
Cut Detection in Wireless Sensor Networks
Prabir Barooah, Member, IEEE, Harshavardhan Chenji, Student Member, IEEE,

Radu Stoleru, Member, IEEE, and Tamás Kalmár-Nagy

Abstract—A wireless sensor network can get separated into multiple connected components due to the failure of some of its nodes,

which is called a “cut.” In this paper, we consider the problem of detecting cuts by the remaining nodes of a wireless sensor network. We

propose an algorithm that allows 1) every node to detect when the connectivity to a specially designated node has been lost, and 2) one

or more nodes (that are connected to the special node after the cut) to detect the occurrence of the cut. The algorithm is distributed and

asynchronous: every node needs to communicate with only those nodes that are within its communication range. The algorithm is based

on the iterative computation of a fictitious “electrical potential” of the nodes. The convergence rate of the underlying iterative scheme is

independent of the size and structure of the network. We demonstrate the effectiveness of the proposed algorithm through simulations

and a real hardware implementation.

Index Terms—Wireless networks, sensor networks, network separation, detection and estimation, iterative computation.

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) are a promising
technology for monitoring large regions at high

spatial and temporal resolution. However, the small size
and low cost of the nodes that makes them attractive for
widespread deployment also causes the disadvantage of
low-operational reliability. A node may fail due to various
factors such as mechanical/electrical problems, environ-
mental degradation, battery depletion, or hostile tampering.
In fact, node failure is expected to be quite common due to
the typically limited energy budget of the nodes that are
powered by small batteries. Failure of a set of nodes will
reduce the number of multihop paths in the network. Such
failures can cause a subset of nodes—that have not
failed—to become disconnected from the rest, resulting in
a “cut.” Two nodes are said to be disconnected if there is no
path between them.

We consider the problem of detecting cuts by the nodes
of a wireless network. We assume that there is a specially
designated node in the network, which we call the source
node. The source node may be a base station that serves as
an interface between the network and its users; the reason
for this particular name is the electrical analogy introduced
in Section 2.2. Since a cut may or may not separate a node
from the source node, we distinguish between two distinct
outcomes of a cut for a particular node. When a node u is
disconnected from the source, we say that a Disconnected
frOm Source (DOS) event has occurred for u. When a cut

occurs in the network that does not separate a node u from
the source node, we say that Connected, but a Cut Occurred
Somewhere (CCOS) event has occurred for u. By cut
detection we mean 1) detection by each node of a DOS
event when it occurs, and 2) detection of CCOS events by
the nodes close to a cut, and the approximate location of the
cut. By “approximate location” of a cut we mean the
location of one or more active nodes that lie at the boundary
of the cut and that are connected to the source. Nodes that
detect the occurrence and approximate locations of the cuts
can then alert the source node or the base station.

To see the benefits of a cut detection capability, imagine
that a sensor that wants to send data to the source node has
been disconnected from the source node. Without the
knowledge of the network’s disconnected state, it may
simply forward the data to the next node in the routing tree,
which will do the same to its next node, and so on.
However, this message passing merely wastes precious
energy of the nodes; the cut prevents the data from reaching
the destination. Therefore, on one hand, if a node were able
to detect the occurrence of a cut, it could simply wait for the
network to be repaired and eventually reconnected, which
saves on-board energy of multiple nodes and prolongs their
lives. On the other hand, the ability of the source node to
detect the occurrence and location of a cut will allow it to
undertake network repair. Thus, the ability to detect cuts by
both the disconnected nodes and the source node will lead
to the increase in the operational lifetime of the network as a
whole. A method of repairing a disconnected network by
using mobile nodes has been proposed in [1]. Algorithms
for detecting cuts, as the one proposed here, can serve as
useful tools for such network repairing methods. A review
of prior work on cut detection in sensor networks, e.g., [2],
[3], [4] and others, is included in the Supplementary
Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.178.

In this paper, we propose a distributed algorithm to
detect cuts, named the Distributed Cut Detection (DCD)
algorithm. The algorithm allows each node to detect DOS
events and a subset of nodes to detect CCOS events. The

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. X, XXX 2012 1

. P. Barooah is with the Deptartment of Mechanical and Aerospace
Engineering, University of Florida, Gainesville, FL 32611.
E-mail: pbarooah@ufl.edu.

. H. Chenji and R. Stoleru are with the Deptartment of Computer Science
and Engineering, Texas A&M University, College Station, TX 77845.
E-mail: {cjh, stoleru}@cse.tamu.edu.

. T. Kalmár-Nagy is with the Deptartment of Aerospace Engineering, Texas
A&M University, College Station, TX 77845.
E-mail: kalmarnagy@tamu.edu.

