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Abstract—Ensembles of thermostatically controlled loads
(TCLs) have the potential to be a valuable resource for the Bal-
ancing Authority (BA) of the future. Examples of TCLs include
household appliances such as air conditioners, water heaters,
and refrigerators. To perform design of a distributed coordi-
nation/control algorithm, the BA requires a control oriented
model that describes the relevant dynamics of an ensemble. In
this work, we develop such a model. We leverage techniques
from computational fluid dynamics (CFD) to discretize a pair
of Fokker-Planck equations derived in earlier work [1]. The
discretized equations are shown to admit a certain factorization
that separates the effects of weather and control on the system
dynamics. This then infers how one can model a population
of TCLs under arbitrary control policies. It also stages the
way for computationally efficient control design through convex
optimization. Simulation results are provided to elucidate these
points.

I. INTRODUCTION

An envisioned future for the power grid is one that
relies more on renewable generation. However, increased
renewable penetration also increases volatility, and will re-
quire Balancing Authorities (BA) to utilize varying types of
resources to balance the grid. One such example: flexible
loads.

Flexible loads are loads that can vary their power con-
sumption, around a nominal value, without affecting the QoS
of the load. Nominal refers to the power consumption without
control from the BA, and power deviation as the amount de-
viated from nominal. The nominal consumption, for example,
for air conditioners, is largely determined by ambient weather
conditions. Examples of flexible loads include, TCLs [2], [3],
[4], [5] (e.g., water heaters and air conditioners) pumps for
agricultural purposes [6], pool cleaning [3], and heating [7],
and HVAC equipment [?]. Since the rated power of some
flexible loads is quite small, it is necessary to consider
collections of flexible loads. In the following we focus solely
on TCLs.

While TCLs are a flexible load, their nominal behavior
needs to be altered to take advantage of their flexibility.
That is, in order to be utilized as a resource, the BA needs
to issue implementable control commands to each TCL that
reflects its needs. These inputs modify slightly the nominal
behavior of each TCL, so that in aggregate the collection
tracks the desired power deviation. Examples of inputs in the
current literature include: (i) thermostat set point changes [2],
[9], (ii) randomized control algorithms [3], [4], and (iii)
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direct load control (for example, the priority stack controller
within [10]).

From the standpoint of control design, it is also important
to have a model that describes the effects of the control
input on the ensembles power consumption. Ref. [1] develops
a pair of coupled Fokker-Planck equations to model an
ensemble of TCLs during nominal operation. The Fokker-
Planck equations are partial differential equations (PDEs)
that describe the time evolution of a certain probability
density function (pdf). Upon discretization, the coupled PDEs
turn into coupled ODEs and the pdf turns into a probability
mass function (pmf) that holds similar interpretation as the
“binned” state common in the literature [5], [11]. However,
since the PDEs are developed to model nominal operation it
is, in general, a design choice on how to introduce control
into this modeling framework.

In this work, we develop a control oriented framework for
ensembles of TCLs. This framework is based on discretiza-
tion of the coupled Fokker-Planck PDEs exposed in [1]. The
main contribution is that our discretization allows us to infer
a special structure of the resulting discretized system. This
structure decomposes the effects of exogenous disturbances,
such as weather, and the control input. This structure has the
so-called “conditional independence” decomposition appear-
ing as an assumption in the work [12]. There are at least
two advantages of the identified structure: (i) it elucidates
how one can introduce a control input and (ii) it allows for
computationaly efficient control design. To our knowledge,
use of discretization to obtain this conditional independence
structure is absent from prior literature.

A. Literature review

There are two important ingredients for controlling col-
lections of TCLs: (i) identifying a control input and (ii)
modeling the effects of the control input. As previously
mentioned, many works modify the modeling framework
exposed in [1] to achieve both points (i) and (ii).

Since PDEs are infinite dimensional, some form of a
discretization is required for the eventual purpose of control
design. After discretization, a finite dimensional population
model can be developed. This model is of the form νk+1 =
νkPk where Pk is a Markov transition matrix and νk is a
marginal distribution. The works [13], [14], [15] take this
route, and νk represents the “fraction of flexible loads with
state value in a certain bin.” Alternative to discretization, one
can define this fractional state vector in an ad-hoc fashion
and develop population models by analytically computing
transition probabilities [11]. It is also possible to estimate
the population model through measured data [16] or Monte-
Carlo simulation [5].



To introduce control to the discretized models, one popular
approach is to define a vector control input with ith entry as
“the fraction of TCLs to switch mode state in bin i” [5],
[11], leading to a bilinear control system. Another approach
assumes the ability to change the thermostatic set point
of each TCL. The effects of this control input can be
modeled prior to discretization, and after discretization, like
the previous approach, a bilinear control system results [9].
One more approach introduces control by allowing the TCL’s
mode state to be determined through a randomized control
policy [16].

