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Abstract— We propose a weight design method to increase ~ One of the seminal works on this subject is convex opti-
the convergence rate of distributed consensus. Prior works mization of weights on edges of the graph to maximize the
have focused on symmetric weight design due to computatioha consensus convergence rate [12], [13]. Convex optimiaatio

tractability. We show that with proper choice of asymmetric . . .
weights, the convergence rate can be improved significanty IMPOSeS the constraint that the weights of the graph must

over even the symmetric optimal design. In particular, we D€ Symmetric, which means any two neighboring agents put
prove that the convergence rate in a lattice graph can be equal weight on the information received from each other.

made independent of the size of the graph with asymmetric The convergence rate of consensus protocols on graphs with
weights. A Sturm-Liouville operator is used to approximate symmetric weights degrades considerably as the number of

the graph Laplacian of more general graphs. Based on this ts in th tWork | | D-di . | latti
continuum approximation, we propose a weight design methad agents In the network increases. In a D-dimensional 1atlice

Numerical computations show that the resulting convergene ~ for instance, the convergence rate @1/N?/P) if the
rate with asymmetric weight design is improved consideralf ~ weights are symmetric, wher® is the number of agents.

over that with symmetric optimal weights and Metropolis-  This result follows as a special case of the results in [10].
Hastings weights. Thus, the convergence rate becomes arbitrarily small if the
size of the network grows without bound.

In [14]-[16], finite-time distributed consensus protocols

In distributed consensus, each agent in a network updat@&e proposed to improve the performance over asymptotic
its state by aggregating the information from its neighlsars consensus. However, in general, the finite time needed to
that all the agents’ states reach a common value. Distdbut@chieve consensus depends the number of agents in the net-
consensus has been widely studied in recent times due toWerk. Thus, for large size of networks, although consensus
wide ranging applications such as multi-vehicle rendesyoucan be achieved in finite time, the time needed to reach
data fusion in large sensor network, coordinated control gfonsensus becomes large.
multi-agent system and formation flight of unmanned vehi- In this paper, we study the problem of how to increase
cles and clustered satellites, etc. (see [1]-[5] and ratere the convergence rate of consensus protocols by designing
therein). asymmetriaveights on edges. We first consider lattice graphs

The topic of this paper is the convergence rate of digand derive precise formulae for the convergence rates in
tributed consensus protocols in graphs with fixed (timéese graphs. In particular, we show that in lattice graphs,
invariant) topology. The convergence rate is extremely imWwith proper choice of asymmetric weights, the convergence
portant; it determines practical applicability of the mrenl. rate of distributed consensus can be bounded away from
If the convergence rate is small, it will take many iteraion zero uniformly inN. Thus, the proposed asymmetric design
before the states of all agents are sufficiently close. Confdakes distributed consensus highly scalable. In addivien,
pared to the vast literature on design of consensus pratocdprovide exact formulae for asymptotic steady-state casisen
however, the literature on convergence rate analysis is malue. With asymmetric weights, the consensus value in
ger. Convergence rate of distributed consensus have be@gneral is not the average of the initial conditions.
studied in [6]-[8]. The related problem of mixing time of \We next propose a weight design scheme for arbitrary
Markov chains is studied in [9]. In [10], convergence rate2-dimensional geometric graphs, i.e., graphs consisting o
for a specific class of graphs, that we call L-Z geometri@odes inR?. Here we use the idea of continuum approx-
graphs, are established as a function of the number of agerifgation to extend the asymmetric design from lattices to
In general, the convergence rate of consensus algorithmds tegeometric graphs. We show how a Sturm-Liouville operator
to be slow, and decreases as the number of agents increa§é$. be used to approximate the graph Laplacian in the case
It is shown in [11] that the convergence rate can be arbiigrariOf lattices. The spectrum of the Laplacian and the conver-
fast in small-world networks. However, networks in whichgence rate of consensus protocols are intimately relateel. T

communication is only possible between agents that are clodiscrete weights in lattices can be seen as samples of a
enough are not likely to be small-world. continuous weight function that appears in the S-L operator
Based on this analogy, a weight design algorithm is proposed
He Hao and Prabir Barooah are with Department of Mechaniodl a in which a nodei chooses the weight on the edge to a
e e Lont U9, neighbor depending on the relative angle betwandj.
the National Science Foundation through Grant CNS-093E885ECCS- Numerical simulations show that the convergence rate with