Manuscript received 25 Jan. 2011; revised 26 Apr. 2011; accepted 10 May
2011; published online 13 June 2011.
Recommended for acceptance by D. Simplot-Ryl.
For information on obtaining reprints of this article, please send E-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-01-0040.
Digital Object Identifier no. 10.1109/TPDS.2011.178.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

algorithm we propose is distributed and asynchronous: it
involves only local communication between neighboring
nodes, and is robust to temporary communication failure
between node pairs. A key component of the DCD
algorithm is a distributed iterative computational step
through which the nodes compute their (fictitious) electrical
potentials. The convergence rate of the computation is
independent of the size and structure of the network.

The DOS detection part of the algorithm is applicable to
arbitrary networks; a node only needs to communicate a
scalar variable to its neighbors. The CCOS detection part of
the algorithm is limited to networks that are deployed in 2D
euclidean spaces, and nodes need to know their own
positions. The position information need not be highly
accurate. The proposed algorithm is an extension of our
previous work [5], which partially examined the DOS
detection problem.

2 DISTRIBUTED CUT DETECTION

2.1 Definitions and Problem Formulation

Time is measured with a discrete counter k ¼ �1; . . . ;�1;
0; 1; 2; We model a sensor network as a time-varying
graph GðkÞ ¼ ðVðkÞ; EðkÞÞ, whose node set VðkÞ represents the
sensor nodes active at time k and the edge set EðkÞ consists of
pairs of nodes ðu; vÞ such that nodes u and v can directly
exchange messages between each other at time k. By an
active node we mean a node that has not failed perma-
nently. All graphs considered here are undirected, i.e.,
ði; jÞ ¼ ðj; iÞ. The neighbors of a node i is the set N i of nodes
connected to i, i.e., N i ¼ fjjði; jÞ 2 Eg. The number of
neighbors of i, N iðkÞj j, is called its degree, which is denoted
by diðkÞ. A path from i to j is a sequence of edges
connecting i and j. A graph is called connected if there is a
path between every pair of nodes. A component Gc of a graph
G is a maximal connected subgraph of G (i.e., no other
connected subgraph of G contains Gc as its subgraph).

In terms of these definitions, a cut event is formally
defined as the increase of the number of components of a
graph due to the failure of a subset of nodes (as depicted in
Fig. 1). The number of cuts associated with a cut event is the
increase in the number of components after the event.

The problem we seek to address is twofold. First, we
want to enable every node to detect if it is disconnected
from the source (i.e., if a DOS event has occurred). Second,
we want to enable nodes that lie close to the cuts but are still
connected to the source (i.e., those that experience CCOS
events) to detect CCOS events and alert the source node.

There is an algorithm-independent limit to how accurately
cuts can be detected by nodes still connected to the source,
which are related to holes. Fig. 1 provides a motivating
example. This is discussed in detail in the Supplementary
Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.178, including formal definitions of
“hole” etc. We therefore focus on developing methods to
distinguish small holes from large holes/cuts. We allow the
possibility that the algorithm may not be able to tell a large
hole (one whose circumference is larger than ‘max) from a cut,
since the examples of Figs. 1b and 1c show that it may be
impossible to distinguish between them. Note that the

discussion on hole detection part is limited to networks with
nodes deployed in 2D.

2.2 State Update Law and Electrical Analogy

The DCD algorithm is based on the following electrical
analogy. Imagine the wireless sensor network as an electrical
circuit where current is injected at the source node and
extracted out of a common fictitious node that is connected to
every node of the sensor network. Each edge is replaced by a
1 � resistor. When a cut separates certain nodes from the
source node, the potential of each of those nodes becomes 0,
since there is no current injection into their component. The
potentials are computed by an iterative scheme (described in
the sequel) which only requires periodic communication
among neighboring nodes. The nodes use the computed
potentials to detect if DOS events have occurred (i.e., if they
are disconnected from the source node).

To detect CCOS events, the algorithm uses the fact that the
potentials of the nodes that are connected to the source node
also change after the cut. However, a change in a node’s
potential is not enough to detect CCOS events, since failure of
nodes that do not cause a cut also leads to changes in the
potentials of their neighbors. Therefore, CCOS detection
proceeds by using probe messages that are initiated by
certain nodes that encounter failed neighbors, and are
forwarded from one node to another in a way that if a short
path exists around a “hole” created by node failures, the
message will reach the initiating node. The nodes that detect
CCOS events then alert the source node about the cut.

Every node keeps a scalar variable, which is called its
state. The state of node i at time k is denoted by xiðkÞ. Every
node i initializes its state to 0, i.e., xið0Þ ¼ 0; 8i. During the
time interval between the kth and kþ 1th iterations, every
node i broadcasts its current state xiðkÞ and listens for
broadcasts from its current neighbors. Let N iðkÞ be the set
of neighbors of node i at time k. Assuming successful
reception, i has access to the states of its neighbors, i.e.,
xjðkÞ for j 2 N iðkÞ, at the end of this time period. The node
then updates its state according to the following state

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. X, XXX 2012

Fig. 1. Examples of cuts and holes. Filled circles represent active nodes
and unfilled filled circles represent failed nodes. Solid lines represent
edges, and dashed lines represent edges that existed before the failure
of the nodes. The hole in (d) is indistinguishable from the cut in (b) to
nodes that lie outside the region R.