In regards to discretization our approach belongs to the
first class of methods, i.e., we discretize the PDEs to obtain
a population model of the form νk+1 = νkPk. However, to
introduce control to this control free population model, our
approach is different from much of the literature. We study
the structure of Pk. Elaborating, the control free population
model is based on the TCL’s nominal thermostatic policy.
Is it then possible to ‘factor’ this policy out, i.e., rewrite
the population model as νk+1 = νkΦGk so that an arbitrary
control policy can be inserted instead? That is, replace the
nominal thermostat policy Φ with a control policy that
reflects the BA’s needs, say ΦBA

k . The answer is affirmative,
and this factorization refers to the conditional independence
form mentioned prior.

In numerical experiments we evaluate the fidelity of our
discretized model by comparing the state of the model to
empirical quantities obtained from a simulation of TCLs. In
addition, we also offer a preview of control results using the
developed model with the identified structure.

The paper proceeds as follows. In Section II the model of
the individual TCL is introduced. In Section III the PDEs
introduced are discretized and in Section IV the structure of
the discretized model is identified. Numerical experiments
are reported in Section V and we conclude in Section VI.

II. MODELING: INDIVIDUAL TCL

A. Deterministic Model

An individual TCL has two state variables: (i) a tempera-
ture denoted x(t) and (ii) an on/off mode denoted m(t). We
consider two models for an individual TCL. The first is the
following ODE,

d

dt
x(t) = fm(x, t), (1)

where

fm(x, t) = − 1

RC
(x− θa(t))−m(t)

ηP

C
. (2)

The rated electrical power consumption is denoted P with
coefficient of performance (COP) η. The parameters R and C
denote thermal resistance and capacitance, respectively. The
signal θa(t) is the ambient temperature. In the following we
identify m(t) = 1 and m(t) = on, as well as m(t) = 0 and
m(t) = off. We denote arbitrary temperature values through
the variable λ. The thermostat setpoint is denoted as λset.

The nominal power for the TCL is the value of P in (2) so
that f1(λset, t) = 0, solving yields:

Nominal Power: P̄ ind(t) =
θa(t)− λset

ηR
. (3)

B. Stochastic Model

The stochastic model is based on the deterministic model.
Consider the Itô stochastic differential equation (SDE),

dx(t) = fm(x, t)dt+ σ2dB(t), (4)

where B(t) is Brownian motion with parameter σ2 > 0, and
the quantity σ2dB(t) captures modeling errors in (1).

a) Nominal thermostat policy: To state the Fokker-
Planck PDEs as in [1] we denote the nominal thermostat
policy:

lim
ε→0

m(t+ ε) =


1, x(t) ≥ λmax.

0, x(t) ≤ λmin.

m(t), o.w.
(5)

The quantities λmax and λmin respectively set the upper and
lower temperature limits (i.e., the thermostatic “deadband”)
for x(t). The nominal policy (5) is only temporary; in
Section IV we show how to model the effects of an arbitrary
randomized policy.

Now, consider the following marginal pdfs µon, µoff:

µon(λ, t)dλ = P ((λ < x(t) ≤ λ+ dλ), m(t) = on) , (6)
µoff(λ, t)dλ = P ((λ < x(t) ≤ λ+ dλ), m(t) = off) , (7)

where P(·) denotes probability, and for now m(t) evolves
according to (5). It was shown in [1] that the densities µon
and µoff satisfy the Fokker-Planck equations,

∂

∂t
µon(λ, t) = −∇λ

(
fon(λ, t)µon(λ, t)

)
+
σ2

2
∇2
λµon(λ, t)

(8)
∂

∂t
µoff(λ, t) = −∇λ

(
foff(λ, t)µoff(λ, t)

)
+
σ2

2
∇2
λµoff(λ, t)

(9)

that are coupled through their boundary conditions [1], which
are listed later in Section III-A2.

There are at least two ways that the coupled equations (8)-
(9) can be used for modeling: (i) to model a single TCL
and (ii) to model an ensemble of TCLs. That is, for (i)
the quantities (6)-(7) represent the probability that a single
TCLs state resides in the respective interval. For (ii) the
quantities (6)-(7) represent the fraction of TCLs whose state
resides in the respective interval. How the equations (8)-(9)
(specifically their discretized form) can be used to model an
ensemble is discussed further in Section IV-B.

1) Motivation for Stochastic Model: While transport type
arguments can be used to develop a pair of coupled advection
equations (equations (8)-(9) with σ2 = 0) for the deter-
ministic model [9], the state of these advection equations
will not agree with the pointwise in time histogram of a
population of TCLs simulated with (1) (see Figure 1). To see
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Fig. 1. Discrepancy between the state of the advection equation and the
histogram of the population for various time steps. Each histogram is over
the temperature state for all of the on TCLs at the specified time.

why, consider the following: without noise TCLs are periodic
whereas discretization of the advection equations yields a
Markov transition matrix that is irreducible and aperiodic.
Hence, the iteration of this transition matrix will converge
to a limiting and invariant distribution, whereas the samples
from the TCLs will not since the TCL behavior is periodic.
This behavior is shown in Figure 1, the discretized state of
the advection equation remains relatively constant while the
histogram of the ensemble does not; their is no suggestion
of convergence even after 24 hours.

