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Abstract

Current and emerging missions, including active surveillance and tracking, terminal guidance and search and rescue, require
image-feedback from camera-equipped vehicles. Certain mission scenarios and sensor restrictions may require the collaboration
of assets over an ad-hoc network. The development in this paper extends efforts to balance trade-offs between asset/sensor cone
positioning to satisfy mission requirements and network requirements such as maintaining network connectivity. To address the
trade-offs between asset positioning and network connectivity, a prioritized task-function based guidance law is developed for a
simple scenario containing three assets tracking teams of mobile targets. One developed task-function maintains a communication
network by ensuring the distance between the UAV’s does not exceed a critical threshold. Additional task-functions enable
assets to keep targets of interest in the image cone by regulating image features derived from the camera view. The UAV’s
are modeled as rotorcraft using an LTI model equipped with a gimbaled camera. Early simulation results are provided to
examine the behavior of the assets for different configurations of objects observed by the asset cameras. Future efforts will
seek to improve performance by modifying the control law, possibly adding time varying tasks shaped by trajectory planning
techniques.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV’s) are equipped with imaging sensors in many scenarios, including image-based guidance,
navigation, and control; geolocation; environment mapping; target tracking and surveillance; etc. A historical problem in
image-based estimation and control literature is controlling the motion of the camera to ensure that targets of interest stay in
the field-of-view (FOV) (cf. [1]–[5]). This problem is especially difficult when the camera is monitoring an adversarial target
in a dynamic environment, or when it is mounted on a vehicle with motion constraints. A practical approach to alleviate
the FOV problem is to use multiple imaging sources [6], [7], such as cooperative camera-equipped UAV’s.

The use of cooperative assets is a well-accepted approach. Current and emerging scenarios (e.g., wide area surveillance,
environmental monitoring, search and rescue/destroy) can exploit coordination between multiple assets for improved perfor-
mance. In many applications, such as tactical operations, portions of the network linking the collaborative assets may entail
a mobile ad hoc network (MANET). Assets operating within a MANET are faced with challenges, such as maintaining
connectivity due to the changing topology and link conditions of the network. These problems are exacerbated by high
mobility, which is characteristic of networks of UAV’s.

Fig. 1 illustrates an example scenario of a network of UAV’s with cameras. In this scenario, a network of UAV’s is tracking
red forces and blue forces in an urban environment. The imaging goals are challenging because the urban environment limits
the FOV, and the cameras are attached to UAV’s with motion constraints. Coordinating the UAV’s is challenging because
network connectivity must be maintained in the presence of path loss, shadowing, and/or multi-path fading. Even with perfect
location information, maintaining a fully connected network topology can be challenging. The potential tactical advantages
of the scenario in Fig. 1 motivate the need for directed methods that manage trade-offs between UAV/sensor cone positioning
to satisfy mission requirements and network requirements to ensure effective collaboration between the UAV’s. Yet, literature
that focuses on such issues appears sparse.

This paper presents an extension of our earlier work [8] addressing some of the challenges imposed by balancing camera
positioning for image tasks against UAV positioning for efficient network operation. Motivated by the scenario depicted in
Fig. 1, the imaging task involves a collection of UAV’s keeping a set of moving objects in the camera FOV’s, while also
positioning the UAV’s to ensure network connectivity. For example, one UAV tracks the blue force, while the other UAV’s
monitor sub-groups of the red force. The network is modeled as undirected, and successful communication is assumed
possible if two nodes are within some specified maximum-link distance. The investigation is extended over our previous
work by including realistic motion constraints on the camera using a rotorcraft model [9] with a single gimbaled camera.
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Fig. 1. Networked collection of UAV’s performing image-based red force and blue force tracking in an urban environment.

To manage imaging and network trade-offs, a series of low dimensional task-functions are defined, based on current image
features and the distance to the nearest neighbor in the network. For the image-based task functions, the desired task-function
velocity is mapped to a time-varying feature velocity through corresponding task-function Jacobians. These task-function
Jacobians are underdetermined and are suitable for task-priority kinematic control [10], [11]. The time-varying image feature
velocity is mapped to camera motions through image-based visual servoing (IBVS) methods [12]. The resulting controller
allows features to move within the image, and the camera will move to keep the features in the FOV. To maintain network
continuity, an additional task is introduced to regulate the position of each camera to maintain distance to its nearest neighbor.
If each UAV is within a maximum distance to its nearest neighbor, the network of three nodes will stay simply connected.

