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Agent-based and graphical modelling of building occupancy

Chenda Liao, Yashen Lin and Prabir Barooah*

Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA

(Received 30 July 2010; final version received 7 October 2010)

We propose a novel stochastic agent-based model of occupancy dynamics in a building with an arbitrary number of
zones and occupants. Simulation of the model yields time-series of the location of each agent (a software
representation of an occupant). The model is meant to provide realistic simulation of occupancy dynamics in non-
emergency situations. Comparison of the model’s prediction of distributions of random variables such as first arrival
time of a building is provided against those estimated from measurements in commercial buildings. We also propose
a lower complexity graphical model of occupancy evolution in multi-zone buildings. The graphical model captures
information on mean occupancy and correlation among occupancy at various zones in the building. The agent-based
model can be used in conjunction with building performance simulation tools, while the graphical model is more
suitable for real-time applications, such as occupancy estimation with noisy sensor measurements.

Keywords: agent-based model; building occupancy; occupancy model; graphical model; building energy
performance.

1. Introduction

There is an increasing emphasis on developing
methods to design and operate buildings in a way to
make them smart and energy efficient. In addition to
reducing energy use while maintaining high indoor air
quality and thermal comfort levels, the smart buildings
of the future are expected to provide services such as
controlled egress in case of emergencies and targeted
advertisement. Modelling occupancy dynamics in
buildings is going to be increasingly important in
achieving this vision. We use the word occupancy to
mean the number of people in a zone (or building) at
any given time. A model of occupancy dynamics is a
mathematical tool to predict occupancy in a building
as a function of time given some initial conditions.
Such predictions can serve as inputs to building energy
simulation tools in the design and recommissioning
phase. Cooling and heating loads experienced by the
building HVAC (heating, ventilation and air-condi-
tioning) system depend on the sensible heat gains,
which strongly depend on occupancy. A tool capable
of realistic simulation of occupancy evolution over
time is therefore useful in simulation and analysis of
building energy use. Several building energy simulation
programmes such as EnergyPlus and ESP-r can
incorporate occupancy information in computing loads.
Currently, the most popular method of incorporating
information about time-variations in occupancy to
energy simulations is through schedules and diversity

factors (Abushakra et al. 2001). However, these
methods are not meant to capture occupancy dy-
namics. Diversity factors, for example, are used to
provide a correction to mean heat gain calculations
from occupancy schedules so that the mean heat gain
so computed are more representative of the true mean
value. A model of occupancy dynamics can provide
more realistic sample time-traces of occupancy over
time from which, peaks, means and variances of
occupancy driven heat gains can be computed.

Models of occupancy dynamics can be useful in
commissioning and re-commissioning of buildings as
well. The number and behaviour of occupants change
over time, and can be quite different from what was
expected during the design phase. A model of
occupancy dynamics can be constructed for a specific
building by surveying the building occupants (and
calibrated based on limited number of measurements)
to provide accurate occupancy statistics for that
specific building. HVAC equipment schedules can be
optimized based on the the relevant statistics, such as
means, variances and max values of occupancy-driven
heat gains computed from the model’s predictions.

Such models can also be useful in developing
advanced building control algorithms such as those
based on model predictive control (MPC). Researchers
are working on developing MPC algorithms that seek
to minimize HVAC energy use based on weather
forecasts and occupancy predictions (Gyalistras and
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Gwerder 2009, Oldewurtel et al. 2010). Such algorithms
can utilize models of occupancy dynamics for obtain-
ing occupancy predictions. Another use of such models
is real-time estimation of zone-level occupancy in a
building from limited number of sensors. Real-time
occupancy estimates are useful in providing informa-
tion to first responders and in performing controlled
egress in the event of an emergency (Tomastik et al.
2008). Certain control techniques designed to reduce
HVAC energy use, such as in demand controlled
ventilation, also need real-time occupancy estimation
capability. There are several types of sensors that can
provide information on occupancy indirectly, such as
CO2 sensors, video cameras and Passive infrared (PIR)
motion detectors. However, sensor measurements
alone may not be enough for accurate estimation as
they suffer from large measurement error (Hutchins
et al. 2007, Meyn et al. 2009). Filtering techniques can
be used to compensate for measurement errors by
fusing noisy sensor measurements with predictions
from a model (Meyn et al. 2009, Liao and Barooah
2010). This requires a model of occupancy dynamics.