0925534, asymmetric designed weights in large graphs is an order

I. INTRODUCTION



of magnitude higher than that with (i) optimal symmetriclinear distributed consensus protocd) (implies z(k) =
weights, which are obtained by convex optimization [12]}¥*z(0). We assumé¥ is strong connected (irreducible)
[13], and (ii) asymmetric weights obtained by Metropolis-and primitive. In that case the spectral radiusl&f is 1
Hastings method, which assigns weights uniformly to eacand there is exactly one eigenvalue on the unit disk. Let
edge connecting itself to its neighbor. The proposed weight € R'*~ be the left Perron vector di/ corre%oonding to
design method is decentralized, every node can obtain iise eigenvalue of, i.e.7W =m, m; >0and> ", m =1,
own weight based on the angular position measurements witte havelim;_... W* = 17. Therefore, all the states of the
its neighbors. In addition, it is computationally much ghela N agents asymptotically converge to a steady state value
than obtaining the optimal symmetric weights using conveask — oo,

optimization method. The proposed weight design method . _ L

can be extended to geometric graph&iH, but in this paper klggox(k) = 1mz(0) =17,

we limit ourselves taR?. wherez = S mz:(0).

The rest of this paper is organized as folloyvs. _Sectlon One of the most important feature of linear distributed
presents the problem statement. Results on size-independg, nsensus is the rate of convergence to its steady state valu
convergence rate on lattice graphs with asymmetric weighfls \ye|| known that for a primitive stochastic matrix, the

are stated in Sectiohl . Asymmetric weight design methpd rate of convergenc® can be measured by the spectral gap
for general graphs appear in Sectidh The paper ends with  _ | _ p(W), wherep(W) is the essential spectral radius
conclusions and future work in Sectidh of . which is defined as

Il. PROBLEM STATEMENT p(W) :=max{|A] : A € s(W) \ {1}}.

To study the problem of distributed linear consensus if} e eigenvalues ofV are real and they are ordered in a
networks, we first introduce some terminologies. The NeRon-increasing fashion such that= A\; > Ay > -+ > Ay

work of N agents is modeled by a gragh = (V,E) with  {han the convergence rate Bf is given by
vertexsetV = {1,..., N} and edge sdt C V xV. We use .

(i,7) to represent a directed edge frano j. A nodei can R=1-p(W)=min{l - X2,1+ An}. 3
receive information frony if and only if (i, j) € E. In this  |n addition, from Gerschgorin circle theorem, we have that
paper, we assume that communication is bidirectional, 8y > —1 + 2max; Wi If max; Wy; # 0, thenl + Ay
(i,j) € E if and only if (j, i) € E. For each edgéi,j) € E  is a constant bounded away froin Therefore, the key to

in the graph, we associate a weidfit,; > 0 to it. The set find a lower bound for the convergence rate 16f is to

of neighbors ofi is defined asV; := {j € V: (i,j) € E}.  find an upper bound on the second largest eigenvajuef
The Laplacian matrix. of an arbitrary graptG with edge 117, Equivalently, we can find a lower bound of the second

weightsW; ; is defined as smallest eigenvalug, of the associated Laplacian matiix
o . sinceps =1 — \s.

V][éz,J ! # J: (@J) € E, Definition 1: We say a graplGc hassymmetrioveights if

Lij =921 Wik =17, (Zv.k) €E, W, ; = W;, for each pair of neighboring agents j) € E.