update law (the index i ¼ 1 corresponds to the source
node), where the source strength s (a positive number) is a
design parameter

xiðkþ 1Þ ¼ 1

diðkÞ þ 1

X
j2N iðkÞ

xjðkÞ þ s1f1gðiÞ

0
@

1
A; ð1Þ

where diðkÞ :¼ jN iðkÞj is the degree of node i at time k, and
1AðiÞ is the indicator function of the set A. That is, 1f1gðiÞ ¼
1 if i ¼ 1 (source node), and 1f1gðiÞ ¼ 0 if i 6¼ 1. After the
state is updated, the next iteration starts. At deployment,
nodes go through a neighbor discovery and every node i
determines its initial neighbor set N ið0Þ. After that, i can
update its neighbor list N iðkÞ as follows: If no messages
have been received from a neighboring node for the past
�drop iterations, node i drops that node from its list of
neighbors. The integer parameter �drop is a design choice.

To understand the state update law’s relation to the
electrical analogy described earlier, given an undirected
graph G ¼ ðV; EÞ, imagine a fictitious graph Gelec ¼ ðVelec;
EelecÞ as follows: The node set of the fictitious graph is
Velec ¼ V [fgg, where g is a fictitious grounded node; and
every node in V is connected to the grounded node g with a
single edge, which constitute the extra edges in Eelec that are
not there in E. Now an electrical network ðGelec; 1Þ is imagined
by assigning to every edge of Gelec a resistance of 1 �. Fig. 2
shows a graph G and the corresponding fictitious electrical
network ðGelec; 1Þ. It will be shown later in Theorem 1
(Section 2.4) that the state update law is simply an iterative
procedure to compute the node potentials in the electrical
network ðGelec; 1Þ in which s Ampere current is injected at
the source node and extracted through the grounded node
g. The potential of the grounded node g is held at 0.

When the sensor networkG is connected, the state of a node
converges to its potential in the electrical network ðGelec; 1Þ,
which is a positive number. If a cut occurs, the potential of a
node that is disconnected from the source is 0; and this is the
value its state converges to. If reconnection occurs after a cut,
the states of reconnected nodes again converge to positive
values. Therefore, a node can monitor whether it is connected
or separated from the source by examining its state.

The above description assumes that all updates are done
synchronously. In practice, especially with wireless com-
munication, an asynchronous update is preferable. The
algorithm can be easily extended to asynchronous setting
by letting every node keep a buffer of the last received
states of its neighbors. If a node does not receive messages
from a neighbor during the interval between two iterations,
it updates its state using the last successfully received state
from that neighbor. In the asynchronous setting every node

keeps a local iteration counter that may differ from those of
other nodes by arbitrary amount.

Fig. 3 shows the evolution of the node states in a network
of 200 nodes when the states are computed using the
update law described above. The source node is at the
center. The nodes shown as red squares in Fig. 3b fail at
k ¼ 100, and thereafter they do not participate in commu-
nication or computation. Figs. 3c and 3d show the time
evolution of the states of the two nodes u and v, which are
marked by circles in Fig. 3b. The state of node u (that is
disconnected from the source due to the cut) decays to 0
after reaching a positive value, whereas the state of the node
v (which is still connected after the cut) stays positive.

2.3 The Distributed Cut Detection Algorithm

2.3.1 DOS Detection

The approach here is to exploit the fact that if the state is close
to 0 then the node is disconnected from the source, otherwise
not (this is made precise in Theorem 1 of Section 2.4). In order
to reduce sensitivity of the algorithm to variations in network
size and structure, we use a normalized state. DOS detection
part consists of steady-state detection, normalized state
computation, and connection/separation detection. Every
node imaintains a binary variable dDOSiðkÞ, which is set to 1 if
the node believes it is disconnected from the source and 0
otherwise. This variable, which is called the DOS status, is
initialized to 1 since there is no reason to believe a node is
connected to the source initially.

A node keeps track of the positive steady states seen in
the past using the following method. Each node i computes
the normalized state difference �xiðkÞ as follows:

�xiðkÞ ¼
xiðkÞ � xiðk� 1Þ

xiðk� 1Þ ; if xiðk� 1Þ > �zero;

1; otherwise;

8<
:

where �zero is a small positive number. A node i keeps a
Boolean variable Positive Steady State Reached (PSSR) and
updates PSSRðkÞ 1 if j�xið�Þj < ��x for � ¼ k� �guard; k�
�guard þ 1; . . . ; k (i.e., for �guard consecutive iterations), where

BAROOAH ET AL.: CUT DETECTION IN WIRELESS SENSOR NETWORKS 3

Fig. 2. A graph describing a sensor network G (left), and the associated
fictitious electrical network Gelec (right). s Amp current is injected into the
electrical network through the “source node” (unfilled circle), and
extracted through the “ground” node (filled triangle). The line segments
in the electrical network are 1 � resistors.