Thus, the stochastic model (4) has two advantages: (i)
it captures modeling errors and heterogeneity [?] the de-
terministic model (1) can not, and (ii) it also guarantees a
correspondence between simulation samples from (4) and the
state of the coupled PDEs (8)-(9) (see Figure 4).

2) Forward thinking motivation: Further, the PDEs that
are derived from the stochastic model will be the base of our
control oriented model. In the following, we will discretize
the PDEs (8)-(9) and then show that the discretized model
has special structure. Particularly, the structure elucidates
how to model the aggregate under the effects of a arbitrary
randomized policy.

III. DISCRETIZATION

In order to be used, the coupled PDEs (8)-(9) need to be
spatially and temporally discretized. We will use the finite
volume method (FVM) to discretize (8) and (9). In light of
the discussion from the previous section, the goal will be
to develop a control oriented model. That is, we aim to: (i)
obtain a discretized model that agrees well with population
quantities (avoids behavior as shown in Figure 1) and (ii)
discretize the model in a way that a control input for the
BA can be identified. More on point (ii) will be discussed in
Section IV, however the discretization here plays a role.

A. Spatial discretization

The layout of the control volumes (CV) is shown in
Figure 2. The discretization is achieved by enumerating N ,

for both the on and off mode state, CV temperature values
and their upper and lower boundaries:

λon = (λion)Ni=1, λ
+
on = λon +

∆λ

2
, λ−on = λon −

∆λ

2
,

λoff = (λioff)
N
i=1, λ

+
off = λoff +

∆λ

2
, λ−off = λoff −

∆λ

2
,

where ∆λ is the CV width. All intermediate values of λon
and λoff are separated from each other by ∆λ. The values
in λ+

on (respectively, λ+
off) are the right edges of the CVs and

the values λ−on (respectively, λ−off) are the left edges of the
CVs, for example, λ1,−

off = λlow. The quantities λmin and λmax

specify the thermostat deadband, and are different from the
quantities λhigh and λlow (see Figure 2).

We denote the ith CV as CV(i) and further adopt the
following notational simplifications,

µoff(λ
i, t) , µoff(λ

i
off, t), and µon(λi, t) , µon(λion, t).

Highlighted red in Figure 2 are two additional control vol-
umes. These control volumes are added to assist in enforcing
boundary conditions that coincide with the thermostat control
law (5). Further discussion on this is given in section III-A2.

1) Internal CV’s: We use a central difference to ap-
proximate the diffusion terms and the upwind scheme to
approximate the convective terms. The textbook details of
these schemes can be found in [17] and the full derivation
can be found in the arxiv version of this work [?]. Now,
denote the following

D ,
σ2

(∆λ)2
, and F ion(t) ,

fon(λi, t)

∆λ
, (10)

where the quantities F ioff(t), F i,+on (t)/F i,+off (t), and
F i,−on (t)/F i,−off (t) are defined analogously. The resulting
spatially discretized equations are

d

dt
νon(λi, t) =

(
F i,−on (t)−D

)
νon(λi, t) +

D

2
νon(λi−1, t)

+
(D

2
− F i,+on (t)

)
νon(λi+1, t), (11)

d

dt
νoff(λ

i, t) =
D

2
νoff(λ

i+1, t)−
(
F i,+off (t) +D

)
νoff(λ

i, t)

+
(D

2
+ F i,−off (t)

)
νoff(λ

i−1, t), (12)

where νon(λi, t) , µon(λi, t)∆λ, and νoff(λ
i, t) ,

µoff(λ
i, t)∆λ.

2) Boundary CV’s: The boundary CVs are the CVs as-
sociated with the nodal values: λ1

on, λqon, λNon, λ1
off, λ

m
off,

and λNoff. The superscript, for example the integer q in λqon
represents the CV index. All boundary CVs can be seen in
Figure 2. Discretization of the boundary CVs requires care
for atleast two reasons. First, this is typically where one
introduces the BCs of the PDE into the numerical approx-
imation. Secondly, on finite domains the endpoints present
challenges, for example, there is no variable µon(λN+1, t)
for computation of the derivative values for node λNon.
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Fig. 2. The control volumes (CVs). The colors correspond to the colors found in Figure 3. The values in each CV represent the nodal temperature for
the CV. The arrows describe the sign of the convection of the TCL through the CVs.

The BC’s for the coupled PDEs (8)-(9) are [1]:

Absorbing Boundaries:
µon(λmin, t) = µoff(λ

max, t) = 0. (13)
Conditions at Infinity:

µon(+∞, t) = µoff(−∞, t) = 0. (14)
Conservation of Probability:
∂

∂λ

[
µon(λq,−, t)− µon(λq−1,+, t)− µoff(λ

N−1,+, t)

]
= 0.

(15)
∂

∂λ

[
µoff(λ

m,+, t)− µon(λ2,−, t)− µoff(λ
m+1,−, t)

]
= 0.

