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Abstract—Loads that can vary their power consumption
without violating their Quality of service (QoS), that is flexible
loads, are an invaluable resource for grid operators. Utilizing
flexible loads as a resource requires the grid operator to
incorporate them into a resource allocation problem. Since
flexible loads are often consumers, for concerns of privacy it is
desirable for this problem to have a distributed implementation.
Technically, this distributed implementation manifests itself as
a time varying convex optimization problem constrained by the
QoS of each load. In the literature, a time invariant form of this
problem without all of the necessary QoS metrics for the flexible
loads is often considered. Moving to a more realistic setup
introduces additional technical challenges, due to the problems’
time-varying nature. In this work, we develop an algorithm to
account for the challenges introduced when considering a time
varying setup with appropriate QoS metrics.

I. INTRODUCTION

Relying more and more on renewable generation is the
envisioned future for the power grid. However, this goal is
not without its challenges; renewable sources, such as solar
and wind, are highly volatile. Moreover, supply and demand
of power must always be in equilibrium, and when renewable
generation cannot ensure this, controllable generation sources
must ramp to ensure equilibrium. Economically, for a Balanc-
ing Authority (BA) (the institution responsible for ensuring
supply and demand are balanced in a given geographical
area), ramping generators or utilizing batteries for this is not
feasible. This has motivated the recent investigation of a new
resource to help where conventional generators and batteries
fall short: flexible loads.

Flexible loads can deviate from a baseline level of con-
sumption without violating the Quality of Service (QoS) of
the load. From the perspective of the BA, flexible loads
deviating from baseline are identical to a battery discharg-
ing and charging. Due to this, flexible loads are often
said to provide “Virtual Energy Storage” (VES) [1]. More
importantly, grid support from flexible loads is more cost
effective than batteries [2]. Some examples of flexible loads
include residential air conditioners [3], water heaters [4],
refrigerators [5], commercial HVAC systems [6], and pumps
for irrigation [7] and pool cleaning [8].

To utilize flexible loads, the BA in some way must
incorporate them into a resource allocation problem. In
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a centralized framework, the resource allocation problem
involves a central authority accounting for all of its resources
and their constraints, and then allocating its needs to each
resource based on the constraints. The problem is typically
solved for a specific future duration. For instance, the BA
allocates its resources for the next day [9].

In contrast to the BA solving a centralized resource
allocation problem, it is possible to decentralize and have
each flexible load solve a portion of the centralized problem.
Furthermore, this distributed algorithm can run in real time.
The advantage of a distributed solution is that (i) privacy
is protected, as each load only needs to know its own QoS
and (ii) the solution is more robust to modeling error as
no one entity is making decisions for the ensemble based
on models of the ensemble; each member of the ensemble
makes decisions for itself based on a combination of its local
and global information.

Solving the resource allocation problem in a distributed
fashion and real time falls under the framework of time-
varying optimization. There are two main challenges in this
framework: (C1) shifting to a real time solution is problem-
atic for constraints with “memory”, e.g. dynamic systems or
rate constraints that require past state values to evaluate, and
(C2) at each instant in time typically only one iteration of
the optimization algorithm can be applied. While the effects
of point (C2) are indirectly/directly analyzed in virtually all
works on real time optimization, point (C1) is often not
considered. That is, most works on time varying optimization
focus only on static constraint maps [10] or unconstrained
problems [11]. Unfortunately, the QoS of flexible loads is
specified by constraints with memory.

In addition to the literature on time-varying optimization,
there is a subfield of literature focused on the distributed
resource allocation for flexible loads [12]–[19] in the smart
grid. While there is a library of work [20]–[22] on how
to model the QoS of flexible loads for the purpose of
resource allocation, only a few works on distributed resource
allocation take this into account [12], [16].

To summarize, much of the past work on time-varying
optimization is focused on problems of different structure
than the resource allocation problem for flexible loads.
Thus the algorithms developed are not directly applicable.
Whereas, many of the past works focused on distributed
resource allocation for flexible loads do not account for the
entirety of the loads’ QoS.