Fig. 3. (a)-(b): A sensor network with 200 nodes, shown before and after
a cut. The cut occurs, at k ¼ 100, due to the failure of the nodes shown
as red squares. The source node is at the center. (c)-(d): The states of
two nodes u and v as a function of iteration number.

��x is a small positive number and �guard is a small integer.
The initial 0 value of the state is not considered a steady
state, so PSSRðkÞ ¼ 0 for k ¼ 0; 1; . . . ; �guard.

Each node keeps an estimate of the most recent “steady
state” observed, which is denoted by x̂ssi ðkÞ. This estimate is
updated at every time k according to the following rule: if
PSSRðkÞ ¼ 1, then x̂ssi ðkÞ xiðkÞ, otherwise x̂ssi ðkÞ
x̂ssi ðk� 1Þ. It is initialized as x̂ssi ð0Þ ¼ 1. Every node i also
keeps a list of steady states seen in the past, one value for
each unpunctuated interval of time during which the state
was detected to be steady. This information is kept in a
vector X̂ss

i ðkÞ, which is initialized to be empty and is
updated as follows: If PSSRðkÞ ¼ 1 but PSSRðk� 1Þ ¼ 0, then
x̂ssðkÞ is appended to X̂ss

i ðkÞ as a new entry. If steady state
reached was detected in both k and k� 1 (i.e.,
PSSRðkÞ ¼ PSSRðk� 1Þ ¼ 1), then the last entry of X̂ss

i ðkÞ is
updated to x̂ssi ðkÞ. For instance, for the node v in the
network shown in Figs. 3a and 3b, X̂ss

v ð3Þ ¼ � (empty),
X̂ss
v ð60Þ ¼ ½0:0019� and X̂ss

v ð150Þ ¼ ½0:019; 0:012�T . For future
use, we also define an unsteady interval for a node i, which
is a set of two local time counters ½kð1Þi ; k

ð2Þ
i � such that the

state xiðkð1Þi � 1Þ is a steady-state (i.e., PSSRðkð1Þi � 1Þ ¼ 1) but
xiðkð1Þi Þ is not, and xiðkð2Þi Þ is not steady but xiðkð2Þi þ 1Þ is.
With reference to Fig. 3d, the last unsteady interval for node
v at time 150 is ½81; 101�T .

Each node computes a normalized state xnorm
i ðkÞ as

xnorm
i ðkÞ :¼

xiðkÞ
x̂ssi ðkÞ

; if x̂ssi ðkÞ > 0;

1; otherwise;

8<
:

where x̂ssi ðkÞ is the last steady state seen by i at k, i.e., the
last entry of the vector X̂ss

i ðkÞ. If the normalized state of i is
less than �DOS, where �DOS is a small positive number, then
the node declares a cut has taken place: dDOSi 1. If the
normalized state is 1, meaning no steady state was seen
until k, then dDOSiðkÞ is set to 0 if the state is positive (i.e.,
xiðkÞ > �zero) and 1 otherwise.

2.3.2 CCOS Detection

The algorithm for detecting CCOS events relies on finding a
short path around a hole, if it exists, and is partially
inspired by the jamming detection algorithm proposed in
[6]. The method utilizes node states to assign the task of
hole-detection to the most appropriate nodes. When a node
detects a large change in its local state as well as failure of
one or more of its neighbors, and both of these events occur
within a (predetermined) small time interval, the node
initiates a PROBE message. The pseudocode for the
algorithm that decides when to initiate a probe is included
in Section 2 of the Supplementary Material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.178.

Each PROBE message p contains the following infor-
mation:

1. a unique probe ID,
2. probe centroid Cp (see Algorithm PROBE_INITIA-

TION in the Supplementary Material, which can be
found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.
2011.178),

3. destination node,
4. path traversed (in chronological order), and
5. the angle traversed by the probe around the

centroid.

The probe is forwarded in a manner such that if the probe is
triggered by the creation of a small hole or cut (with
circumference less than ‘max), the probe traverses a path
around the hole in a counter-clockwise (CCW) direction and
reaches the node that initiated the probe. In that case, the net
angle traversed by the probe is 360 degree. On the other hand,
if the probe was initiated by the occurrence of a boundary cut,
even if the probe eventually reaches its node of initiation, the
net angle traversed by the probe is 0. Nodes forward a probe
only if the distance traveled by the probe (the number of hops)
is smaller than a threshold value ‘max. Therefore, if a probe is
initiated due to a large internal cut/hole, then it will be
absorbed by a node (i.e., not forwarded because it exceeded
the distance threshold constraint), and the absorbing node
declares that a CCOS event has taken place. Details on when
the source node is alerted about the occurrence of a cut in the
network is included in the Supplementary Material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.
2011.178.

The information required to compute and update these
probe variables necessitates the following assumption for
CCOS detection:

Assumption 1. 1) The sensor network is a two-dimensional
geometric graph, with Pi 2 IR2 denoting the location of the ith
node in a common Cartesian reference frame; 2) Each node
knows its own location as well as the locations of its neighbors.