Underdetermined task-function based approaches have been developed for kinematic control of vehicle platoons in [13],
[14]. Full-rank task functions were used in vision-based control in [15]. In contrast, we utilize low-rank (underdetermined)
utility functions, which impose fewer constraints on camera motion. The initial development of these underdetermined
functions appeared in [16].

The problem of group coordination of mobile robots for connectivity maintenance has been studied in several papers
(cf. [17]–[20]). Most of these studies are concerned with the robots moving toward a goal destination while maintaining
wireless connectivity. In other words, the position of the mobile agents – if there were no need to maintain connectivity
– would tend to certain fixed location in space depending on the motion objective. In contrast, this paper focuses on the
situation when there are no limiting goal positions. Rather, the unpredictable motion of the targets may cause the UAV’s to
move in a way that will sever connectivity in the absence of a connectivity maintaining control law.

Maintaining connectivity among moving agents with second order dynamics has been examined in [21], [22]. However,
the uncontrolled motion of the agents in [21] was only due to initial velocities and second-order dynamics, not due to the
need for maintaining targets within the FOV. A similar problem formulation was also considered in [22] for first order
dynamic agents. In contrast to these studies, this paper examines the situation when sensing and maintaining connectivity
are in conflict, e.g., when motion of the targets may cause the UAV’s to move away from one another while maintaining
connectivity may require them to stay close.

II. ROTORCRAFT, CAMERA AND NETWORK MODEL

Consider a velocity vector for a rotorcraft given by

vh (t) = [vxh, vyh, vzh, ωxh, ωyh, ωzh]
T ∈ R6 (1)

where vx (t), vy (t) and vz (t) describe the linear velocity, and ωx (t), ωy (t) and ωz (t) are the angular velocity, all measured
in the body fixed frame such that the x-axis is oriented along the craft major axis (from tail to nose), the y-axis points out
the right side of the rotorcraft and the z-axis is oriented through the bottom of the rotorcraft body.

A. Rotorcraft Model
The model used here was first developed by Shim, et al., [9]. It is a linear time-invariant model of a rotorcraft in a near

hover state, giving six degree of freedom (DOF) motion of the rotorcraft. The model is given by

q̇h = Ahqh +Bhuh. (2)



where

qh = [vxh, vyh, ωxh, ωyh,Φ,Θ, a, b, vzh, ωzh, r]
T ∈ R11 (3)

u = [u1, u2, u3, u4]
T . (4)

In (3), Φ(t), Θ(t) are the roll and pitch angle, r(t) is a feedback gyro rate, and a(t), b(t) are the blade flapping angles. In
(4), u1(t) and u2(t) are inputs to the flap angles, u3(t) is an input to the pitch angle, and u4(t) is an input to the yaw rate.
The state matrix A ∈ R11×11 and input matrix B ∈ R11×4 are given by

Ah =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0954 0 0 0 0 −g g 0 0 0 0
0 −0.2221 0 0 g 0 0 g 0 0 0

−0.2047 0.1521 0 0 0 0 22.14 32.995 0 0 0
−0.0836 −0.0514 0 0 0 0 67.74 142.50 0 0 0

0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 −2.6645 0 0 0 0
0 0 −1 0 0 0 0.5543 −2.6645 0 0 0
0 0 0 0 0 0 −28.85 −121.2 −0.5377 5.7974 0
0 0 −0.0178 0 0 0 0 0 .0746 −4.4017 −46.959
0 0 0 0 0 0 0 0 0 2.3394 −5.483

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−0.5912 1.9729 0 0
−2.4055 −0.0993 0 0

0 0 116.952 0
0 0 −0.0178 0
0 0 −46.969 15.2454
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the scalar g is the gravitational constant. See [9] for more details, including the eigenvalues of the developed system.