In this paper, we develop an algorithm for distributed
resource allocation that allows loads to account for a wide
variety of QoS metrics. In doing so, our algorithm incor-



porates principled techniques to overcome the challenges
(C1) and (C2) listed above. To overcome (C1), we employ
a state augmentation technique that augments past fictitious
state values that act as surrogates for the previous states. To
overcome (C2), we utilize predictions of the time varying
quantities to facilitate a benefit similar to warm start tech-
nique in centralized optimization. With all features of the
algorithm accounted for, we prove an Input to State stability
(ISS) result for when the time varying aspect is arbitrary (but
in some sense bounded). This stability result is guaranteed
under gain conditions that are specified in terms of the readily
available problem data.

In numerical experiments we validate our theoretical re-
sults and compare our proposed method to a past method
in the literature. In the time-varying setting our proposed
method is able to successfully have flexible loads solve
the resource allocation problem in a distributed/hierarchical
fashion. Additionally, it is shown that the past method, based
on dual ascent, can lead to integrator windup in the same
time-varying setting.

The paper proceeds as follows: in Section II the problem
setup and requirements are described and in Section III op-
timization basics are introduced. In Section IV our proposed
method is introduced and it is analyzed in Section V. We
give numerical examples in Section VI and conclude in
Section VII.

II. NEEDS OF THE LOADS AND THE POWER GRID

A. Notation

We let the index i ∈ {1, . . . , N} denote the ith load,
where N is the total number of loads. The index t ∈ N
is the discrete time index. We reserve lowercase letters
for vectors/scalars and uppercase letters for matrices. The
notation x[j], when x is a vector, will refer to the jth element
of the vector x.

The power consumed by load i at time t is denoted dit|t.
Furthermore, the quantity dit+j|t is the power consumption
that at time t load i predicts it will consume at time t +
j, where j ≤ Np and Np is the prediction horizon. For
convenience, we also define N−p := Np − 1. The required
total power from all loads, i.e., the reference signal, at time
t is denoted st.

We consider two “stacked” vectorized versions of the
scalar quantities dit+j|t. The first is the load perspective
stacking where we stack the scalars dit+j|t into a vector and
denote it as xit , [dit|t, . . . , d

i
t+N−

p |t
]T . The second is the grid

perspective stacking where we stack over all loads, forming
xj|t , [d1

t+j|t, . . . , d
N
t+j|t]

T . In any case, for a fixed Np we
refer to to the following xt , [(x1

t )
T , . . . , (xNt )T ]T , which

contains all the elements of xit and xj|t. The purpose for
introducing both stacked forms is for ease of exposition.

B. BA’s Needs: Reference tracking (global goal)

The BA employs support from flexible loads to help
mitigate supply and demand mismatch. Using the previously
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Fig. 1: The information structure considered, which is repre-
sentative of the structure of a utility (BA) in the USA. The
numbers represent the flexible load index.

defined variables, this goal is captured by requiring the
following to be small:

eτ |t =

N∑
i=1

diτ |t − sτ , JG(xτ |t) = e2
τ |t, τ ≤ t+N−p . (1)

C. Individual Needs: The QoS set (local constraints)

We describe the requirements of the loads through a QoS
set. These constraints are taken from the vast literature on
“capacity characterization” of flexible loads [20]–[22]. The
constraints on the power for the ith load, xit, are:

Di(dit−1|t−1) , (2){
xit : ∀ j ∈ {t, . . . , t+N−p },

Power : diL ≤ dij|t ≤ d
i
H , (3)

Rate : riL ≤ dij|t − d
i
j−1|t ≤ r

i
H , j > t (4)

Rate-IC : riL ≤ dit|t − d
i
t−1|t−1 ≤ r

i
H , (5)

Energy : eiL ≤
t+N−

p∑
j=t

dij|t ≤ e
i
H

}
. (6)

Each constraint (3)-(6) has a specific meaning as illustrated
by the labels given. An additional Rate-IC constraint is
included to emphasize that previous data is required to
evaluate this constraint. Furthermore, it is necessary to define
the QoS set (2) over a time horizon, otherwise enforcing the
constraint (6) would not be possible. The constraints (3)-(6)
model various classes of flexible loads, e.g. batteries, HVAC
systems in commercial buildings, thermostatically controlled
loads (TCLs) [21], and pool pumps [9].