0 otherwise. Otherwise, the weights are calledymmetric O

If the weights are symmetric, the matri¥/ is doubly
stochastic, meaning that each row and column suin is
xi(k+1) = Wi zi(k) + Z Wi, xi(k), i€V, (1) The following theorem summaries the results in [10],
JEN: [17] on the convergence rate of consensus with symmetric
weights in a broad class of graphs that include lattices. A
D-dimensional lattice, specifically &; x Ny x --- x Np
%ttice, is a graph withV = Ny x Ny x --- x Np nodes,
in which the nodes are placed at the integer unit coordinate
points of theD-dimensional Euclidean space and each node
connects to other nodes that are exactly one unit away from
it. A D-dimensional lattice is drawn iR” with a Cartesian

A linear consensus protocol is an iterative update law:

with initial condition x;(0) € R, wherek = {0,1,2,---}

is the discrete time index. Following standard practice w
assume the weight matri¥) is a stochastic matrix, i.e.
W;; > 0andW1 =1, wherel is a vector with all entries
of 1. The distributed consensus protocd) ¢an be written
in the following compact form:

v(k+1) = Wa(k), (2) reference frame whose axes are denotedhys, -+, zp.
. We call a graph is d-Z geometric graphf it can be seen
wherez(k) = [z1(k), z2(k), - ,zn(k)]" is the states of a5 a perturbation of regular lattice M-dimensional space;

the V agents at time. It's straightforward to obtain the each node connects other nodes within a certain range. The
following relationL = I — W, wherel is the N x N identity  formal definition is given in [10].

matrix and L is the Laplacian matrix associated with the Theorem 1:Let G be a D-dimensional connected L-Z
graph withV; ; as its weights on the directed ed@ej). In geometric graph or lattice and I8t be any doubly stochastic
addition, their spectra are related byL) = 1 — o(W), matrix compatible withG. Then

ie. ue(L) = 1 — XN(W), where?¢ € {1,2,--- N} and 1 Cs

we, \e are the eigenvalues of and W respectively. The N2 S B 5ap (4)



1 2 3 - N . .
Nt where? € {2,--- , N}, and its left Perron vector is
0 1 1—c/a
Wi 2 Wa 3

WN-1,N§ T = W[Lc/a’ (c/a)Q’... ,(C/a)N_l]. O]

Fig. 1. Information graph for a 1-D lattice d¥ agents. We next consider consensus on/adimensional lattice

. . with the following weights
where N is the number of nodes in the gragh andcy, co

are some constants independent\af O Wi jar = ca, W 0- = aq, (5)
The above theorem states that for any connected L-Z YGhereay £ ¢, are positive constants a@D ag+cy < 1.
ometric/lattice graph&, the convergence rate of CONSeNSUS1. notation®+ denotes the neighbor on ?ﬁel positi&/@;\xis
with symmetric weights cannot be bounded away from of nodei and 4~ denotes the neighbor on the negative
uniformly with the size N of the graph. The CONVergence . ic of nodei.

rate of the network becomes arbitrarily slow /dsincreases Lemma 2:Let W(P) be the weight matrix associated with

W|thqut.bound..The loss of convergence rate with SYMihe D-dimensional lattice with the weights given iB)(Then
metric information graph has also been observed in ti'“as eigenvalues are given by

vehicular formation [18], [19]. In fact, another important

conclusion of the result above is that heterogeneity in tisig (D) D (1)

among nodes, as long &8 is symmetric, does not change Ap (W) =1~ Z(l = A (Wg)),

the asymptotic scaling of the convergence rate. At best it d=1

can change the constant in front of the scaling formulahere? = (€1,€9,--- ,€p), in which ¢4 € {1,2,---, Ny}

(see [9] also). Therefore, even centralized weight op@miz and WV is the N,; x N, weight matrix associated with a

tion scheme proposed in [12], [13] - that constrain thg.gimensional lattice with the weights given By (" (i, i +
weights to be symmetric in order to make the optimizatioi) ~ ey W(l)(i 41,4) = agandi € {1,---,Ng— 1}. Its
problem convex - will suffer from the same issue as that L5 Per’rondvector i;ﬂ _ g ®’. 3 ég) D here
un-optimized weights on the edges. Namely, the convergenc ) D 1(71;1 L
rate will decay a©)(1/N?/?) in a D-dimensional lattice/L- 7a_ 1S the left Perron vector ofV;". o