Shim, et al., develop a stabilizing controller composed of three control loops [9]. The first control loop controls rotorcraft
attitude, the second loop control the linear velocity, and the outer loop controls position. In contrast, we propose a multi-input
multi-output (MIMO) control strategy. Using LQR design to solve for a constant gain matrix Kh, (2)-(4) can be rewritten
as

q̇h = Ahqh +BhKhqd.

The input signal qd(t) ∈ R11 is given by

qh = [vxhd, vyhd, 0, 0, 0, 0, 0, 0, vzhd, ωzhd, 0]
T (5)

where the subscript d designates a desired value of the appropriate variable. This enables the rotorcraft to track a desired
trajectory and heading in Euclidean space,

B. Camera Model
Consider a camera with coordinate frame Fc (t) as shown in Fig. 2. The camera views a collection of k feature points in

front of the camera. These points have coordinates Mi (t) ∈ R3 defined as

Mi = [Xi, Yi, Zi]
T , ∀i ∈ {1 . . . k}

in the camera frame. An image of the points is captured, resulting in a projection to a set of points in the image plane.
These image points are given by the normalized coordinates

m̆i = [
Xi

Zi
,
Yi
Zi

, 1]T = [xi, yi, 1]
T , ∀i ∈ {1 . . . k}.

Since the last element of the three-dimensional normalized coordinates is superfluous, it will not be considered in the sequel.
Define the coordinates mi (t) ∈ R2 as

mi = [xi, yi]
T (6)



with velocity ṁi (t) ∈ R2 in the image plane given by

ṁi = [ẋi, ẏi]
T . (7)

Fc
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y
z

Fig. 2. Camera model

Given the collection of k feature points, along with their coordinates and velocity vectors, a state position vector m(t)
and state velocity vector ṁ(t) are defined as

m = [mT
1 ,m

T
2 , · · · ,mT

k ]
T

ṁ = [ṁT
i , ṁ

T
2 , · · · , ṁT

k ]
T .

The velocity of the features points in the image plane is given as a function of the camera velocity vc (t) = [vxc, vyc, vzc, ωxc, ωyc, ωzc, ]T ∈
R6 by the relationship

ṁ = Lvc, (8)

where L (t) ∈ R2k×6 is the image Jacobian. The image Jacobian for the feature points, L (t) ∈ R2k×6, is given by
concatenating a set of k submatrices Li (t) ∈ R2×6 [15], with Li (t) given as

Li =

∙ 1
Zi

0 xi
Zi

−xiyi 1 + xi −yi
0 1

Zi

yi
Zi
−1− y2i xiyi xi

¸
. (9)

In the case that the feature points are not static in an inertial frame world frame (e.g., the feature points are tracked on
moving objects), the time derivative of the feature points is given by

ṁ = Lvc + ε, (10)

where ε(t) is an unknown, bounded function.
In this development, the camera is attached to the body of the helicopter. For simplicity, we assume the origin of the

camera-fixed axes corresponds to the origin of the rotorcraft-fixed axes. The camera has a single angular degree of freedom
(such as provided by a single gimbal) about the camera y-axis, and the camera y-axis and rotorcraft y-axis are colinear.
Thus, the camera has linear and angular velocity given by⎡⎣ vxc

vyc
vzc

⎤⎦ =

⎡⎣ 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤⎦⎡⎣ vxh
vyh
vzh

⎤⎦ (11)

⎡⎣ ωxc
ωyc
ωzc

⎤⎦ =

⎡⎣ 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤⎦⎡⎣ ωxh
ωyh
ωzh

⎤⎦+
⎡⎣ ωθ
0
0

⎤⎦ (12)

where θ(t) is the angle of the camera relative to the rotorcraft (e.g. the gimbal angle), and ωθc(t) is the angular rate of the
camera (e.g. the gimbal angular rate). The relationships in (11) and (12) can be inverted to give the controlled rotorcraft



Fig. 3. Illustration of network model

velocity vhd(t) as a function of a desired camera velocity vcd(t) as⎡⎣ vxhd
vyhd
vzhd

⎤⎦ =

⎡⎣ 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤⎦⎡⎣ vxcd
vycd
vzcd

⎤⎦ (13)