However, while the QoS set specifies maximum limits it
does not mean that it is desirable to operate at these limits.
Thus, the loads are also interested in making the following
quantity small,

JL(xτ |t) =

N∑
i=1

(diτ |t)
2ζi, τ ≤ t+N−p , (7)



where ζi > 0 for all i ∈ {1, . . . , N}. The quantity (7) can
be thought of as a regularization term.

Proposition 1. For each i the set Di(dit−1|t−1) is compact,
convex, and non empty.

There are two important points about the set Di(dit−1|t−1):
(i) the constraints (4)-(6) require more than one instant of
time to appropriately evaluate, and (ii) the constraint (5)
has memory, at time t the set Di(dit−1|t−1) is a function
of dit−1|t−1.

Comment 1. The constraint set (2) in its abstract form
captures the heterogeneity of the load. For example, load
i = 10 could be a Walmart and load i = 5 could be a
classroom on a university campus, both shifting their load
to help the grid. Put explicitly, our proposed optimization
problem and solution method tolerate arbitrary high degrees
of heterogeneity.

D. Information structure

The information structure considered is depicted in Fig-
ure 1, which is a hierarchical communication structure with
distributed computation. For each time t, the loads are
allowed to communicate exactly once to the BA in order
to receive global information, the signal et|t (1). The loads
can then use this global information to apply one iteration
of an optimization algorithm to achieve the global goal,
tracking the reference st. However, at the next time, t+1, the
reference st will change and hence the optimization problem
the loads are attempting to solve is operating in “real time.”

III. OPTIMIZATION BASICS

To better understand our contribution we review how to
solve a constrained optimization problem, of special struc-
ture, in a distributed fashion using projected gradient descent
(PGD). Consider the following optimization problem,

min
z∈Z

f(z; t), z ∈ Rq, Z = Z1 × · · · × Zq, (8)

with zi ∈ Zi only. The PGD method to solve (8) is,

zit+1 = ΠZi

(
zit − α∇f i(zt)

)
, ∀ i ∈ {1, . . . , q}, (9)

∇f i(zt) ,
∂f(z; t)

∂zi

∣∣∣∣
z=zt

, ΠX (x) , arg min
y∈X
‖y − x‖,

with α > 0 a step size. The projected gradient method
applied to time invariant problems has its origins in [23].
For an introduction to time varying convex optimization the
paper [24] is a good reference. As we will see, the resource
allocation problem naturally has a similar structure to (8).

The formulation of a resource allocation problem with all
the appropriate QoS constraints in the QoS set (2), and an
algorithm for its solution are the focus of the rest of the
paper.

IV. PROPOSED METHOD

Largely, the limitation of the past works on resource
allocation problem formulations/algorithms is that they do
not consider appropriate load QoS metrics. Consequently, our
proposed method is centered around including the approrpri-
ate QoS constraints. When doing this, a technical trouble
arises that we solve with a state augmentation technique,
which we describe next.

A. Predictive Resource Allocation with memory

We define the memory objective at time t ∈ N as follows:
Jm(xt−1|t) ,

N∑
i=1

(dit−1|t − d
i
t−1|t−1)2ζ̄i +

( N∑
i=1

dit−1|t − st−1

)2

. (10)

We have introduced the variable dit−1|t, which is a fictitious
variable at time t that we desire to be close to dit−1|t−1

(treated as a constant at time t). The augmented decision
variable, zt is then:

zit , [dit−1|t, (x
i
t)
T ]T , and zt , [(z1

t )T , . . . , (zNt )T ]T , (11)

where, by construction, zt contains all the elements in xj|t,
so where convenient we refer to xj|t. However, within the
scope of an optimization problem, the decision variable is
zt. With zit it is now possible to redefine the QoS set (2) as
independent of the previous state value. We denote this new
set as:

Di ,
{
zit : s.t. (3), (4), and (6)

}
. (12)

Comment 2. In (12) the constraint (5) is evaluated with
the decision variable dit−1|t and not an externally spec-
ified variable/parameter. The same methodology could be
extended to handle any convex constraint with memory. Thus,
the expanded state (11) has mitigated the challenge (C1)
described in the introduction: the constraint set is neither
time varying nor state dependent.