(16)
Continuity:

µon(λq,−, t) = µon(λq−1,+, t). (17)

µoff(λ
m,+, t) = µoff(λ

m+1,−, t). (18)

As we will see, implementation of some of the above
conditions will require a bit of care. However, some are quite
trivial to enforce. For example, by default, the continuity
conditions (24) and (25) are satisfied due to our choice
of CV structure, since, for example, for any i we have
λi,−off = λi−1,+

off and λi,+off = λi+1,−
off .

Now focusing on the conditions at infinity BC (21), we
enforce instead the following conditions:

∂

∂λ
µoff(λ

1,−, t) = 0, and
∂

∂λ
µon(λN,+, t) = 0. (19)

The reason for this is because our computational domain
cannot extend to infinity, where the BC (21) is required to
hold. Practically, the temperature values λ1

off and λNon are
quite far away from the deadband and so the density here
will be near zero anyways.

Now, consider the spatial discretization of the CVs associ-
ated with the BC at infinity. First considering the CV associ-
ated with the temperature λ1

off, we have that the differential

equation is

d

dt
νoff(λ

1, t) =
(
− F 1,+

off (t)− D

2

)
νoff(λ

1, t)

+
(D

2
+ F 2,−

off (t)
)
νoff(λ

2, t). (20)

Considering the CV associated with the temperature λNon, we
have

d

dt
νon(λN , t) =

(
FN,+on (t)− D

2

)
νon(λN , t)

+
(D

2
− FN,+on (t)

)
νon(λN−1, t). (21)

In the above we make the assumption that νoff(λ
1,− −

∆λ, t) = 0 and νon(λN,+ + ∆λ, t) = 0.
Now focus on the absorbing boundary (20) and conserva-

tion of probability (22)-(23) boundary conditions. These BCs
have the following meaning. The condition (20) clamps the
density at the end of the deadband to zero. BC (22) reads:
the net-flux across the temperature value λqon is equal to the
flux of density going from off to on. In order to enforce
both (22) and (23) we will model the flux due to TCLs
switching as sources/sinks. Before doing this, we mention
some conceptual issues with enforcing the BC (20).

Problematically, a TCL’s state trajectory will never satisfy
the BC (20) since to switch its mode state the TCLs tempera-
ture sensor will have to register a value outside the deadband.
That is, it is possible to enforce the BC (20), however the
developed model would have a discrepancy with the behavior
of a TCL. To combat this, we introduce two additional CV’s
associated with the temperatures λ1

on and λNoff, which are the
ones outlined in red in Figure 2. We then transfer the BC (20)
to one on the added CVs, where the transferred BC is now

µon(λ1,−, t) = µoff(λ
N,+, t) = 0. (22)

As mentioned, to enforce the conservation of probability BC
we use a source/sink type argument, which we also enforce
on the added CVs. To see what we mean by source/sink
argument, consider the following: some rate of TCLs are
transferred out of the CV λNoff and into the CV λqon (as de-
picted in Figure 2) due to thermostatic control. Since during
operation, any TCL within the CV λNoff would immediately
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Fig. 3. Sparsity pattern of the matrix A(t) for N = 51 CVs for both the
on and off state. The colors correspond to the colors found in Figure 2.

switch on, we model the sink as simply −νoff(λ
N , t). The

rate of the sink is then given as −γνoff(λ
N , t), where γ > 0

is a modeling choice and a constant of appropriate units that
describes the discharge rate. We shortly given insight on how
to elect a value for γ. Now discretizing the CV corresponding
to the nodal value λNoff subject to the BC (29) and the sink
−νoff(λ

N , t) we obtain,

d

dt
νoff(λ

N , t) =
(D

2
+ FN,−off (t)

)
νoff(λ

N−1, t)− ανoff(λ
N , t),

(23)

where α =
(
γ +D

)
. In obtaining the above, we have made

the reasonable assumption that νoff(λ
N,+ + ∆λ, t) = 0.

The quantity ανoff(λ
N , t) represents the rate of change of

density from the CV λNoff to the CV λqon, as depicted in
Figure 2. Consequently, to conserve probability, we must add
this quantity as a source to the ode for the CV λqon, i.e.,

d

dt
νon(λq, t) = · · ·+ ανoff(λ

N , t). (24)

The dots in equation (31) represent the portion of the dynam-
ics for the standard internal CV (i.e., the RHS of (18)) for
the temperature node λqon. A similar argument is used for the
BC (23) with the CV’s λ1

on and λmoff, and the corresponding
differential equations are,

d

dt
νon(λ1, t) =

(D
2
− F 1,+

on (t)
)
νon(λ2, t)− ανon(λ1, t),

(25)
d

dt
νoff(λ

m, t) = · · ·+ ανon(λ1, t). (26)

Practically, once the differential equations are discretized
in time with timestep ∆t one will then elect γ so that
α = (∆t)−1. With this choice, the discretized equations have
the interpretations that all mass starting in state νoff(λ

N , ·)
at time t is transferred out by time t + ∆t into the state
νon(λq, ·).