⎡⎣ ωxhd
ωyhd
ωzhd

⎤⎦ =

⎡⎣ 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤⎦⎡⎣ ωxcd
ωycd
ωzcd

⎤⎦−
⎡⎣ ωθc

0
0

⎤⎦ . (14)

C. Network Model
The network of N assets is modeled as a graph G = (V,E) with N vertices. Each UAV j, j ∈ [1, . . . , N ] is a vertex

of the graph, and is located at a position Tj . There is an edge E(i, j) between two assets i and j, i 6= j, if the distance
between them is less than a prespecified positive number r, i.e., if dij < r, where the distance is defined as

dij = kTi − Tjk ,

and r is a communication range. This is illustrated in Fig. 3. This paper considers only the case N = 3. In this case, the
graph remains connected if each vertex has an adjacency of at least one, i.e. each UAV is within a radius r to at least one
other UAV.

III. TASK FUNCTION-BASED KINEMATIC CONTROL

The guidance and control objective of this paper is to keep a set of feature points within each camera FOV while regulating
distance between rotorcrafts. To achieve these objectives, a set of task functions are defined using image feature coordinates
and the relative positions of the rotorcrafts. However, the task functions may compete in the sense that reducing the error of
one task function may increase the error of another. To avoid competition between task functions, a task-priority kinematic
control [10], [11] is used.

Let φ(t) ∈ Rn denote some task function of the feature point coordinates mi (t) as

φ = f(m1, . . . ,mk)

with derivative

φ̇ =
kX
i=1

∂f

∂mi
ṁi = J(m)ṁ, (15)

where J(m) ∈ Rn×2k is the task Jacobian matrix. The task functions in this paper are of dimension n ≤ 2.
The objective is to drive the feature points along a desired velocity ṁφ(t) such that φ(t) follows a desired trajectory

φd(t). Given the underdetermined structure of the Jacobian matrix, there are an infinite number of solutions to this problem.
The typical solution based on the minimum-norm approach [11] is given as

ṁφ = J†
h
φ̇d − λ(φ− φd)

i
= JT

¡
JJT

¢−1 h
φ̇d − λ(φ− φd)

i
, (16)



where λ is a positive scalar gain constant, and J†(m) ∈ R2k×n denotes the minimum-norm general inverse of J (m). The
desired feature point derivative ṁφ(t) is then mapped to a camera velocity. As discussed in Section II-B, the image Jacobian
L(t) maps the camera velocity vc (t) to the feature derivative. In turn, vc(t) is mapped to vh(t) via (13) and (14). Given
the velocity and state constraints imposed by the rotorcraft model, the following procedure is used to generate control terms
for the rotorcraft and camera gimbal to achieve a feature point velocity as close as possible to the desired velocity ṁφ.

Define a five-element vector of the camera velocity terms linked to rotorcraft velocity and the gimbal velocity, vc5(t) =
[vxc(t), vyc(t), vzc(t), ωθc(t), ωzc(t)]

T . The corresponding five column image Jacobian L5(t) is composed of the first, second,
third, fourth and sixth columns of L(t), as defined in (9). Define a six-element feed-forward vector of camera velocity terms
that correspond to uncontrolled rotorcraft velocity terms, vcff (t) = [0, 0, 0, ωxc(t), ωyc(t), 0]T . Based on (16), the desired
camera velocity vc5d (t) is designed as

vc5d = L+5 (ṁφ + Lvcff ) =
¡
LT5 L5

¢−1
LT5 (ṁφ − Lvcff ), (17)

where L+5 (t) ∈ R5×2k denotes the least squares general inverse used for L5 (t)
1. The gimbal velocity is then given by

ωθc(t), and the remaining camera velocity terms are then mapped to rotorcraft velocity vh(t) via (13) and (14).
A set of task functions can be combined in various ways. The simplest approach is to add the desired feature velocity

from each task function to create the total desired feature point velocity. For example, consider two tasks φa (t) and φb (t)
with resulting desired feature velocities ṁa (t) and ṁb (t). The camera velocity is then given as

vc5d = L+5 (ṁa + ṁφb − Lvcff ) . (18)