The location information needed by the nodes need not
be precise, since it is only used to compute destinations of
probe messages. The assumption of the network being 2D is
needed to be able to define CW or CCW direction
unambiguously, which is used in forwarding probes. At
the beginning of an iteration, every node starts with a list of
probes to process. The list of probes is the union of the
probes it received from its neighbors and the probe it
decided to initiate, if any. The manner in which the
information in each of the probes in its list is updated by
a node is described in Section 2 of the Supplementary
Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.178.

2.4 Performance Analysis

The evolution of the node states with and without the
occurrence of cuts in the general asynchronous and time-
varying setting is stated in the next theorem. In the
statement of Theorem 1 and Assumption 2, ki is the local
iteration counter at node i, and k is a global time counter.
The global counter is used solely for the ease of exposition;
a node does not need to have access to it. The following
assumptions are used:

Assumption 2.

1. Communication between nodes is symmetric;
2. If a node fails permanently, each of its neighbors can

detect its failure within a fixed time period;

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. X, XXX 2012

3. The source node never fails;
4. Every node takes part in the communication and state

update infinitely often, i.e., as k1 !1, ki !1 for 8i.

Theorem 1. Let the nodes of a sensor network GðkÞ execute the

state update law in an asynchronous manner, subject to

Assumption 2.

1. Let G1ðkÞ ¼ ðV1ðkÞ; E1ðkÞÞ be the component of GðkÞ
that contains the source node. If there exists k0 such that
G1ðkÞ ¼ G1ðk0Þ for all k � k0, then for every node i 2
V1ðkÞ the state xiðkÞ converges to a positive number as
k!1 that is equal to the potential of the node i in the
electrical network ðGelec

1 ðk0Þ; 1Þ with s Ampere flowing
from the source node to the grounded node.

2. Let �GðkÞ be a component of GðkÞ that does not contain
the source node for all k � k0 for some positive integer
k0. Then, for every initial condition xðk0Þ :¼
½x1ðk0Þ; . . . ; xnðk0Þ�T , the state of every node in �GðkÞ
converges to 0 as k!1.

The proof of this result is presented in Section 4 of the

Supplementary Material, which can be found on the

Computer Society Digital Library at http://doi.

ieeecomputersociety.org/10.1109/TPDS.2011.178. It is im-

portant to notice that �GðkÞ is allowed to change with time in

the second statement of the theorem; the only requirement

is that the source node never be a part of it. Therefore, even

if the graph keeps changing with time, e.g., due to node

mobility, the states of the nodes that are disconnected from

the source will converge to 0.
The DOS detection part of the proposed algorithm comes

with a guarantee on the maximum delay incurred, which is
stated in the following Lemma. The proof is provided in
Section 4 of the Supplementary Material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.178.

Lemma 1. Let the nodes of GðkÞ execute the DCD algorithm in a
synchronous manner starting from k ¼ 0, with s� �zero and
�zero chosen such that �zero <

1
2Vmin, where Vmin is the

minimum node potential in the fictitious electrical network
Gelecð0Þ. Let the sequence GðkÞ be time invariant at all k except
at one specific time instant kfail > 0, at which time certain
nodes fail leading to a cut in the network.

1. If kfail > Kð1s �zeroÞ þ �guard, where Kð�Þ is defined as

KðxÞ :¼ logx

log 1� 1
2þdmax

� � ; x > 0;

where dmax is the maximum node degree of the network

Gð0Þ, then for every node i, we have dDOSiðkÞ ¼ 0 for all

k 2 ½k0 k
fail� where k0 is some integer that is less than

kfail.
2. If kfail > Kð1s �zero��xÞ, then for each node i that is

disconnected from the source after the cut, dDOSiðkÞ ¼ 1
for all k that satisfies k� kfail > Kð1s �zero�DOSÞ.

The first statement of the Lemma means that the nodes
correctly determine that they are connected to the source at
some time after deployment before the cut occurs. The second

statement means that after some time after the cut, the nodes
that are disconnected correctly determine the disconnection.

Lemma 1 follows from a number of technical results,
which are stated and proved in the Supplementary Material,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2011.178. The key result among them is that the convergence
rate of the state update law (1) does not depend on the size or
topology of the network (see Proposition 1 in the Supple-
mentary Material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2011.178). The reason for this surprising
attribute of the state update law is the following. Although
communication takes place only among nearby neighbors in
the physical network, every node can be thought of as
communicating directly with the grounded node at every
iteration in the fictitious electrical network. This is due to the
þ1 in the denominator in the update law (1), which averages
the state of the grounded node (always 0) along with that of
all other neighbors. Every node is one hop away from the
grounded node in the fictitious electrical network, irrespec-
tive of the size and structure of the sensor network G. As a
result, the time it takes for each node’s state to get arbitrarily
close to its limiting value, is independent of the network’s
size and structure. This property makes the DCD algorithm
scalable to large networks.