3) Overall system: Denoting the state of the overall sys-
tem at time t as the row vector, ν(t) = [νoff(t), νon(t)] with

νoff(t) = [νoff(λ
1, t), . . . , νoff(λ

N , t)], (27)

νon(t) = [νon(λ1, t), . . . , νon(λN , t)], (28)

and combing the odes: (18) and (19) for all of the internal
CVs and (27), (28), (30), (31), (32), (33) for the BC CVs.
We obtain the linear time varying system,

d

dt
νT (t) = A(t)νT (t). (29)

The matrix A(t) contains all of the coefficients from the in-
dividual ode’s developed so far from spatial discretization. In
the following, it will be convenient to view the dynamics (36)
in their transposed form

d

dt
ν(t) = ν(t)A(t), (30)

with A(t) = AT (t). We have included the sparsity pattern of
A(t) in Figure 3. The matrix A(t) also satisfies the properties
of a transition rate matrix, described in the following lemma.

Lemma 1. For all t, the matrix A(t) is a transition rate
matrix, that is, it satisfies for all t,

(i): A(t)1 = 0.

(ii): ∀ i, Ai,i(t) ≤ 0, and ∀ j 6= i Ai,j(t) ≥ 0.

Proof. See extended arxiv version [?].

B. Temporal discretization

To temporally integrate the dynamics (37) we use a first
order Euler approximation with time step ∆t > 0. Making
the identifications νk+1 , ν(tk+1), νk , ν(tk), and Ak ,
A(tk) we have

νk+1 = νkPk, with Pk = I + ∆tAk. (31)

In the continuous time setting elements of the vector ν(t)
were referred to as, for example, νon(λi, t). The counterpart
to this, in the discrete time setting, is referring to elements
of νk as, for example, νon[λi, k].

IV. IDENTIFYING STRUCTURE AND THE CONTROL INPUT

We started with the PDEs (8)-(9), and in the previous sec-
tion completely discretized them. Recall, that in the original
work [1] the PDEs were developed under the assumption that
the mode state m(t) evolved according to (5). Hence, from
the viewpoint of control, we still need to identify the control
input since the final discretized model (38) has no control
input. The goal of this section is to identify any structure
that may be present in the matrix Pk appearing in (38) and
to then exploit it for purposes of introducing a control input.
Key to doing this is the result that Pk is a transition matrix.

Lemma 2. Denote the ith diagonal element of the matrix
Ak as [Ak]i,i. The matrix Pk is a transition matrix if,

∀ i, and ∀ k, 0 < ∆t ≤ |[Ak]i,i|−1
.



Proof. From Lemma 1 we have that Pk1 = I1+∆tAk1 = 1
since Ak1 = 0. Also from Lemma 1, every element of Ak
is non-negative, save for the diagonal elements. Under the
hypothesis on Ak, then every diagonal element of I+ ∆tAk
will be in [0, 1].

Now, when the conditions of Lemma 2 are met Pk is
a transition matrix and hence each νk can be viewed as a
marginal distribution if ν01 = 1 and ν[·, 0] > 0. The structure
of this marginal is given from (6) for the on state (a similar
interpretation holds for the off state) as,

νon[λi, k] = P (x(tk) ∈ CV(i), m(tk) = on) , (32)

where x(tk) is the temperature. Now denote, xk , x(tk),
mk , m(tk), and

Ik ,
N∑
i=1

iI
(
xk ∈ CV(i)

)
, (33)

where I(·) is the indicator function. The quantity Ik indicates
which CV the TCLs temperature resides in at time k. Using
Ik we rewrite νon[λi, k] and νoff[λ

i, k] as,

νon[λi, k] = P (Ik = i, mk = on) , and (34)

νoff[λ
i, k] = P (Ik = i, mk = off) . (35)

A. Conditional independence of Pk
From (41) and (42) , the matrix Pk (with the conditions

of Lemma 2 satisfied) is the transition matrix for the joint
process (Ik,mk). In the following, we refer to the values
of Ik with i and j and the values of mk with u and v. We
introduce the following notation to refer to the elements of
the transition matrix Pk: Pw((i, u), (j, v)) ,

P
(
Ik+1 = j, mk+1 = v | Ik = i, mk = u, θak = w

)
.

Recall, the matrix Pk is derived for the nominal thermostat
policy. We will now show that the matrix Pk can be written as
the product of two matrices. One depending on the nominal
thermostat policy and one depending on weather and TCL
system dynamics. That is, to show that each element of the
matrix Pk can be written as,

Pw((i, u), (j, v)) = φu(v | j)Gw((i, u), j) (36)

where: Gw((i, u), j) ,

P (Ik+1 = j | Ik = i, mk = u, θak = w) , and (37)

φu(v | j) , P (mk+1 = v | Ik+1 = j, mk = u) . (38)

The quantity φu(v | j) is the factor that depends on the
nominal thermostat policy. As such, in the following we
describe φu(v | j) as a policy. The vectorized form of the
policies are,

φoff , φoff(on | ·), and φon , φon(off | ·), (39)

where φoff, φon ∈ RN . The factorization (43) is represented
in matrix form as,

Pk = ΦGk, (40)

where Φ ∈ R2N×4N and Gk ∈ R4N×2N . The subscript
k on Gk is to denote its dependence on the continuous
time varying ambient temperature θak . The factorization (47)
is paramount as it tells us how the nominal thermostat
policy and weather independently contribute to the overall
dynamics. Inversely, it then informs us how to define the
matrix Pk for a different policy that can act as a control
input for the BA.