Since the task function velocities are undetermined, an optional method is to choose one task as primary, and project the
other tasks into the null space of the primary task derivative [10], [11] as

vc5d = L+5
¡
ṁa + (I − J†aJa)ṁb − Lvcff

¢
= L+5

³
J†aφ̇a + (I − J†aJa)J

†
b φ̇b − Lvcff

´
, (19)

where Ja (ma) and Jb (mb) are the task Jacobian matrices with respect to φa (t) and φb (t), respectively.
The approach in (19) will prevent the individual task systems from competing and negating each other, as the primary

task will always be accomplished. Lower priority control tasks will be achieved to the extent that they do not interfere
with higher priority tasks. Tertiary, quaternary, etc. tasks can be prioritized by repeating this process and projecting each
subsequent task into the null space of the preceding task Jacobians.

IV. CONTROL DEVELOPMENT

In this section, four task functions are presented as part of a distributed, task-priority kinematic controller. The objective is
to keep three sets of feature points within the FOV of three cameras mounted on UAV’s, while maintaining a communication
network between the UAV’s. Each camera is dedicated to observing a single set of feature points.

The first task function regulates the distance to the nearest camera, which will maintain a network connection for three
cameras. Two task functions are designed to regulate the mean and variance of feature point coordinates. Regulating the
mean at the camera center will keep the feature points centered in the FOV. Regulating the variance will restrict the distance
between the feature points and keep features away from the edge of the FOV. The third task function maximizes motion
perceptibility, which ensures desired image velocities can be met. These task functions are cascaded through null space
projection and mapped to camera velocity, as described Section III.

Chebyshev’s inequality proves that at least 75% of all values are within two standard deviations of the mean, and at least
89% of values are within three standard deviations. For a normally distributed random process, these limits are tighter, such
that approximately 95% of all values will be with two standard deviations, and 99.7% of all values will be within three
standard deviations. Consider a camera with a 512x512 pixel FOV and normally distributed feature points in the image plane.
Regulating the mean of the feature point coordinates to the image center and the variance of the feature point coordinates
to 1282 will ensure that at least 95% of all points are in the FOV. For arbitrary distribution of feature points (e.g. uniformly
distributed) points, regulating the variance to 862 will ensure that at least 89% of all points are in the FOV.

A. Task Function to Nearest Neighbor
For three camera-equipped assets modeled as a proximity graph, maintaining network connectivity can be modeled as

regulating the distance from each UAV to its nearest neighbor. Network connectivity will be maintained if every UAV
remains within a bounded distance r to at least one other UAV. To give the assets freedom of motion, it is desirable that the
distance regulation function not be active until the distance δij is beyond a certain threshold r < r. To this end, we propose

1Since J (m) is underdetermined (i.e. more columns than rows), and L5(t) is overdetermined (i.e. more rows than columns), the general inverses have
different solutions and care is taken to denote them differently. Specifically, † denotes the minimum norm general inverse used for J (t) , and + denotes
the least-squares general inverse used for L5 (t).
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Fig. 4. An example of the window function for p = 2 and r = 3

the use of a smooth task function inspired by the p-times smooth bump function given in [23]. This smooth task function
is given by

φδ =
3P
i=1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
p!

δiR
r

(τ − r)pdτ if τ > r

1
p!

δiR
−r
(−r − τ)pdτ if τ < −r

0 else

where δ = [δ1, δ2, δ3]
T is the coordinates of the nearest neighbor in the camera frame, −r, r ∈ R, − r < r define

a window wherein φδ = 0, and p ∈ R gives the smoothness of the function φδ. Note that φδ(t) = 0 if δi ∈ [−r, r] ∀i.
Furthermore, φd(t) can be solved in closed form, evaluates to a positive definite function that can be differentiated p-times,
and ∂pφδ

∂xp = ±1 for φδ /∈ [−r, r]. For example, for p = 2

1

2

δiR
A

(t− r)2dt =
δ3i
6
− r

2
δ2i +

r2

2
δi −

r3

6

=
1

6
(δi − r)3.