3 PERFORMANCE EVALUATION

Performance of the DCD algorithm was tested using
MATLAB simulations (conducted in a synchronous manner)
and then on a real WSN system consisting of micaZ motes
[7]. Two important metrics of performance for the DCD
algorithm are 1) detection accuracy, and 2) detection delay.
Detection accuracy refers to the ability to detect a cut when it
occurs and not declaring a cut when none has occurred. DOS
detection delay for a node i that has undergone a DOS event
is the minimum number of iterations (after the node has
been disconnected) it takes before the node switches its dDOSi
flag from 0 to 1. CCOS detection delay is the minimum
number of iterations it takes after the occurrence of a cut
before a node detects it. A third metric, communication
overhead, is discussed in the Supplementary Material,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2011.178.

In detecting disconnection from source (DOS) events,
two kinds of inaccuracies are possible. A DOS0/1 error is
said to occur if a node concludes it is connected to the
source while it is in fact disconnected, i.e., node i declaresdDOSi to be 0 while it should be 1. A DOS1/0 error is said to
occur if a node concludes that is disconnected from the
source while in fact it is connected. In CCOS detection,
again two kinds of inaccuracies are possible. A CCOS0/1
error is said to occur when cut (or a large hole) has occurred
but not a single node is able to detect it. A CCOS1/0 error is
said to occur when a node concludes that there has been a
cut (or large hole) at a particular location while no cut has
taken place near that location.

The algorithm’s effectiveness is examined by evaluating
the probabilities of the four types of possible errors
enumerated above, as well as the detection delays. The
probability of DOS0/1 error at time k is the ratio between

BAROOAH ET AL.: CUT DETECTION IN WIRELESS SENSOR NETWORKS 5

the number of nodes that incur a DOS0/1 error (who
believe they are connected but are not) at that time to the
number of nodes that are disconnected from the source at
that time. Probability of DOS1/0 error at k is the ratio
between the number of nodes that incur a DOS1/0 error
(who believe they are disconnected from the source but are
in fact connected) to the number of nodes that are connected
to the source at that time. The probability of CCOS0/1 error
is the ratio between the number CCOS events (cuts or large
holes) that are not detected by any nodes to the total
number of such events in the network. The probability of
CCOS1/0 error is the ratio between the number of nodes
who declare that a CCOS event has taken place erroneously
(i.e., due to absorbing a probe that was triggered by a small
hole) to the number of nodes that initiate probe messages.
Due to the fundamental difficulty in distinguishing cuts
from holes discussed in Section 2.1, it is not considered an
error if a node declares that a CCOS event has taken place in
response to the creation of a large hole.

3.1 Choice of Parameters

The parameters �zero; �DOS; ��x, �guard, �drop, ‘max, and r�ss

have to be specified to all the nodes a priori. The parameter s
has to be specified only to the source node. A detailed

discussion on the choice of parameters and their effect on
the DCD algorithm’s performance is provided in Section 5 of
the Supplementary Material, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2011.178. The main
conclusions are that 1) �zero should be chosen as small as
possible and s should be chosen as large as possible to
minimize detection error, 2) a smaller value of the parameter
�DOS decreases probability of DOS1/0 error but increases
DOS detection delay, and 3) the rest of the parameters do
not seem to have a significant effect on the algorithm’s
performance. The values of the parameters used in all the
simulations and experimental evaluations reported in this
paper are shown in Table 1.

3.2 Evaluation through Simulations

Simulations are conducted on the five networks that are
shown in Figs. 4a, 4b, 4c, 4d, and 4e.

3.2.1 DOS Detection Performance

In simulations with each of the five networks, the node
failures occur at k ¼ 100. Performance of the DOS detection
part of the algorithm in terms of error probabilities and
detection delays are summarized in Table 2. The error
probabilities shown are the ones that are empirically
computed at k ¼ 60 and k ¼ 160, i.e., 60 iterations after
deployment and after the node failures occurred, respec-
tively. The mean and standard deviation of DOS detection
delay for a network are computed by averaging over the
nodes that detected DOS events. We see from Table 2 that
the algorithm is able to successfully detect initial connec-
tivity to the source and then DOS events for all the five
networks without requiring the parameters to be tuned for
each network individually.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. X, XXX 2012

TABLE 1
List of Parameters that Have to Be Provided to the Nodes

The numerical values shown here are used for all simulations and
experimental evaluations reported in this document.

TABLE 2
DOS Detection Performance for the Networks

Shown in Figs. 4

The two values of the probability shown in each cell correspond to k ¼
60 and k ¼ 160, respectively.

Fig. 4. Five networks before and after node failures: (a) 25-node 1D line network, (b) 100-node 2D grid, (c) 400-node 2D grid, (d) 200-node 2D
random network, and (e) 256-node 3D grid (8� 8� 4).