We show the factorization (47) through construction, i.e.,
we find a matrix Φ and Gk that simultaneously satisfy (47)
and (43). We start this construction through the sparsity
structure shown for A(t) in Figure 3. Based on shaded
regions of the matrix A(t) shown in Figure 3, we define
the following:

P on
k = I + ∆tAon

k , and P off
k = I + ∆tAoff

k , (41)

P̂ on
k = I + ∆tÂon

k , and P̂ off
k = I + ∆tÂoff

k . (42)

More precisely Aon
k (respectively, Aoff

k ) is the matrix con-
taining the coefficients of the spatially discretized PDE (8)
(respectively, PDE (9)) evaluated at time tk. That is, Aon

k

is the matrix that corresponds to the bottom-right quadrant
encompassed by the dashed black line in Figure 3. The matrix
Âon
k (respectively, Âoff

k ) holds the same interpretation as Aon
k

(respectively, Aoff
k ) except restricted to the control volumes

between [λmin, λmax]. We additionally define the following
matrices,

Son
k =

[
0 0

P̂ on
k 0

]
, and Soff

k =

[
0 P̂ off

k

0 0

]
(43)

which will be used to show the factorization (43) in the
following lemma.

Lemma 3. Let e` be the `th canonical basis vector in RN .
Let φoff = e1 and φon = eN then denote Φon = diag(φon)
and Φoff = diag(φoff). Now, let Φ and Gk be given as,

Φ =

[
I − Φoff Φoff 0 0

0 0 Φon I − Φon

]
(44)

Gk =

[
0 Son

k 0 P
off
k

P on
k 0 S

off
k 0

]T
. (45)

If α = (∆t)−1 (appearing in (31) and (33)), then Pk = ΦGk.

Proof. See extended arxiv version [?].

The conditional independence factorization has been a
useful assumption in the design of algorithms in [12]. In
the present it is a byproduct of our spatial and temporal dis-
cretization of the PDEs (8)-(9). There are at least two impor-
tant consequences of the factorization result from Lemma 3.
The first one is described in the following corollary.

Corollary 1. For the nominal thermostat policy (5), our
spatial and temporal discretization scheme induces the de-
generate (deterministic) stationary policy:

P(mk = on | Ik = N, mk−1 = off) = 1,

P(mk = off | Ik = 1, mk−1 = on) = 1,



and zero otherwise.

Proof. Identifying the non zero elements of the policies φon
and φoff in Lemma 3 with the respective state values gives
the desired result.

Hence, the policy induced by the nominal thermostat
policy (5) and described in Corollary 1 is exactly the nominal
thermostat policy. This recovery of the original control law
gives confidence in the underlying spatial and temporal
discretization schemes. The second important consequence of
Lemma 3 is that it informs us how to define the dynamics of
the marginals (41) under a different policy than the nominal
thermostat policy.

B. Introducing control + aggregate model

In light of Lemma 3, we can now introduce an arbitrary
randomized policy in place of the degenerate nominal ther-
mostat policies described in Corollary 1. From the viewpoint
of the BA this randomized policy is the control input that
it must design so the TCLs meet it’s needs. To distinguish
from φoff and φon in the prior section we denote the newly
introduced policies with the superscript ‘BA’ and describe
them as ‘BA control policies.’ For example, electing policies
φBA

on and φBA
off as,

φBA
off(on | j) =


κon
j , (m+ 1) ≤ j ≤ (N − 1).

1, j = N.

0, o.w.
(46)

φBA
on (off | j) =


κoff
j , 2 ≤ j ≤ (q − 1).

1, j = 1.

0, o.w.
(47)

with φBA
off(off | ·) = 1 − φBA

off(on | ·) and φBA
on (on | ·) =

1−φBA
on (off | ·) and κon

j , κ
off
j ∈ [0, 1] for all j will preserve the

factorization interpretation found in Lemma 3. The policies
could also be time varying, for example: κoff

j [k] and κon
j [k].

The dependence of the policies on time is denoted as φBA
off [k]

and φBA
on [k].

We have required φBA
off(on | j) = 0 for 1 ≤ j ≤ m since

the temperatures corresponding to these indices are below
the permitted deadband temperature, λmin. Hence, turning
on at these temperature does not make physical sense. The
arguments for the zero elements in φBA

on are symmetric.