The requirements of an occupancy dynamics model
may differ depending on the intended application
of the model. For use in building design, an occupancy
model should be able to predict statistics of occupancy
related variables, e.g. mean and variance of occu-
pancy, distribution of the first arrival time of
occupants in a zone or building, etc. Since the number
of occupants directly impact the sensible heat gains
and that from lighting and equipment, fluctuations in
the building load can be predicted accurately only if
fluctuations in occupancy can be modelled accurately.
It is estimated that building HVAC systems are
frequently over-designed (Vieira et al. 1996). Sizing
HVAC equipment for worst case peak load conditions
does improve the building’s ability to handle such
loads. However, this leads to poor energy efficiency of
the HVAC system while such worst-case loads are
rarely encountered. Ability to model stochastic fluc-
tuations in occupancy realistically can translate into
the ability to determine the most efficient sizing of
equipment so that the HVAC system operates at
maximum possible efficiency most of the time, even
though it may perform poorly for those rare occasions
when peak demand is experienced. If design for peak
load handling is the goal, then the model has to be able
to predict the peak occupancy, since the maximum
load that a building experiences depends on peak
occupancy. For real-time control and estimation, the
models have another requirement: that of simplicity.
An overly complex model with high computational
requirement is not suitable for real-time applications.

Constructing mathematical models of occupancy
dynamics in a building is a challenging problem

because of the high uncertainty of people movement
that governs occupancy evolution. On the high-
resolution end of the spectrum of modelling possibi-
lities lie the so-called agent-based models. An agent-
based model consists of agents (encoded in software) in
which each agent is endowed with a set of behaviours
that are designed to mimic behaviour of humans under
situations that the model is meant to study. Computer
simulation with an agent-based model can be used to
generate time-traces of each occupant’s location. These
can then be aggregated to yield time traces of
occupancy of each zone or of the entire building. An
extensive literature exists on agent-based models for a
diverse set of applications during the last 40 years;
see the review article (Helbing 2001) and reference
therein. However, almost all the work on agent-based
modelling of occupants in buildings have been
designed to study emergency situations such as fire
and explosions (Shendarkar et al. 2006, Pelechano and
Malkawi 2008, Gwynne and Kuligowski 2009). To the
best of our knowledge, little work has been done on
modelling building occupancy dynamics during nor-
mal, day-to-day operations using agent-based models.

On the lower end of the spectrum, both in terms of
complexity as well as predictive capability, are models
with low temporal and spatial resolution that only seek
to predict for the whole-building at an hourly rate. For
example, Abushakra and Claridge (2008) propose a
method for predicting total building occupancy based
on estimated correlation between occupancy and
lighting/equipment load. A stochastic model of occu-
pancy in UK households was proposed in Richardson
et al. (2008) that can be used to generate statistically
representative sample paths of household occupancy.
A probabilistic model to predict and simulate occu-
pancy in a single person office was proposed by Wang
et al. (2005). Vacant and occupied intervals are
modelled as random variables with exponential dis-
tributions. The results of the study were mixed.
Yamaguchi et al. (2003) proposed a model to simulate
the ‘‘working states’’ of a single agent, where the
working states could take one of four possible values
(using one PC, using two PCs, not using PCs and
being out). The transition between states was described
in terms of a Markov chain.

Among models of a single person’s occupying (or
not occupying) an office, the most recent and
comprehensive model is the one proposed in Page
et al. (2008). They model the dynamics of a single
person in a single-occupancy room by a Markov chain
with two states (in/out, or, occupied/unoccupied). The
model also incorporates periods of long absence. The
Markov chain is time-inhomogeneous and is described
by a sequence of 2 6 2 transition probability matrices
P(k), where k ¼ 1, 2, . . . represents a discrete time