3.2.2 CCOS Detection Performance

Recall that the CCOS detection part of the algorithm is not
applicable to 3D networks, so it was only tested on
networks Figs. 4a, 4b, 4c, and 4d. As a specific example,
Fig. 5 shows the path of the probes and their originating
nodes in the network of Fig. 4d. Two probes were triggered
by nodes close to the cut on the upper right corner, both of
them were absorbed when the length of their path traversed
exceeded ‘max hops, which led to correctly detecting CCOS
events. Among three probes that were triggered by nodes
near small holes in this network, one of them—near the hole
in the upper left corner—failed to find a path back to its
originating node, leading to an erroneous declaration of an
CCOS event by the absorbing node. The probability of a
CCOS1/0 error in this case is therefore 0.33.

Table 3 summarizes the performance of the CCOS
detection part of algorithm (executed with parameter
values shown in Table 1). The CCOS detection error
probabilities are 0 except in case of the network in Fig. 4d
as described above.

Simulation studies reported in the Supplementary
Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.178, (Section 5) shows that imprecise
position information has little effect on the performance of
the CCOS detection part of the algorithm. Analysis of
communication cost of the algorithm is also reported in
Section 5 of the Supplementary Material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.178.

3.3 System Implementation and Evaluation

In this section, we describe the hardware/software im-
plementation, outdoor deployment, and evaluation of the
DCD algorithm. A network of 24 motes was deployed
outdoors in a grassy field at Texas A&M University for a
total deployment area of approximately 13� 5 m2. A partial

view of the outdoor deployment is shown in Fig. 6. The
network connectivity is depicted in Fig. 7a.

The algorithm was implemented using the nesC language
on micaZ motes [7] running the TinyOS operating system
[8]. The code uses 16 KB of program memory and 719 B of
RAM. The system executes in two phases: the Reliable
Neighbor Discovery (RND) phase and the DCD Algorithm
phase. In the RND phase each mote broadcasts a beacon
within a fixed time interval of 5 s for 15 such intervals. Upon
receiving a beacon, the mote updates the number of beacons
received from that particular sender. To determine whether
a communication link is established, each mote first
computes for each of its neighbors the Packet Reception
Ratio (PRR), defined as the ratio of the number of
successfully received beacons and the total number of
beacons sent by a neighbor. A neighbor is deemed reliable
if the PRR > 0:8. Next, the DCD algorithm executes. After
receiving state information from neighbors, a node updates
its state according to (1) in an asynchronous manner and
broadcasts its new state. The state is stored in the 512 KB on
board flash memory at each iteration (for a total of about
1.6 KB for 200 iterations) for postdeployment analysis.

Experimental results for two of the sensor nodes
deployed are shown in Fig. 7. The states of all nodes
converged after about 30 iterations. At iteration k ¼ 83 a cut

BAROOAH ET AL.: CUT DETECTION IN WIRELESS SENSOR NETWORKS 7

TABLE 3
CCOS Detection Performance for Four

Networks in Figs. 4a and 4d

The Error Probabilities Are at k ¼ 160.

Fig. 5. The path of the probe messages in the network of Fig. 4d. Each
probe path is marked with a distinct legend (circle, triangle, square, etc.),
and the node that initiated the probe is shown as the one with the larger
legend.

Fig. 6. Partial view of the 24 node outdoor deployment.

Fig. 7. (a) The network for the outdoor deployment. (b)-(c) The states of
nodes 13 and 3, which are disconnected from and connected to,
respectively, the source after the cut has occurred.

is created by turning off motes inside the rectangle labeled
“Cut” in Fig. 7a. The states for this network approach their
new steady state values around iteration k ¼ 117. Figs. 7b
and 7c show the states for nodes u and v, as depicted in
Fig. 7a, which were connected and disconnected, respec-
tively, from the source node after the cut.

The values of the parameters used by the DCD algorithm
in the experimental evaluation are the same as those used in
the MATLAB simulations, which are shown in Table 1. All
nodes disconnected from the source detected the DOS event
correctly; the mean DOS detection delay is 19 iterations,
with a standard deviation of 4. The DOS detection delays
can be substantially reduced by choosing a larger value for
�zero. The CCOS detection part was executed offline, after
the state data was collected from the nodes. Node 7 was the
only node that initiated a probe, which reached node 7
again by traveling through the edges (7, 4), (4, 2), (2, 7), with
a net angle of 0 around the probe centroid. Thus, 7 detected
a CCOS event, with its former neighbor 10 as a boundary of
the cut (or large hole).

4 CONCLUSIONS

The DCD algorithm we propose here enables every node of
a wireless sensor network to detect Disconnected frOm
Source events if they occur. Second, it enables a subset of
nodes that experience CCOS events to detect them and
estimate the approximate location of the cut in the form of a
list of active nodes that lie at the boundary of the cut/hole.
The DOS and CCOS events are defined with respect to a
specially designated source node. The algorithm is based on
ideas from electrical network theory and parallel iterative
solution of linear equations.