These characteristics make the function useful for systems with high order dynamics. For the kinematic systems in this
paper, p = 1 is sufficient, in which case the polynomial evaluates to

δiR
A

(t− r)dt =
1

2
(δi − r)2

which is the familiar quadratic. This is illustrated for the case of p = 2 and r = 3 in Fig. 4.
The derivative of φδ (t) can be expressed as

φ̇δ =
3X
i=1

∂φδ
∂δi

δ̇i = Jδ δ̇

= Jδ (vc + εδ) , (20)

where Jδ (t) ∈ R1×5 is a task function Jacobian, and εδ ∈ R5 is a disturbance due to the velocity of the nearest neighbor.
The Jacobian Jδ (t) is defined as

Jδ = [sgn(δ)T , 02],

where sgn(·) is the vector signum function, and 02 ∈ R1×2 is an all zero row-vector.
The objective is to regulate φδ(t) → 0, under the assumption that the current velocity of an UAV’s nearest neighbor is

available through the connected communication network (i.e., εδ is known). Based on the task function time derivative in
(20), a stabilizing camera velocity vcδ can be designed as

vcδ = −λδJ†δφδ − εδ, (21)



where λδ is a positive scalar gain constant. Combining (20) and (21) yields the exponentially stable system

φ̇δ = −λδφδ.

B. Task Function for Mean of Image Points
Controlling the mean of feature point coordinates will help to ensure the feature points are centered around a position in

the image plane. Let φm(t) ∈ R2 denote a task function defined as the sample mean

φm =
1

k

kX
i=1

mi = m̄. (22)

The derivative of φm (t) can be expressed as

φ̇m =
1

k

kX
i=1

∂φm
∂mi

ṁi = Jmṁ (23)

= Jm (Lvc + ε) ,

where Jm (t) ∈ R2×2k is a task function Jacobian defined as

Jm =
1

k
[I2, · · · , I2] ,

where I2 is the 2× 2 identity matrix and is repeated k times, and L(t), vc(t) and ε(t) are introduced in (10).
As described in [16], to regulate the mean to a set point φmd, PID control design can be used to developed as a stabilizing

image velocity ṁm as

ṁm = −J†m
µ
λmφme + λmi

Z t

0

φmedt+ λmd
d

dt
φme

¶
, (24)

where φme(t) = φm(t)− φmd, and λmi, λmd ∈ R+ are constant gains. Substituting ṁm (t) in (8) gives

vc = L+ṁm.

If k > 3, L+(t) is underdetermined, meaning there are six degrees of freedom available in vc(t) to control more than six
terms in ṁm (t). This problem will be partially addressed by maximizing perceptibility in Section IV-D.

C. Task Function for Variance of Image Points
Regulating the variance of the feature point coordinates will regulate the spread of the feature points in the image. That

is, regulating the variance will control how far the feature points drift from the mean value. To quantify the objective of
regulating the variance, a sample variance task function φv (t) ∈ R2 is defined as

φv =
1

k

kX
i=1

∙
(xi − x̄)2

(yi − ȳ)2

¸
,

where x̄ (t) and ȳ (t) are the mean of all the x and y components of mi (t) , i ∈ {1 . . . k}, respectively. The derivative of
φv (t) is given by

φ̇v = Jvṁ (25)
= Jv (Lvc + ε) , (26)

where L(t), vc(t) and ε(t) were given in (10), and Jv (t) ∈ R2×2k is a task function Jacobian given by

Jv =
2

k

∙
x1 − x̄ 0
0 y1 − ȳ

,
x2 − x̄ 0
0 y2 − ȳ

, · · · , xk − x̄ 0
0 yk − ȳ

¸
.

As described in [16], regulation of the variance to a set point φvd can be accomplished by using a PID feedback control to
design a stabilizing image velocity ṁv given by

ṁv = −J†v
µ
λvφve + λvi

Z t

0

φvedt+ λvd
d

dt
φve

¶
(27)

where φve(t) = φv(t)− φvd, and λvi, λvd ∈ R+ are constant gains.



D. Task Function for Perceptibility of Image Points
Sharma and Hutchinson presented the concept of motion perceptibility in [24]. Related to the concept of manipulability

[25], perceptibility gives a measure of how well a camera can perceive the motion of objects in the FOV. Roughly speaking,
if perceptibility is high, small object or camera velocities will result in notable feature velocities in the image plane (e.g.,
high optical flow). This is especially important if there are more than three feature points, as the available feature point
velocities are constrained due to an overdetermined image Jacobian. Maintaining a high perceptibility helps to ensure a
larger span of available feature point velocity vectors.