2 C. Liao et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
, [

Pr
ab

ir
 B

ar
oo

ah
] 

at
 0

6:
33

 0
8 

Ju
ly

 2
01

1 



index. Each increment of the time index represents a
15 min interval. The model requires as input the
sequence P(k), k ¼ 1, . . . , K, where K is the number
of time periods for which the simulation is to be
conducted. The model has been extensively validated
with 2 years worth of measurements collected in a
number of single-person offices. Validation is per-
formed by comparing statistics of variables such as
first arrival time, number of changes between occupied
and unoccupied in a day, etc. predicted by the model
with that extracted from sensor measurements. Tani-
moto et al. (2008a–c) have developed an agent-based
model for predicting demand profiles in residential
households, and has performed extensive comparisons
with measured demand data. Their model uses an
available database of statistical information on peo-
ple’s behaviour profile in Japan. Such information is
not available for commercial building in most coun-
tries. Even if such datasets were available, since
occupancy dynamics may vary widely from one
commercial building to another depending on the
type and size of the building, location, climate, etc.,
relying on such data to generate occupant behaviour
may not lead to accurate models. We believe a
methodology is needed that takes information about
occupants in a specific building to construct a model
for that particular building.

The agent-based model we propose here is inspired
by the model by Page et al. (2008). Extending the
model in Page et al. (2008) to the case of multiple
occupants is straightforward when the behaviour of
occupants are independent. However, extending the
model to multiple zones is much more challenging. For
a building with n zones, an occupant can be in any one
of n þ 1 states (the n þ 1 -th state corresponding to
outside the building), so the transition probability
matrix P(k) becomes an (n þ 1) 6 (n þ 1) matrix.
Determining the entries of the transition probability
matrix, even for a specific k, is not trivial. The problem
gets worse when one has to specify a sequence of
matrices P(k), k ¼ 1, 2, . . . Even in the case with a
single zone, specifying the 2 6 2 transition probability
matrices is not straightforward. The authors of (Page
et al. 2008) computed the four entries of the matrix in
terms of a time-varying ‘‘profile of probability of
presence’’ and ‘‘parameter of mobility’’ that the user
had to specify. This parameter of mobility had to be
changed from its nominal constant values at certain
times, so that the constraint that probability cannot be
negative or larger than one is maintained at all times.

In this article, we propose a stochastic agent-based
model that is easily scalable to arbitrary number of
zones and arbitrary number of individuals, or agents.
The proposed model, named Multiple Modules
(MuMo) model, decides the location of an agent at a

given time through a set of rules specified by a number
of modules. The modules are designed to maintain a
Markov-like property of the agent dynamics so that
the location of an agent at a given time depends on its
location in the previous time. The MuMo model is thus
inspired by that in Page et al. (2008), which we denote
by ‘‘Page model’’ in the sequel.

The MuMo model is intended to be used for
predicting occupancy in non-emergency situations.
Simulation of this model produces a time-series of
each occupants’ location, which can then be collected
to generate time-series of zone-level occupancy. Since
the model is stochastic, each simulation will produce
non-identical time-series. The information needed to
specify the inputs to the model can be obtained from
survey of occupants, measured sensor data or a
combination of the two. The predictions of the model
have been compared against measured occupancy data
in commercial buildings for three distinct scenarios:
single-occupant single-zone, multi-occupant single-
zone and multi-occupant multi-zone. The data used
for verification in the single-occupant single-zone
scenario are the same as that used in Page et al.
(2008), and was provided to us by the authors of that
paper. The prediction accuracy of the MuMo model in
the single-occupant single-zone case was found to be
quite good (measured by how well it reproduces
distributions of variables such as first arrival time),
and comparable to that of the by Page model.
Measurements for the multi-occupant single-zone and
multi-occupant multi-zone scenarios were obtained
from video data gathered in a building in the
University of Florida campus for a number of months.
The proposed model’s prediction compares quite well
with that from measured data in the multi-occupant
single-zone scenario, but is poorer in the multi-
occupant multi-zone scenario.