Numerical simulations, as well as experimental evalua-
tion on a real WSN system consisting of micaZ motes, show
that the algorithm works effectively with a large classes of
graphs of varying size and structure, without requiring
changes in the parameters. For certain scenarios, the
algorithm is assured to detect connection and disconnection
to the source node without error. A key strength of the DCD
algorithm is that the convergence rate of the underlying
iterative scheme is quite fast and independent of the size
and structure of the network, which makes detection using
this algorithm quite fast. Application of the DCD algorithm
to detect node separation and reconnection to the source in
mobile networks is a topic of ongoing research.

REFERENCES

[1] G. Dini, M. Pelagatti, and I.M. Savino, “An Algorithm for
Reconnecting Wireless Sensor Network Partitions,” Proc. European
Conf. Wireless Sensor Networks, pp. 253-267, 2008.

[2] N. Shrivastava, S. Suri, and C.D. Tóth, “Detecting Cuts in Sensor
Networks,” ACM Trans. Sensor Networks, vol. 4, no. 2, pp. 1-25,
2008.

[3] H. Ritter, R. Winter, and J. Schiller, “A Partition Detection System
for Mobile Ad-hoc Networks,” Proc. First Ann. IEEE Comm. Soc.
Conf. Sensor and Ad Hoc Comm. and Networks (IEEE SECON ’04),
pp. 489-497, Oct. 2004.

[4] M. Hauspie, J. Carle, and D. Simplot, “Partition Detection in
Mobile Ad-Hoc Networks,” Proc. Second Mediterranean Workshop
Ad-Hoc Networks, pp. 25-27, 2003.

[5] P. Barooah, “Distributed Cut Detection in Sensor Networks,”
Proc. 47th IEEE Conf. Decision and Control, pp. 1097-1102, Dec.
2008.

[6] A.D. Wood, J.A. Stankovic, and S.H. Son, “Jam: A Jammed-Area
Mapping Service for Sensor Networks,” Proc. IEEE Real Time
Systems Symp., 2003.

[7] http://www.xbow.com/Products/Product_pdf_files/Wireless_
pdf/MICAZ_Datasheet.pdf, 2011.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System Architecture Directions for Networked Sensors,” Proc.
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2000.

Prabir Barooah was born in Jorhat, Assam,
India. He received the BTech degree in mechan-
ical engineering from the Indian Institute of
Technology, Kanpur, in 1996, the MS degree
in mechanical engineering from the University of
Delaware in 1999, PhD degree in electrical and
computer engineering in 2007 from the Univer-
sity of California, Santa Barbara. He is currently
an assistant professor in the Department of
Mechanical and Aerospace Engineering at Uni-

versity of Florida. From 1999 to 2002, he was a research engineer at
United Technologies Research Center, East Hartford, CT. He is the
winner of the US National Science Foundation (NSF) CAREER award
(2010), General Chairs’ Recognition Award for Interactive papers at the
48th IEEE Conference on Decision and Control (2009), Best Paper
Award at the second International Conference on Intelligent Sensing
and Information Processing (2005), and NASA group achievement
award (2003). He serves on the editorial board of International Journal of
Distributed Sensor Networks. He is a member of the IEEE.

Harshavardhan Chenji received the Bachelor
of Technology degree in electrical and electro-
nics engineering from the National Institute of
Technology Karnataka, Surathkal, India in May
2007 and MS (computer engineering) degree in
December 2009. He is currently working toward
the PhD degree in the embedded & networked
sensor systems (LENSS) Laboratory under the
guidance of Dr. Radu Stoleru. He joined the
Department of Computer Science and Engineer-

ing at Texas A&M University in August 2007. He is a student member of
the IEEE and the IEEE Computer Society.

Radu Stoleru received the PhD degree in
computer science from the University of Virginia
in 2007, under professor John A. Stankovic. He
is currently an assistant professor in the Depart-
ment of Computer Science and Engineering at
Texas A&M University. While at the University of
Virginia, he received from the Department of
Computer Science the Outstanding Graduate
Student Research Award for 2007. His research
interests are in deeply embedded wireless

sensor systems, distributed systems, embedded computing, and
computer networking. He has authored or co-authored more than 50
conferences and journal papers with over 1,000 citations. He is currently
serving as an editorial board member for 3 international journal and has
served as technical program committee member on numerous interna-
tional conferences. He is a member of the IEEE, the IEEE Computer
Society, and the ACM.

Tamás Kalmár-Nagy received the MS degree in
engineering mathematics from the Technical
University of Budapest and the PhD degree in
theoretical and applied mechanics from Cornell
University in 1995 and 2002, respectively.
During 2002-2005, he was a research engineer
at the United Technologies Research Center
and he is now an assistant professor in the
Department of Aerospace Engineering at Texas
A&M University. He is the winner of the US

National Science Foundation (NSF) CAREER award (2009), serves on
the editorial board of two international journals and is a member of two
ASME committees.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. X, XXX 2012