Remark 1. From the individual TCLs perspective, imple-
mentation of BA control policies of the form (54)-(55) is
straightforward: (i) the TCL measures its current state, (ii)
the TCL “bins” this state value according to (40) and
(iii) the TCL flips a coin to decide its next on/off state
according to the probabilities given in (54)-(55). Note that
the randomized policies are wrapped inside of the nominal
thermostat policy (5), so that both the BA control policy and
nominal thermostat policies are equivalent in enforcing the
temperature constraint.

In the following, we denote ΦBA
k as the matrix with struc-

ture (51) but containing any time varying BA control policies

φBA
off [k] and φBA

on [k] that satisfy the requirements specified
in (54) and (55), respectively. With this, the control oriented
aggregate model is the following discrete time system

νk+1 = νkΦBA
k Gk, γk = νkCon, (48)

where Con = [0T , Pagg1T ]T with Pagg , PNtcl. The control
input for this model is ΦBA

k , which translates to an input
locally for each TCL (see previously Remark 1). The nominal
consumption for the ensemble expressed in terms of the
nominal consumption of the individual TCL (3) is,

P̄k , NtclP̄
ind
k . (49)

The nominal consumption is time varying due to its depen-
dence on the time varying ambient temperature (see (3)).
This quantity, modulo a constant, represents the fraction of
TCLs that are on in nominal operation.

V. NUMERICAL EXAMPLES

We now conduct numerical experiments to show: (i) how
the PDEs (8)-(9) can be used to model an ensemble of TCLs
and (ii) how the framework can be used to design BA control
policies so that the ensemble of TCLs track a power reference
signal. Each TCL is indexed by ` and the total number of
TCLs is denoted Ntcl. For example, m`

k and I`k are the mode
and binned temperature of the `th TCL at time k.

A. Evaluating the aggregate model

Two empirical ensemble quantities of interest are:

Yk , P

Ntcl∑
`=1

m`
k, and Hk[i, u] ,

Ntcl∑
`=1

I
(
I`k = i,m`

k = u
)
,

which are the total power consumption and histogram of the
ensemble, respectively. They are empirical counterparts to the
state (histogram) and output of the aggregate model (56).

We now compare the empirical and analytical aggregate
quantities in simulation. The results are shown in Figure 4
and 5 for Ntcl = 50000. The mode state of each TCL evolves
according to a BA control policy that satisfies the structural
requirements in (54) and (55) and is relatively similar to the
nominal thermostat policy (Corollary 1). The temperature
evolution evolves according to a simulated version of (4).
We see the state νk matches well the histogram Hk of the
ensemble (Figure 4) and the output γk matches well the
ensembles power consumption Yk (Figure 5).

B. Controlling the Ensemble

Due to space limitations, a full description of the con-
trol algorithm is not possible. However, as a preview we
present simulation results from the algorithm in Figure 8.
The reference signal rk shown in Figure 8 is an arbitrarily
generated sum of sinusoids added to the nominal power, P̄k.
The ambient air temperature used to compute P̄k is time
varying and is obtained from weatherunderground.com for a
typical summer day in Gainesville, Fl.
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Fig. 4. Histogram of the ensemble Hk compared with the marginals νoff[k]
and νon[k] obtained from the aggregate model.
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Fig. 5. The total power consumption Yk compared with the output of the
aggregate model, γk .

The control algorithm amounts to solving a convex opti-
mization problem, and its facilitation is in large part due to
the identified structure. Essentially, the optimization problem
utilizes the model (56) to obtain a string of optimal random-
ized BA control policies ΦBA,∗

k . The BA can then send these
policies to each TCL, where implementation is as described
in 1. Each TCL using the designed BA control policies has
the effect of the ensemble tracking rk, as shown in Figure 8.

VI. CONCLUSION

We discretize the Fokker-Planck equations, derived in the
past literature [1], for a population of TCLs. The discretized
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Fig. 6. The power consumption of the ensemble Yk compared with the
desired reference rk and the baseline power P̄k .

equations are then shown to satisfy a certain factorization:
the effects of weather and control factor out. The discretized
model is verified in simulation, and preliminary results of
using the model with its identified factorization for control
are shown. Future work entails incorporating the cycling state
into the obtained model.

VII. RESOURCE ALLOCATION

Resource allocation refers to the allocation of a resource
to provide a service. In this context the resource is an
ensemble of TCLs, and the service is for the ensembles
power consumption to track a desired regulation signal.
In this sense, resource allocation is modeled through the
following optimization problem,

η∗ = min
νk,Φk

η(ν̂) =

j+T∑
k=j

(rk − γk)2 (50)

s.t. νk+1 = νkΦkGk, νj = ν̂ (51)
νk ∈ [0, 1], Φk ∈ Φ, (52)

where rk is the regulation signal, i.e., the desired power
consumption at time k and Φ is the set defined as

Φ ,
{

Φ ∈ [0, 1]
∣∣ φoff satisfies (54), φon satisfies (55)

}
.