A weakness of agent-based models is their high-
degree of complexity that makes them unsuitable for
certain applications such as real-time estimation. The
second contribution of this article is a low-complexity
model of occupancy in a multi-zone building based on
the so-called covariance graphical model framework.
The graphical model captures information on mean
occupancy and correlation among occupancy at
various zones in the building in the form of the
covariance matrix. For instance, the occupancy in a
number of offices during lunchtime is likely to be
inversely correlated to the occupancy in a cafeteria
located inside the building. A graphical model can be
used to represent such spatial correlations by non-zero
entries in the covariance matrix. The zones of the
building corresponds to the nodes of a graph and the
sparsity pattern of the covariance matrix determine
correlations among the nodes. Due to the simplicity of
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the graphical model, it is suitable for real-time
occupancy estimation (Liao and Barooah 2010).
Multiple time-series data of occupancy are needed to
construct a graphical model. Such time-series data can
be obtained from an agent-based model, or in some
cases from sensor measurements. Graphical models
have been widely used in a variety of disciplines such as
spatial statistics, image analysis and bioinformatics
(Lauritzen 1996, Rue and Held 2005). Comparison of
predictions from the graphical model and the agent-
based model shows that it does reproduce the mean
and variance of occupancy predicted by the agent-
based model.

For the proposed agent-based model to predict
occupancy patterns accurately for a given building and
a set of occupants, some amount of calibration of the
model is necessary. Information of the agents gathered
from a survey of the occupants is usually not
completely accurate. A survey may miss a few
occupants, or certain occupants may provide inaccu-
rate information in the questionnaire, whether unin-
tentionally or intentionally. Certain parameters of the
model therefore needs to be calibrated based on
measurements of occupancy in a few locations in the
building. This requires the building to have such
sensors in place. It should be noted that surveying of
occupants for model construction, and model calibra-
tion based on occupancy measurements, can only be
carried out for existing buildings. If one wants to
conduct simulations for a building that is in the design
phase, one will have to specify the number of agents
and specify their behaviours. This can potentially be
done by picking agents from a database of agents and
associated behaviour patterns, which is then used to
specify the behaviour of the agent when she is placed in
the fictitious building. The question of how to specify
building-specific behaviour of an agent from limited
information about her general behaviour patterns, is a
topic of additional research and is not addressed here.
The work of Tanimoto et al. (2008a–c) in which limited
statistical information on individuals are used to
construct detailed behaviour profiles may be useful in
this direction. At this juncture, we expect that the
proposed MuMo model and its reduced-order counter-
part will be more immediately useful for building
operation rather than building design, such as building
(re-) commissioning, real-time predictive control of
HVAC equipment, occupancy estimation, etc.

The rest of the article is organized as follows.
Section 2 describes the proposed agent-based model.
Section 3 describes the calibration procedure and the
verification of the model based on comparison with
sensor measurements. Section 4 describes the covar-
iance graph models of occupancy evolution and
identification of graphical models from occupancy

time-traces. This section also presents comparison of
the graphical model with the agent-based MuMo
model. The article concludes with a discussion in
Section 5.

2. Agent-based model of building occupants

Consider a building with n zones that is occupied by m
individuals, called agents. Time is measured by a
discrete time index k, and the maximum time index for
which a simulation is conducted is denoted by K, so
that k ¼ 1, . . . , K. Each increment in the time counter
corresponds to an equal interval of time, i.e. a sampling
period, that is denoted by T minutes. The agents are
indexed as i ¼ 1, . . . , m. An n -zone building has
n þ 1 nodes that are indexed as j ¼ 1, . . . , n, n þ 1
(n þ 1-th node refers to the outside of the building). A
zone can be a room, a hallway, or any location inside
the building, while a node can also cover the outside.1

The state zi (k) of agent i at time index k refers to the
node that the agent occupies during k, so that zi
(k) 2 {1, . . . , n þ 1} for every i and k. Note that the
time index k is really a discrete representation of the
time interval [(k71)T kT], and the state zi (k) is an
aggregate measure of the agent i’s location during that
time interval. The occupancy xj(k) of a node j is
the number of agents that are in j at time k, i.e. xj (k)
is the number of entries of the set {ijzi(k) ¼ j}.
The occupancy of a building with n zones is
xðkÞ :¼

Pn
j¼1 xjðkÞ.