Z geometric graph even with the optimized weights. In the The next theorem shows the implications of the preceding
rest of the paper, we study the problem of speeding up tfgchnical results on the convergence rated)edimensional

convergence rate by designiagymmetrioveights. lattices. _ _ _
Theorem 2:Let G be aD-dimensional lattice graph and

I1l. FAST CONSENSUS OND-DIMENSIONAL LATTICES let W(P) be an asymmetric stochastic matrix compatible

First we present technical results (whose proofs are givéith G with the weights given ing). Then the convergence

in [20, Appendix]) on the spectrum and Perron vector®ef 'ate satisfies
dimensional lattices with asymmetric weights on the edges. R > co, (6)

We then summarize their design implications at the end of _ )
sectionlll-A . wherecy € (0,1) is a constant independent of. O

_ _ _ _ Remark 1:Recall from Theoreni, for any L-Z geomet-
A. Asymmetric weights in lattices ric or lattice graphs, as long as the weight matfix is

We first consider distributed consensus on a 1-dimensior@fmmetric, no matter how do we design the weights;,
lattice. This will be useful in generalizing tB-dimensional the convergence rate becomes progressively smaller as the
lattices. Each agent interacts with its nearest neighioottss  NUmMber of agentsV increases, and it cannot be uniformly
lattice (one on each side). Its information graph is depictedounded away fromd. In contrast, Theoren2 shows that
in Figure 1. The updating law of agernitis given by for lattice graphs, asymmetry in the weights makes the con-

vergence rate uniformly bounded away frédmin fact, any
zi(k +1) = Wizi(k) + Wii1zi—1(k) + Witz (k). amount of asymmetry along the coordinate axes of the lattice
wherei € {2,3,---,N — 1}. The updating laws of the (agq # cq), will make this happen. Asymmetric weights thus

1-st and N-th agents are slightly different from the aboveMake the linear distributed consensus law highly scalable.
equation, since they only have one neighbor. eliminates the problem of degeneration of convergence rate

The weight matrixiv (") for the 1-dimensional lattice is W|t_|t1h|ncrea3|r(;gN. tion is where o the node stat
tridiagonal, its spectral property is given in the follogin € second question Is where do the node stales converge

) ; ) 5 .
lemma. to with asymmetric weights? Recall that the asymptotic

. N
Lemma 1:Let W () be the weight matrix associated with steady state value of all agentsis= 3_;_, m;(0). For
the 1-dimensional lattice with the weights given b, ; 1 — a lattice graph, its Perron vect@rl_s given in Lemmal and
W — a, wherea # ¢ are positive constants amc< Lemma?2. Thus we can determine the steady state value
y WWid1l, — Oy >

1. Then its eigenvalue are z if the initial value z(0) is given. This information is

particularly useful to find the rendezvous position in multi
(-1m vehicle rendezvous problem. On the other hand, we see from
)\ - 1 )\ = 1 — — 2 ;  ——————— . ) ’
! ’ ¢ a—c+2v/accos N Lemmal and Lemma2 that if ay # ¢q4, thens; # % which



axes inRP. In a lattice, the neighbors of a node lie along

the principal canonical axes &P”. For an arbitrary graph,
o0
O . .
0wl £529000000600-00 the weights are now chosen as samples of the same functions,
*
* along directions in which the neighbors lie.
*x The method is applicable to arbitrary dimension, but we
&=
107 * only consider the 2-D case in this paper. Graphs with 2-D
*
+ Symmetric Optim;* drawings are one of the most relevant classes of graphs for
o Asymmetric design  * sensor networks where consensus is likely to find applioatio
y
---Lower bound ) *
10— e A. Continuum approximation

. . . . Recall that the convergence rate is intimately connected to
Fig. 2. Comparison of convergence rateleb lattice between asymmetric . . . . :
design and convex optimization (symmetric optimal). the Laplacian matrix. We will show that the Laplacian matrix

associated with a large 2-D lattice with certain weights can

_— . .. .. be approximated by a Sturm-Liouville operator defined on a
implies the steady-state value is not the average of thialinit 2-D plane. Thus it's reasonable to suppose that the Sturm-

values. The asymmetric weight design is not applicable t|<_) il is al d . s
distributed averaging problem. iouville operator is also a goo (contlnuum) approximatio
of the Laplacian matrix of large graphs with 2-D drawing.