Perceptibility is a scalar function of the image Jacobian L (t) , defined as

wp =
q
det(LTL) =

3Q
i=1

σi

where σi (t) ∈ R+ are the singular values of L (t). Maximizing wv (t) is accomplished by maximizing each σi (t). The
matrix LT (t)L (t) ∈ R3×3 is positive definite and symmetric, so the eigenvalues of LT (t)L (t) are equal to σ2i (t). The trace
of a matrix is equal to the sum of its eigenvalues. Therefore, the trace of LT (t)L (t) is related to the singular values by

Tr(LTL5) =
3P
i=1

σ2i .

Increasing the trace of LT (t)L (t) will also increase the perceptibility.
The trace of LT (t)L (t) is given by

Tr(LTL5) =
kP
i=1

³
2x2i y

2
i +

¡
y2i + 1

¢2
+
¡
x2i + 1

¢2
+ x2i + y2i

´
A task function for perceptibility can be defined as

φp =
1

kP
i=1
(x2i + y2i )

.

Since it is desired to increase Tr(LTL), regulating φp (t) to 0 will result in increasing the trace. The time derivative of
φp (t) is given by

φ̇p = −2φ2p
kP
i=1

£
xi yi

¤ ∙ ẋi
ẏi

¸
= Jp(m)ṁ = Jp(m) (Lvc + ε) (28)

where L(t), vv(t) and ε(t) were given in (10), and Jp(m) ∈ R1×2k is the task function Jacobian for perceptibility. The
matrix Jp(m) is undefined only for the nongeneral case that ∀i, mi = 0.

To regulate φp (t)→ 0, the feature point velocity ṁp (t) ∈ R2k is designed as

ṁp = −λpJ†pφp, (29)

where λp is a positive scalar gain constant. Combining (28) and (29) gives the closed-loop derivative of φp (t) as

φ̇p = −λpφp + εp,

where εp(t) is an unknown disturbance caused by the velocity of feature points. Despite the presence of the disturbance
εp(t), the use of integral feedback is not recommended for the perceptibility term. This is due to the fact that φp(t) is
unlikely to ever become zero, leading to possible integrator windup and related stability problems.

E. Cascaded Control Law
As stated in Section III, the control objective of this paper is to design a camera controller that maintains a set of

feature points within the FOV of several independent assets. The controller is decentralized, and each UAV operates under
an identical control law. In addition to maintaining the view of the targets, each camera must remain within a maximum
distance from its nearest neighbor in order to maintain a communication network.

Maintaining the connectivity of the network is the primary task. Regulating the mean to the image center is chosen as
the secondary task in order to keep the feature points centered in the FOV. Regulating the variance to a constant is chosen
as the tertiary task to restrict the distance between the feature points and the image center. These two tasks ensure features
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Fig. 5. Final 3D locations of the three cameras and the three sets of targets when inter-camera distance is not regulated.

remain in the FOV. High perceptibility will allow these two tasks to work more efficiently by ensuring larger available
feature velocities at lower camera velocities. For this reason, increasing perceptibility is chosen as the quaternary task.

The designed feature velocities given in (21), (24), (27) and (29) are used in the null-space projection camera velocity
(19) to give the overall controller for each camera as

vc5d = vcδ +
³
I − J†δJδ

´
L+5

£
ṁm +

¡
I − J†mJm

¢ ¡
ṁv +

¡
I − J†vJv

¢
ṁp

¢
+ Lvcff

¤
.

V. SIMULATION RESULTS

Simulations of the proposed guidance and control system are presented. In these simulations, three camera-equiped UAV’s
observe six rigid, square objects. Each UAV is responsible for observing two of the square objects, and the corners of the
squares give eight feature points for each camera to track. Each pair of objects moves with a sinusoidal linear velocity,
independent of the other pairs. This simulation mimics the case of UAV’s tracking sets of ground vehicles. Each camera has
a resolution of 512× 512. For each camera controller, the mean was regulated to [256, 256]T , i.e., the mean of the points
was regulated to the image center. The variance of the points was regulated to [1002, 1002]T , i.e. a standard deviation of
100 pixels. The simulation was executed for 20 seconds at 30 frames per second.