The proposed agent-based model, named Multiple
Modules (MuMo) Model, consists of a number of
modules that together determine the state of an agent
at every time. The state of an agent is initialized by the
first module, and each module after the first modifies
the state determined by the previous module. The
output of the ‘th module is denoted by z

ð‘Þ
i kð Þ, and the

output of the last module is the state of the agent at
that time. If the ‘th module is not applicable, then
z
ð‘Þ
i kð Þ  z

ð‘�1Þ
i kð Þ. We now describe these modules.

2.1. Description of the MuMo model

The model consists of the following modules that
govern the behaviour of each agent:

(1) Preliminary state generator module: An agent-
specific nominal presence probability profile {Pi

(k), k ¼ 1, . . . , K} is specified as input to this
module for every agent i, where Pi(k) ¼
[Pi,1(k), . . . , Pi,n þ 1(k)]

T and Pi,j (k) is an
approximation of Pr(zi(k) ¼ j), the probability
that agent i occupies node j at time k (Pr(�)
denotes probability). During simulation,
z
ð0Þ
i kð Þ, i.e. the initial guess for the i-th agent’s

4 C. Liao et al.
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state at time k, is generated using a pseudo-
random number generator so that its prob-
ability mass functions (pmfs) matches the
nominal presence probability profile, i.e. so
that Pr

�
z
ð0Þ
i

�
k
�
¼ j
�
¼ Pi;j

�
k
�
.

(2) Acceleration and damping modules: Each agent
has an associated primary zone that corre-
sponds to the zone in which the agent spends
most of her time while inside the building. A
person who is in a hallway or a restroom tends
to leave that location quickly, while a person in
her primary location (or outside the building)
tends to stay there for long periods of time. An
acceleration module and a damping module are
used to mimic this behaviour by utilizing
transition probability parameters pa and pd.
The implementation of acceleration module is
as follows. Suppose zi(k71) ¼ ja, where ja is
any node, such as a hallway and restroom,
from which agents tend to transition (acceler-
ate) out soon. If the tentative state at the
current time is the same as that in the previous
time, i.e. if z

ð0Þ
i kð Þ ¼ zi k� 1ð Þ, then the state of

agent i is recomputed with probability pa by
running preliminary state generator module
again, and this new value is assigned to z

ð1Þ
i kð Þ.

Since the probability of staying in the node ja is
usually small, this forces the agent to transition
out of that node soon. The damping module is
defined as: if z

ð0Þ
i kð Þ 6¼ zi k� 1ð Þ and zi k� 1ð Þ is

either a primary zone or the outside node, then
z
ð1Þ
i kð Þ  zi k� 1ð Þ with probability 17pd. The
primary zones of the agents as well as the
parameters pa and pd are specified as inputs to
the model.

(3) Scheduled activity module: This module takes
care of any hard constraints on the individuals
locations that may arise from scheduled activ-
ities, e.g. meetings of office workers, classes for
students and teachers, etc. Specifically, if an
agent i has to attend an activity located in node
j during a particular time interval, the agent’s
state will be assigned to node j during that time.
The output of this module is z

ð2Þ
i kð Þ.

(4) Access module: Each agent has an access profile
associated with it that specifies which zones the
agent has access to. The access module ensures
that agents do not occupy zones that they do
not have access to. If z

ð2Þ
i kð Þ ¼ j where j is a

node that agent i does not have access to, then
z
ð3Þ
i kð Þ  zi k� 1ð Þ. This module is also in-
voked for zones that have a maximum occu-
pancy limit, such as classrooms. The occupancy
of those zones are constantly tracked during
simulation. If the occupancy of such a zone is

found to reach the maximum allowed value, the
state of any agent that was assigned to this
room thereafter is assigned back to its previous
state zi(k71). The access profiles have to be
specified as inputs.

The state of agent i at time k in the MuMo model is the
output of the last module, i.e. zi kð Þ  z

ð3Þ
i kð Þ.

