with respect to
i. Given the angular positions ofi’s neighbors and the values
of the weights, we know that the functiong must satisfy:

g([0,
π

2
, π,

3π

2
]) = [

1 + ε

4
,
1 + ε

4
,
1 − ε

4
,
1 − ε

4
]. (17)

Thus, we choose the functiong as shown in Figure3 (b).
For an arbitrary graph, we now choose the weights by

sampling the function according to the angle associated with
each edge(i, j):

Wi,k =
g(θi,k)

∑

j∈Ni
g(θi,j)

, (18)

where g(·) is the function described in Figure3 (b). The
above weight function (18) can be seen as a linear interpola-
tion of (17). We see from (18) that the weight on each edge
is computable in a distributed manner; a node only needs
to know the angular position of its neighbors. This design
method does not require any knowledge of the network
topology or centralized computation.

C. Numerical comparison

In this section, we present the numerical comparison
of convergence rates among asymmetric design, symmetric
optimal weights and weights chosen by the Metropolis-
Hastings method. The symmetric optimal weights are ob-
tained by using convex optimization method [9], [12]. The
Metropolis-Hastings weights are picked by the following
rule: Wi,j = 1/|Ni|, whereNi denotes the number of node
i’s neighbors. The weights generated by this method are in
general asymmetric. We plot the convergence rateR as a
function of N , where N is the number of agents in the
network. The amount of asymmetry used isε = 0.5.

We first consider a L-Z geometric graph [10], which is
generated by perturbing the position of a square2-D lattice
(N1 = N2 =

√
N ) with Gaussian random noise (zero

mean and1/(4
√

N) standard deviation) and connect each
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Fig. 4. Examples of2-D L-Z geometric and Delaunay graphs.
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Fig. 5. Comparison of convergence rates with proposed asymmetric
weights, Metropolis-Hastings weights, and symmetric optimal. For eachN ,
results from5 sample graphs are plotted.

nodes with the other nodes that are within2/
√

N of radius
neighborhood. Second, we consider a Delaunay graph [5],
which is generated by placingN nodes on a 2-D unit
square uniformly at random and connecting any two nodes
if their corresponding Voronoi cells intersect, as long as
their Euclidean distance is smaller than1/3. Figure4 gives
examples of L-Z geometric graph and Delaunay graph.

Figure 5 shows the comparison of convergence rates
among asymmetric design, symmetric optimal and
Metropolis-Hastings weights. For eachN , the convergence
rate of 5 samples of the graphs are plotted. We see from
Figure 5 that for almost every sample in each of the three
methods, the convergence rate with the asymmetric design
is an order of magnitude larger than the others, especially
whenN is large.

V. CONCLUSIONS ANDFUTURE WORK

We studied the problem of how to design weights to
increase the convergence rate of distributed consensus in
networks with static topology. We proved that on lattice
graphs, with proper choice of asymmetric weights, the con-
vergence rate can be uniformly bounded away from zero. In
addition, we propose a distributed weight design algorithm
for 2-dimensional geometric graphs to improve the conver-
gence rate, by using a continuum approximation. Numerical
calculations show that the resulting convergence rate is
substantially larger than that optimal symmetric weights and
Metropolis Hastings weights.

An important open question is a precise characterization of
graphs for which theoretical guarantees on size-independent
convergence rate can be provided with the proposed design.
In addition, characterizing the asymptotic steady-state value
for more general graphs than lattices is also on-going work.
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