The first simulation does not include any attempt to regulate the distance between the UAV’s, i.e. the UAV’s are free to
move as necessary to track the targets, up to the constraints imposed by the rotorcraft model. Fig. 5 shows the final 3D
positions of the three UAV’s and the three pairs of targets, and the trajectory each took over time. The UAV’s move away
from each other to track their targets. Fig. 6 shows the views of the three cameras, including the final image of the tracked
targets and the trajectory the corner points traced in the image over time. From the trajectory curves, it can be seen that the
objects remain in view of each camera The dashed ellipse and square represent the final values of the variance and mean,
while the solid ellipse and star represent the goal variance and mean. It can be seen that the targets remain in the field of
view throughout the simulation.

The second simulation included the regulation of distance between the rotorcrafts as presented in Section IV-A. Fig. 7
shows the final 3D positions of the three targets and the three pairs of targets and their trajectories over time. While the
targets all end at the same locations, the cameras end up closer to each other. Fig. 8 shows the views of the three cameras,
including the final image of the tracked targets and the trajectory the corner points traced in the image over time. From the
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Fig. 6. The three camera views and image trajectories over time when inter-camera distance is not regulated.

trajectory curves, it can be seen that regulating the distance between UAV’s makes the tracking task harder, and two of the
cameras briefly lose sight of part of a target. The targets are brought back in to the field of view, but it is clear that the
high-priority network maintenance task will prohibit the tracking task from working at peak performance.

Fig. 9 shows values of the task functions over time for the case when distance between UAV’s is not regulated, and
Fig. 10 shows values of the task functions when distance is regulated. As expected, when distance is regulated, the mean
and variance tracking error grows larger, but the final distance between the cameras is smaller.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the extension of a previous work in balancing two competing surveillance tasks, using multiple
UAV’s to monitor multiple, moving targets while maintaining a network communications between the UAV’s. This problem
is visualized as multiple air vehicles equipped with cameras tracking several groups of moving vehicles, with a network
modeled as a proximity graph. Previous efforts did not include a vehicle model or velocity constraints on the camera, and this
work introduces the use of rotorcrafts with gimbaled cameras. To achieve the tasks, a series of prioritized, underdetermined
task functions were developed. Maintaining network connectivity can be ensured by regulating the distance of each UAV to
its nearest neighbor. Targets can be kept in field of view through regulating mean and variance of the targets’ features in
the image. A third task function seeks to maximize motion perceptibility. There is no specific goal image or goal pose for
the cameras, rather the underdetermined nature of the task functions allows the camera to move as necessary to regulate the
task functions and keep objects in the FOV while maintaining network connectivity.

Simulations point towards positive, but incomplete results at this time. When distance between the crafts is not enforced,
target tracking shows the successful extension our multi-target tracking method to include realistic vehicle constraints.
However, when the distance between crafts is maintained, the targets are able to temporarily escape, as enforcing the maximum
distance prevents the rotorcrafts from following the targets. Future work will focus on overcoming this by improving the
guidance law. The prioritization scheme may be too rigid, and alternatives could be investigated. Another option is the use
of time-varying desired values for the task functions, possibly incorporating motion planning, which may give more freedom
of movement while meeting the relative distance requirements.

There are several other avenues of future work. Simulations are very promising, but a proper analysis can determine
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Fig. 7. Final 3D locations of the three cameras and the three sets of targets when inter-camera distance is not regulated.

whether, or under what conditions, stability can be achieved for all tasks. There are also numerous other task functions that
could be used. For instance, it may be desirable to maintain a certain distance or orientation with respect to the tracked
objects. The network was limited to three nodes, which allowed for the use of a simple distance regulation to maintain the
network. This methodology must be extended to a larger, possibly unlimited, number of assets. This will require a better
metric for measuring and regulating network connectivity. Finally, we hope to conduct flight experiments with the support
of the Air Vehicles Directorate of AFRL, where recently an indoor flight facility for micro air vehicles has been developed.
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