For the sake of concreteness, we set the initial
condition zi(0) ¼ n þ 1 for every i. The model
determines the states starting from time k ¼ 1. Note
that although the state zi(k) at time k is generated
according to i’s nominal presence probability profile, it
does depend on its previous state zi (k71) due to the
effect of the acceleration and damping modules. The
damping module is a key element of the model.
People’s movement inside a building is not indepen-
dent over time, since a person’s location at time k þ 1
does depend on where he was at time k to a large
extent. For instance, during regular working hours
except early morning or evening, if a person is in his
office at a particular time, he is likely to remain there
with high probability in the next time instant. An
appropriate stochastic model to capture this behaviour
is a Markov chain. Although we did not specify a
Markov chain model due to the difficulty in identifying
the parameters of such a model (see the discussion in
Section 1), the damping module endows the agents
with a Markov-like property. In this regard, the
proposed model is similar in spirit to the model in
(Page et al. 2008).

We distinguish between two kinds of agents,
primary agents and secondary agents. A primary agent
is an individual who occupies a building on a regular
basis for most of the working hours, while a secondary
agent occupies the building for brief periods of time
and does not do so regularly. Examples of secondary
agents are students attending lectures and customers
visiting a place of business. The behaviour of a
secondary agent is governed by the same modules
that govern primary agents. However, the nominal
presence probability profile for a secondary agent is
usually simpler than that of a primary agent. For
instance, secondary agents used to simulate students
who come into a building to attend a lecture in a
particular room during a specific time may be assigned
zero probability of being inside the building at all other
times, and during that time period they have zero
probability of occupying any zone other than the
lecture hall or the hallways/restrooms. The transition
probability parameters pa and pd of the primary agents
may be different from those of the secondary agents.

Although the MuMo model is designed to simulate
behaviour of an arbitrary number of individuals in a
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building of arbitrary size, it is convenient to consider
three distinct scenarios separately that together cover
all possible cases: (i) single-occupant single-zone
(SOSZ), (ii) multi-occupant single-zone (MOSZ) and
(iii) multi-occupant multi-zone (MOMZ). The model is
considerably simpler in the SOSZ scenario compared
to the other two. Since there is only one agent and only
two possible nodes (in and out, denoted by 1 and 2) in
the SOSZ scenario, the nominal presence probability
profile requires specifying only two number at each
time index: P1,1(k) and P1,2(k) for k ¼ 1, . . . , K. In
both SOSZ and MOSZ scenarios in which the building
consists of a single zone, only pd needs to be specified
since the accelerating module that uses pa is not
applicable. In addition, the access module is only
applicable to the MOMZ scenario.

Remark 1: In this article, we choose the sampling
period to be 15 min (i.e. T ¼ 15). One reason for the
choice is convenience of comparison with the Page
model and use of the data reported in (Page et al.
2008), which used a sampling period of 15 min. In
addition, since our intended use of the model is
assistance in building energy simulation and control,
which have slow dynamics, a time period shorter than
15 min seems unnecessary.

In this study, we model the motion of agents for 1
week, assuming that their behaviour does not change
in a statistically significant way from week to week.
For the same reason, we did not incorporate a long-
absence module in the MuMo model, which will
simulate periods of long absence due to vacations,
sickness, etc. In principle, long-absences can be
incorporated into the model in the same way it is
done in the Page model. However, we feel that
incorporating a long-absence module is appropriate
only if the model is meant to simulate occupants’
behaviour over very long periods of time, say, of the
order of several months and years. Although the
MuMo model is capable of such a simulation, in that
case slow variations in behaviour that occur during
long time periods will have to be incorporated in
specifying the nominal presence probability profiles.
However, the data collected for verification in the
present study for scenarios involving multiple occu-
pants, which will be presented in Section 3.2, are not
suitable for comparison involving very long time
durations. The issues involved in simulating behaviour
over long periods of time is a topic for further
investigation. We therefore did not incorporate a long-
absence module in the MuMo model in this study.

2.2. MuMo model construction

Constructing a MuMo model with m agents requires
specifying for each agent its nominal presence

probability profile, agents’ schedules and access
profiles. In addition, damping and acceleration para-
meters pd and pa (one pair of values for primary agents
and another pair for secondary agents), and maximum
occupancy limits of rooms in the building, if any, need
to be specified. For a single occupant in a single room,
most of this information can be collected by deploying
sensors, as was done by Page et al. (2008). However,
this becomes challenging in the case of multiple
occupants, since sensors have to track each individual
over time. Conducting a survey of the occupants’
behaviour by asking them to fill out a questionnaire is
a more feasible – albeit less accurate – way of collecting
this information. Due to the inaccuracy inherent in a
survey, a model constructed from survey data may
require more effort in calibration than one from sensor
measurements.