Essentially, the set Φ ensures that the policies satisfy the pre-
specified structure set in (54) and (55). The problem (58)
is a non-convex optimization problem, and a well known
convexification remedy [?] is to consider the following
change of variables,

Jk = diag(νk)Φk, (53)

where each non-zero element of Jk can be thought of as
the joint distribution P (mk+1 = v, Ik+1 = i, mk = u). By
construction, we have that

νk+1 = 1TJkGk, and νTk = Jk1, (54)

since 1T diag(νk) = νk and 1 = Φk1. However, due to
the structure of our policy, and consequently Φk, we do not
need to declare the entirety of Jk as a decision variable. For
instance, we see that diag(νk)Φk is a block matrix, where
each matrix block is a diagonal matrix. We express this as:
diag(νk)Φk =[

Boff,off[k] Boff,on[k] 0 0
0 0 Bon,off[k] Bon,on[k]

]
(55)

=
O

sparse(Jk),

where, e.g., Boff,off[k] = diag(νoff[k])(I − Φoff[k]). The
other diagonal matrices appearing in (63) can be inferred
by carrying out the matrix multiplication. Additionally, the
equality constraints in Φ are all of the form φoff(on | j) = κ
and can be enforced in our new decision variables through
the definition of the joint distribution as

P (mk = on, Ik = j, mk = off) = κνoff[λ
j , k]. (56)

Requiring both the joint distribution and marginal distribution
to be within [0, 1] with the constraint νTk = Jk1 enforces the



inequality constraints in Φ. We also have found it necessary
to include constraints of the form,

φoff(on | j − 1)νoff[λ
j−1, k] ≤ φoff(on | j)νoff[λ

j , k] (57)

φon(off | j + 1)νon[λj+1, k] ≤ φon(off | j)νon[λj , k] (58)

so to suggest that the switching on (resp., switching off)
probability increases as temperature increases (resp., de-
creases). We denote the transcription of the constraints in
Φ and the additional constraints (65) and (66) in the new
decision variables as sparse(Jk) ∈ sparse(Φ). Now, defining
the vector: zk ,

[νk+1, Bon,off[k], Boff,on[k], Bon,on[k], Boff,off[k]], (59)

we can formulate an optimization problem in terms of zk
that is equivalent to (58) but is now convex,

η∗ = min
{zk}j+T

k=j

η(ν̂) =

j+T∑
k=j

(rk − γk)2 (60)

s.t. ∀ k ∈ {j, . . . , j + T}
νk+1 = 1T sparse(Jk)Gk, (61)

νTk = sparse(Jk)1 (62)
zk ∈ [0, 1], νj = ν̂, (63)
sparse(Jk) ∈ sparse(Φ), (64)

where T > 0 is the time horizon. If Jk was declared
directly as a decision variable the problem (68) would have
(8N2 + 2N)T primal variables, whereas the problem with
zk as a decision variable only has 6NT primal variables.
As an example, suppose that N = 30 and T = 280
the problem (68) without the structure exploited has ≈ 2
million decision variables, utilizing the structure reduces
the dimensionality to ≈ 50000; two orders of magnitude
reduction.

We denote the optimal values to (68) at index k as z∗k =
[ν∗k+1, B

∗
on,off[k], B∗off,on[k], B∗on,on[k], B∗off,off[k]]. Based on the

construction of sparse(Jk), the optimal randomized policies
at index k are obtained from the elements of z∗k (and z∗k−1)
as,

φ∗off[k] =
(

diag(ν∗off[k])†B∗off,on[k]
)

1, (65)

φ∗on[k] =
(

diag(ν∗on[k])†B∗on,off[k]
)

1, (66)

where for a diagonal matrix A the ith diagonal element of
A† is

[A†]i,i =

{
1/[A]i,i, [A]i,i 6= 0.

0, [A]i,i = 0.
(67)

A. Hierarchical solution

We solve the problem (68) on one centralized computer,
then broadcast the string of policies defined by (73)-(74)
to each TCL. In this example, this is done once and the
ensemble of TCLs operate in open loop for T = 24 hours.
Once each TCL receives the string of policies, mode state
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Fig. 7. Comparison of the marginals νoff[k] and νon[k] with the histogram
of the population Hk .
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Fig. 8. The power consumption of the ensemble Yk compared with the
desired reference rk and the baseline power P̄ agg

k .

decisions are made each sampling time with the policies (re-
call, a description for how exactly this is done in Remark 1).

The reference signal rk in this experiment is an arbitrarily
generated sum of sinusoids signal added to the baseline
power, P̄ agg

k . The ambient air temperature is time varying
and is obtained from weatherunderground.com for a typical
summer day in Gainesville, Fl.

The power consumption of an ensemble of TCLs all
making mode state decisions according to the broadcasted
policies is shown in Figure 8. In Figure 7, we plot the
histogram of the ensemble at a single time instance with
the marginals νoff[k] and νon[k] obtained from the aggregate
model. The main take away is that the aggregate model: (i)
accurately captures the distribution of the population in open
loop and (ii) allows for the design of policies for TCLs to
track regulation signals in open loop. In practice, the loop
can be closed and the problem (68) can be solved in Model
Predictive Control (MPC) fashion for improved robustness
to uncertainty.
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