With this, the predictive resource allocation problem with
memory is the following:

min
zt

η(zt) =
1

2

( t+N−
p∑

τ=t

JL(xτ |t) + JG(xτ |t) + Jm(xt−1|t)

)
s.t. zit ∈ Di, ∀ i ∈ {1, . . . , N}. (13)

We see that (13) is in a form applicable to the example
algorithm (9). The solution to (13) is denoted z∗t with optimal
value η∗t = η(z∗t ).

B. Proposed algorithm

To solve the problem (13), we propose the following
algorithm. The ith load updates its state with:

zit+1 = ΠDi

(
P̂
(
zit − α∇ηi(zt)

))
= ΠDi

(
P̂ψit

)
, (14)

ψit , zit − α∇ηi(zt),



where α > 0 is a step size common to all loads, and P̂ is
the following circulant matrix,

P̂ =

[
0Np×1 INp

1 01×Np

]
. (15)

The primary purpose of the matrix P̂ is to help mitigate
challenge (C2) described in the introduction. It does this by
“shifting” the data to facilitate a benefit similar to warm start
techniques in optimization. In fact, a flavor of this idea was
included in [25], among others, to speed up the solution time
for real time Model Predictive Control.

Recall, for each load i, the quantity zit is a vector in RNp+1

where Np is the prediction horizon. The algorithm (14) is
an update rule for the entire vector zit, the value that the
load i actually consumes at time t is then zit[2] = dit|t. The
vectorized form of the algorithm (14) is: zt+1

=
[
ΠD1

(
P̂ψ1

t

)
, . . . ,ΠDN

(
P̂ψNt

)]T
= ΠD

(
Pψt

)
, (16)

D = D1 × · · · × DN , ψt = [(ψ1
t )T , . . . , (ψNt )T ]T , (17)

P = IN ⊗ P̂ , (18)

where × denotes Cartesian product, ⊗ denotes matrix Kro-
necker product [26], and zt is a vector in R(Np+1)N . Since
the Cartesian product operation preserves convexity and by
Proposition 1 each Di is convex, the setD is also convex. The
vectorized form (16) is useful for analysis, however during
implementation each load has the ability to update its own
local variable zit by solely using (14).

Proposition 2. Let z∗t be the optimal solution to problem (13)
and ψ∗t = z∗t − α∇η(z∗t ), both at time t ∈ N, then

z∗t = ΠD

(
z∗t − α∇η(z∗t )

)
= ΠD

(
ψ∗t
)
.

V. STABILITY

A. Preliminaries

We list a few results that will be useful for the analysis of
the proposed algorithm (16).

Proposition 3. The Hessian ∇2η and gradient ∇η(zt)
can be expressed in the following form, letting Hi ,
diag([ζ̄i, ζi, . . . , ζi]) ∈ RNp+1, for all zt ∈ R(Np+1)N

(i) ∇2η = 1N ⊗
(
1TN ⊗ INp+1

)
+

N⊕
i=1

Hi,

(ii) ∇η(zt) = (∇2η)zt − ut,

where
⊕

denotes the Kronecker sum of matrices [26],
diag(a) denotes the diagonal matrix of the vector a, 1N ∈
RN is the column vector of all ones, and the vector ut ∈
R(Np+1)N is,

ut = [(u1
t )
T , . . . , (uNt )T ]T with, (19)

uit = [dit−1|t−1 + st−1, st, . . . , st+N−
p

]T . (20)

We have dropped the dependence of zt on the Hessian, as
the Hessian is a constant matrix, where additionally, based

on the form given in Proposition 3, it is symmetric, i.e.,
∇2η = (∇2η)T and positive definite.

Proposition 4. Let ζ̄i = ζi for all i ∈ {1, . . . , N}, then∥∥P∇2η −∇2ηP
∥∥ = 0.