B. Numerical comparison We start from 2-D lattice graph and derive a Sturm-Liouville
gperator. We then use this operator to approximate the graph
Laplacian of more general graphs.

For ease of description, we first consider a 1-D lattice,
]’with the following asymmetric weights inspired by [23],

In this section, we present the numerical comparison
the convergence rates of the distributed proto2pbgtween
asymmetric designed weights (Theor&nand symmetric
optimal weights obtained from convex optimization [12
[13]. For simplicity, we take thel-D lattice as an ex- Wispt == 1+57 Wi —a= L o ®
ample. The asymmetric weights used di¢ ;11 = ¢ = 2 2
0.3, Wiy1; = a = 0.2. We see from Figure that the where; € {1,2,---, N—1} ande € (0,1) is a constant. The
convergence rate with asymmetric designed weights is mugiaph Laplacian corresponding to the weights givergjnig
larger than that with symmetric optimal weights. In additio given by

given the asymmetric weight values = 0.3,a = 0.2, 14e  —l-e
we obtain from Lemmal that Ao < 0.5 + 2¢/0.06, Ay > P f 1.
0.5 + 2+/0.06, which implies e 2 2 ©)
R=min{l — Xy, 1+ Ay} >0.5—-2V0.06. (7) [ '
2 2
We see from Figure that the convergence rafe is indeed % %
uniformly bounded below by7). Recall that to find a lower bound of the convergence rate of

the weight matrixi?’ (), it's sufficient to find a lower bound

_ ) ) ~of the second smallest eigenvalue of the associate Laplacia
In this section, we study how to design the weightyatrix 1,(1).

matrix 1V to increase the convergence rate of consensus\\e now use a Sturm-Liouville operator to approximate
in graphs that are more general than lattices. We use thg Laplacian matrixZ(). We first consider the finite-

idea of continuum approximation. Under some “nicenessjimensional eigenvalue problent ¢ = ué. Expanding the
properties, a graph can be thought of as approximation @ﬁuation it can be written as

a D-dimensional lattice, and by extension, of the Euclidean
y 1 ¢i1—2¢0;+¢ix1 € Gip1 — Pi1

IV. FAST CONSENSUS IN GENERAL GRAPHS

space corresponding ®” [21]. These properties havetodo  — - = = ud;,
with the graph not having arbitrarily large holes etc. Pseci 2N? 1/N? N 2/N
conditions under which a graph can be approximated byherei € {1,2,--- N} and¢o = ¢1, ¢n+1 = On.

the D-dimensional lattice are explored in [22] (for infinite  The starting point for the continuum approximation is to

graphs) and in [10] (for finite graphs). The dimensibnof ~ consider a functioms(z) : [0, 1] — R that satisfies:

the corresponding lattice/Euclidean space is also deteuni o _

by these properties. 9s = $@)le=ssv), (10)
The key is to embed the discrete graph problem into 8uch that functions that are defined at discrete paintl

continuum-domain problem. We use a Sturm-Liouville operbe approximated by functions that are defined everywhere in

ator to approximate the Laplacian matrix ofadimensional [0,1]. The original functions are thought of as samples of

geometric graph. A D-dimensional geometric graph is simpliheir continuous approximations. Under the assumptioh tha

a graph with a mapping of nodes to points®¥. Based NN is large, using the following finite difference approxima-

on this approximation, we re-derive the asymmetric weightéons:

for lattices described in the previous section as values of Gic1 —2¢; + diy1] 0%¢(x,t)

continuous functions defined ov&?” along the principal { 1/N2 } o { 0x? ]z:i/(zvﬂ)’




:122‘
1

e o A

the finite-dimensional eigenvalue problem can be approxi-
mated by the following Sturm-Liouville eigenvalue problem

