
Demo Abstract: Distributed Cut Detection In Sensor Networks

Harshavardhan Chenji†, Prabir Barooah§, Radu Stoleru†, Tamás Kalmár-Nagy‡

† Department of Computer Science, Texas A&M University
§Department of Electrical and Computer Engineering, University of California, Santa Barbara

‡Department of Aerospace Engineering, Texas A&M University

cjh@cs.tamu.edu, pbarooah@ece.ucsb.edu, stoleru@cs.tamu.edu,
kalmarnagy@aeromail.tamu.edu

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]:

Network Architecture and Design; C.2.1 [Computer-
Communication Networks]: Distributed Systems; B.8.1
[Performance and Reliability]: Reliability, Testing and
Fault-Tolerance

General Terms
Algorithms, Design, Reliability, Experimentation

Keywords
Distributed Cut Detection, Wireless Sensor Networks

1 Introduction
Several challenges exist in wireless sensor networks

(WSNs). One of them is the loss of network connectivity due
to environmental factors, low cost, unreliable hardware and
limited energy resources. For WSN deployments in harsh
environments network connectivity becomes a serious issue.
The structure and connectivity pattern of even a static WSN
varies over time. The appearance of a “cut”, i.e, the separa-
tion of the network into multiple components [1][3] renders
the deployment unusable, hence the utmost importance of
detecting a disconnected network.

We demonstrate a distributed method for cut detection -
the Distributed Source Separation Detection (DSSD) [2].
We assume that there exists a specially designated node,
called the “source node”. Every node maintains a scalar
state, which it updates regularly through communication
with its immediate neighbors. When a cut occurs, the states
of the nodes that are disconnected from the source node de-
cays to 0, while the states of those nodes that are still con-
nected to the source converge to a new steady state value.
Hence, a node can detect a cut by monitoring its own state.

The DSSD algorithm can detect cuts that separate the net-
work into multiple components of arbitrary shapes. Since
the algorithm involves only nearest neighbor communica-
tion, there is no need of routing messages to any particular
node (even the source node), which might create a bottleneck
in communication. This algorithm is particularly well suited
to wireless sensor networks since the nodes in such a net-
work have limited computational capabilities. In spite of the

Copyright is held by the author/owner(s).
SenSys’08, November 5–7, 2008, Raleigh, USA.
ACM 1-59593-763-6/07/0011

fact that the algorithm uses only nearest neighbor commu-
nication, the algorithm’s convergence is independent of the
size of the network [2].
2 Algorithm

Here we briefly describe the DSSD algorithm proposed.
One node of the network is denoted as the “source node”. Let
G(k) = (V (k),E(k)) denote the sensor network that consists
of all the nodes and edges of G that are still active at time
k, where k = 0,1,2, . . . is an iteration counter. For ease of
description, we index the source node as 1. Every node u
maintains a scalar state xu(k) that is iteratively updated. At
every iteration k, nodes broadcast their current states. Let
Nu(k) = {v|(u,v)∈E(k)} denote the set of neighbors of u in
the graph G(k). Every node in V except the source updates
its state as:

xu(k +1) =
1

du(k)+1 ∑
v∈Nu(k)

xv(k). (1)

where du(k) is the number of active neighbors of u at time k.
The source node updates its state as:

x1(k +1) =
1

d1(k)+1

 ∑

v∈N1(k)

xv(k)+ s

 . (2)

where s is a design parameter that is called the source
strength. The state update law described above can be
thought of as an iterative method for computing the poten-
tials of the nodes in a fictitious electrical network with unit
resistors on every edge [2]. The evolution of the node states
with and without the occurrence of cuts is stated next theo-
rem. Note that we assume that the source node never fails.

THEOREM 1. [2] Let the nodes of a sensor network with an
initially connected undirected graph G = (V ,E) execute the
DSSD algorithm starting at time k = 0 with initial condition
xu(0) = 0, ∀u ∈ V .

1. If no nodes fail, the state of every node converges to a
positive number.

2. If a cut appears at a finite time τ > 0 which sepa-
rates the graph G into N disjoint connected components
Gsource,G2, . . . ,GN , where the component Gsource =
(Vsource,Esource) contains the source node,then the state
of every node disconnected from the source node con-
verge to 0, i.e., xu(k)→ 0 as k→∞ for every u /∈Vsource,

Figure 1. Demonstration setup

0481216
20

0 30 60 90 120 150Iteration CountState Figure 2. The state of Node 0, which remains connected
to the Source after the cut.

and the state of every node in Vsource converges to a pos-
itive number.

It is clear from the result above how the node states can be
used to detect cuts. A node can determine if there has been
a cut and if it has been separated from the source node by
monitoring if its state has converged to zero. This is done in
practice by choosing a small number ε and checking if the
node state has become smaller than ε. The value of ε chosen
depends on the source strength s as well as the size of the
graph G . Nodes that are still connected to the source are also
able to detect that, one, a cut has occurred somewhere in the
network, and two, they are still connected to the source node.

3 Demonstration
We demonstrate the execution of the DSDD algorithm in a

network of 24 MicaZ motes, placed on a table in an equally
spaced 8x3 grid, as depicted in Figure 1. A multihop net-
work is created by ensuring that nodes communicate only
with their immediate neighbors in space. Once the system is
started, the DSDD algorithm executes and after about 60 it-
erations the states of the nodes converge. A laptop is used to
display the convergence of the nodes states. Once the states
converge, the cut is simulated by physically turning off the
motes in the 4th and 5th columns of the 8x3 deployment, as
depicted by the section “Cut” in Figure1). After the cut oc-
curs, the new convergence values for the states are shown on

00.40.81.21.62
0 30 60 90 120 150Iteration CountState Figure 3. The state of Node 22, which is disconnected

from the Source after the cut.

the laptop. Figures 2 and 3 show the evolution of the states
of two nodes in the network. As depicted in the figures, at
iteration 60 a cut occurs in the network. Node 0 remains con-
nected to the Source node and its state converges to a new
value. Node 22 is disconnected from the Source node after
the cut occurs and its state converges to a value of 0. The
demonstration also shows the effects of single node failures,
when a cut does not occur.
4 References
[1] N. Shrivastava, S. Suri and C. D. Tóth. Detecting cuts

in sensor networks. In Proceedings of the International
Symposium on Information Processing in Sensor Net-
works (IPSN’05), 2005.

[2] P. Barooah. Distributed cut detection in wireless sensor
networks. In 47th IEEE Conferenece on Decision and
Control, 2008. Accepted for publication.

[3] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless and C. Gill.
Integrated Coverage and Connectivity Configuration in
Wireless Sensor Networks In Proceedings of the In-
ternational Conference on Embedded Networked Sensor
Systems (SenSys’03), 2003.