Lemma 1 (Theorem 2.1, [27]). For any s, τ ∈ N, the
following bound holds,

1

N
‖z∗s − z∗τ‖ ≤

ū∗s,τ
λmin(∇2η)

, (21)

where ū∗s,τ = ‖u∗s − u∗τ‖.

Lemma 2. For all t ∈ N the following holds,

1

N
‖Pz∗t−1 − z∗t ‖ ≤

ḡ∗t
λmin(∇2η)

,

where ḡ∗t = ū∗t,t−1 + 2ũ∗t , ũ∗t = ‖u∗t−1 − u
∗,0
t ‖ and u∗,0t is

the value that produces an optimal solution of all zeros.

Proof. See appendix.

This result will render itself useful for the stability anal-
ysis. Also necessary in our stability results is the class of K
and KL functions, that hold their usual definitions as seen,
e.g. in [28].

B. Stability: Main result

Our main theoretical results for our proposed algo-
rithm (14) is summarized in Theorem 1. If we treat the value
‖zt − z∗t ‖ as the “state” and an upper bound on the time
varying aspects to the optimization problem as the “input”,
then Theorem 1 is a global input to state stability (ISS) result.

Practically, we want the magnitude ‖zt− z∗t ‖ to be small,
as the optimal solution z∗t represents the value that optimally
satisfies all of the specified criteria. The theorem below
requires the following boundedness assumptions:
A1: for all t ∈ N, ḡ∗t < ḡ <∞,
A2: for all t ∈ N, ` < t, ‖Put−` − u∗t ‖ < ∆ <∞.

Then we denote ū ,
(

Nḡ
αλmin(∇2η) + ∆

)
.

Theorem 1 (Global-ISS). If assumptions A1 and A2 are
satisfied, the step size α satisfies,

α ∈
(

0,
1

ζmax +N

)
, where ζmax = max

1≤i≤N
ζi,

and ζ̄i = ζi for all i ∈ {1, . . . , N}, then for all z0 ∈
R(Np+1)N there exists a Γ ∈ K and an Ω ∈ KL such that

‖zt − z∗t ‖ ≤ Ω(‖z0 − z∗0‖, t) + Γ(ū)

where z0 is the initial iterate of (16).

Proof. See appendix.

In Theorem 1 we have developed conditions on the step-
size in terms of the readily available problem data that will
give a stability result for time varying reference signals.



TABLE I: Simulation Parameters

Par. Unit value Par. Unit value
N hundred 1 α N/A 0.99

ζmax+N

ζmin, ζmax N/A 0.1, 4 emin
L , emax

H kWh 0, 4
dmin
L , dmax

H kW 0, 10 rmin
L , rmax

H kW -0.50, 0.50

VI. NUMERICAL EXAMPLES

Here we offer numerical examples to validate the result
from Theorem 1. This involves simulating the algorithm (14)
on various types of data. We provide two scenarios for this:
Scenario 1 (S1) where only the loads’ power constraint (3) is
considered and the loads are asked to track a step reference
that is not feasible to track (the maximum value of the
reference is larger than the sum of all the upper bounds
in (3)) and Scenario 2 (S2) our proposed method tracking
Bonneville Power Administrations (BPA) balancing reserves
deployed (BRD) signal to illustrate the effectiveness of our
algorithm tracking a time varying signal. Additionally, in
(S1) we compare our method to a method that uses dual
ascent from [29].

In both scenarios: (i) each load is given a set of parameter
values obtained by a linear spacing between the maximum
and minimum values found (along with the other relevant
simulation parameters) in Table I and (ii) the sampling time
is Ts = 5 minutes.

A. Scenario 1: Integrator Windup of dual ascent

Here we illustrate the “integrator windup” behavior of dual
ascent based algorithms [29]:

λt = λt−1 + γet−1|t−1, and dit|t = Π[diL,d
I
H ]

(λt
ζi
)
, (22)

when feasibility is lost. The result of this is shown in Fig-
ure 2. When the resource allocation problem is not feasible,
the update for λt in (22) will continue to integrate non-zero
area. It then takes dual ascent time to reach zero steady state
error once feasibility is regained. It is worth noting that the
two regions of integrated area in Figure 2 are equivalent.