1 d2 e d 4
£ — L0 -__-_ - == 11 , , , ,
@) = pe(z), 2N2dx2  Ndx’ (11) o 1 o 0 3 m i 2w
with the following Neumann boundary conditions (a) Relative angle (b) Weight function
do(0 do(1 Fig. 3. Weight design for general graphs.
6(0) _ do(1) _, 12)

dx dx

Lemma 3:The eigenvalues of the Sturm-Liouville opera-
tor £(Y) (11) with boundary conditioni2) for 0 < ¢ < 1
are real and the first two smallest eigenvalues satisfy

B. Weight design for 2-D general graphs

The inspiration of the proposed method comes from the
design for lattices. Thel weights for each nodé in a
2-dimensional lattice can be re-expressed as samples of a

i (LD) =0,  pa(L®) > e2/2. O continuous functiory : [0, 2m) — [1<, <]
We see from Lemma that the second smallest eigenvalue Wi+ = g(0;01+), Wi 2+ = 9(0; 2+),
of the Sturm-Liouville operatoC(") is uniformly bounded Wi = g(0in-), Wi = g(0;0)

away from zero. ) . . :
We now consider the distributed consensus on Duhered; ; is the relative angular position gfwith respect to
dimensional lattices. In particular, we consider the fellig ~ i- Given the angular positions @6 neighbors and the values

weights on the graph of the weights, we know that the functignmust satisfy:
3m 1+e 1+e 1—-¢ 1-¢
1+¢ 1-¢ T2 =
Wit =ca= 55 Wil =w=—5, @19 o0.gm V== @

Thus, we choose the functignas shown in Figure (b).

For an arbitrary graph, we now choose the weights by
Sampling the function according to the angle associateld wit
each edg€i, j):

wheree € (0,1) is a constant.

The Laplacian matrix of the D-dimensional square lattice
with the weights given inX3) is given byL(P) = 1 WD),
Following the similar procedure as thedimensional lattice,
the second smallest eigenvalue of the Laplacian maitrtX Wi, = 9(0ik) (18)
can be approximated by that of the following Sturm-Liowill Y Y e 9(0i )

operator where g(+) is the function described in Figuré (b). The
D 1 &2 cd above weight function1(8) can be seen as a linear interpola-
LP = -3 s —s + —),  (14) tion of (17). We see from 18) that the weight on each edge
=1 2DN§ dzg — DNadzq is computable in a distributed manner; a node only needs
to know the angular position of its neighbors. This design
method does not require any knowledge of the network

with the following Neumann boundary conditions

0o(Z) —0 (15) topology or centralized computation.
04 lwa=00r1 C. Numerical comparison
whered = {1,2,---,D} andZ = [x1,x2, -+ ,xp]”. In this section, we present the numerical comparison

The continuum approximation has been used to study th# convergence rates among asymmetric design, symmetric
stability margin of large vehicular platoons [23], [24], inoptimal weights and weights chosen by the Metropolis-
which the continuum model gives more insight on the effeadastings method. The symmetric optimal weights are ob-
of asymmetry on the stability margin of the systems. In thisained by using convex optimization method [9], [12]. The
paper, we use the second smallest eigenvalue of the Sturmetropolis-Hastings weights are picked by the following
Liouville operator£(P) to approximate that of the Laplacian ryle: W, ; = 1/|N;|, whereN; denotes the number of node
matrix L"), i's neighbors. The weights generated by this method are in

Theorem 3:The second smallest eigenvalups(£(”))  general asymmetric. We plot the convergence @tes a
of the Sturm-Liouville operatorz(”) (14) with boundary function of N, where N is the number of agents in the

condition (L5) for 0 < € < 1 is real and satisfies network. The amount of asymmetry useceis- 0.5.
9 We first consider a L-Z geometric graph [10], which is
p2(LP)) > 26_D’ (16) generated by perturbing the position of a squz lattice

(N, = N, = /N) with Gaussian random noise (zero
which is a positive constant independent/éf O mean andl/(4V/N) standard deviation) and connect each
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