For comparison we also utilize our proposed algorithm
with solely the magnitude constraints (3) and Np = 0, which
does not suffer from integrator windup.
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Fig. 2: Integrator Windup of dual ascent with step response
reference.

B. Scenario 2: Tracking BPA’s BRD

With our proposed method, we track a time-varying ref-
erence with a prediction horizon of Np = 5; see Figure 3.
Since the data obtained from BPA is on the order of GW, we
scale the reference down to satisfy the magnitude constraint.
However, this is not required for the success of the algorithm,
only to aid in exposition of the results.

The 1-norm tracking error of the signal in Figure 3 is
16.3%, and can be attributed to 2 factors: (i) the reference
is only guaranteed to satisfy the magnitude constraint (3)
so it may not be feasible for the other constraints and
(ii) the algorithm only guarantees ISS and not asymptotic
tracking. However, from experience we believe (i) to be the
contributing factor. Other numerical experiments conducted
suggest that it is possible to make the error quite small by
increasing Np if the constraints are all feasible.
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Fig. 3: Tracking the time varying reference with the proposed
method.

VII. CONCLUSION

We propose a real time optimization algorithm with dis-
tributed computation and hierarchical communication struc-
ture for the resource allocation of flexible loads in the smart
grid. Our algorithm has two key innovations: (i) the utiliza-
tion of predictions and (ii) a state augmentation technique to
handle dynamic constraints.

Future work includes: (i) analyzing further the effects
of the state augmentation technique, similar to the penalty
method technique applied in [16] and (ii) the development of
asymptotic results for constrained time varying optimization.
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APPENDIX

A. Proof of Lemma 2

Proceeding directly, by the triangle inequality we have

1

N
‖Pz∗t−1 − z∗t ‖ ≤

1

N
‖z∗t−1 − z∗t ‖+

1

N
‖Pz∗t−1 − z∗t−1‖,

≤
ū∗t,t−1

λmin(∇2η)
+

2

N
‖z∗t−1‖.

We can bound ‖z∗t−1‖ by using Lemma 1 where z∗t will be
zero when u∗t = u∗,0t , yielding

1

N
‖Pz∗t−1 − z∗t ‖ ≤

ū∗t,t−1

λmin(∇2η)
+

2ũ∗t
λmin(∇2η)

=
ḡ∗t

λmin(∇2η)
.

B. Proof of Theorem 1

A more detailed proof can be found in [30]. We start with
the developed vectorized notation,

‖zt − z∗t ‖ = ‖ΠD(Pψt−1)−ΠD(ψ∗t )‖ ≤ ‖Pψt−1 − ψ∗t ‖
= ‖Pzt−1 − z∗t − α

(
P∇η(zt−1)−∇η(z∗t )

)
‖,

where we used Proposition 2 and the non-expansive property
of the projection operator. From Proposition 3 and 4 it can
be shown that,

‖zt − z∗t ‖ ≤M(α)‖Pzt−1 − z∗t ‖+ α‖Put−1 − u∗t ‖,

where M(α) = ‖I − α∇2η‖. We iterate this backwards a
total of t times to reach t = 0 whilst using Lemmas 1 and
2, yielding:

‖zt − z∗t ‖ ≤M t(α)‖z0 − z∗0‖

+ α

t∑
`=1

M t−`(α)

(
‖Put−` − u∗t ‖+

Nḡ∗t
αλmin(∇2η)

)
.

Now, from our assumptions we can bound the quantity in
parentheses in the summation by ū yielding,

‖zt − z∗t ‖ ≤M t(α)‖z0 − z∗0‖+
αū

1−M(α)

which will give the desired result as long as M(α) < 1,
which we ensure next. Denote λi(∇2η), the ith eigenvalue
of ∇2η. To guarantee M(α) < 1 it is sufficient to require

0 < αλmax
(
∇2η

)
< 1.

Applying the Gershgorin circle theorem [31] then yields,

α ∈
(

0,
1

ζmax +N

)
,

for M(α) < 1.