The most time-consuming part in constructing the
model is specifying the nominal presence probability
profile for each agent. Figure 1 describes the algorithm
we used to compute the nominal presence probability
profile. The algorithm needs a number of parameters
as input, which are described in Table 1. In this study,
these parameters are determined from a survey of the
occupants. It should be noted that for a building with a
distinct usage pattern and occupant demographic, the
information needed to construct the nominal presence
probability profiles, and therefore the kind of survey to
be conducted, may be different from what was done in
this study. The parameters such as arrival time of an
agent that have units of time are gathered in
‘‘minutes’’. They are then converted to units of ‘‘time
index’’ by scaling with the sampling interval, since the
algorithm described in Figure 1 requires these para-
meters in the unit of time index. In addition, the time
index k in Figure 1 spans only the duration of 1 day,
1 � k � 24 6 60/T, while the days of the week are
indexed by d, where d ¼ 1, . . . , 7, with 1 denoting
Monday. This is done for ease of description of the
algorithm, especially to highlight the day-to-day
variation in the nominal presence probability profiles.
During each day, k ¼ 1 corresponds to the time
interval from midnight (0: 00 h) to 15 min past
midnight (00: 15 h). For scenarios involving a single
zone, information on the secondary zone and para-
meters related to the secondary zone (see Table 1) need
not be gathered. After the nominal presence prob-
ability profiles are determined, we have to specify the
parameters pa, pd. These are initially assigned to pa ¼ 1
and pd ¼ 0.5, and may be changed during model
calibration. Information on scheduled activity is also
obtained from the survey of the occupants, which
serves as the input to the schedule module of the
MuMo model. At this point the model is completely
specified.

6 C. Liao et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
, [

Pr
ab

ir
 B

ar
oo

ah
] 

at
 0

6:
33

 0
8 

Ju
ly

 2
01

1 



3. Model calibration and verification

Since the parameters that have to be specified in the
model may be difficult to determine accurately –
especially when the model is constructed from survey
data – these parameters may need to be calibrated.
Calibration is performed by comparing parameters
and distributions of certain zone-level or building-level
random variables predicted by the model with that
estimated from measurements.

Model verification is also conducted similarly: by
comparing the statistics of these variables predicted by
the model with that estimated from measurements.
Since the model is designed to produce realizations of a
stochastic process, comparing individual time traces
generated by the model with measurements is not
appropriate. The data used in calibration are distinct
from that used in verification. The parameters and
variables mentioned above are the following:

(1) Mean occupancy of zone/building: This is the
(ensemble) average value of occupancy at each
time k. Specifically, the mean occupancy of
zone j at k is defined as E[xj(k)], where E[.]
denotes expectation.

(2) First arrival time (in a day): The time when the
zone or building gets occupied for the first time
during a day. More precisely, assuming the
time index starts at 1 when day d starts, if
xj(k) � yempty and xj (‘) 5 yempty for all ‘ 5k,
where yempty 4 0 is an appropriately chosen
parameter, then k is the first arrival time of
zone j in day d.

(3) Last departure time (in a day): The last time
during a day at which the zone or building
becomes unoccupied. More precisely, limiting
the time index k to those values it takes within a
specific day d, if xj (k) � yempty and xj (‘) 5

Figure 1. Procedure for computing the nominal presence probability profiles for a one-week long period from information
obtained from a survey.

Journal of Building Performance Simulation 7

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
, [

Pr
ab

ir
 B

ar
oo

ah
] 

at
 0

6:
33

 0
8 

Ju
ly

 2
01

1 



yempty for all ‘ 4 k then k þ 1 is the last
departure time of zone j in day d.

(4) Cumulative occupied duration (in a day): The
total length of time in a day during which the
occupancy in a zone or building is above a
threshold yoccp, not necessarily continuously.
More precisely, assuming the time index starts
at 1 when day d starts, the cumulative occupied
duration during that day is the number of
elements of the set {kjxj (k) � yoccp,1 � k � 24
6 60/T}.

(5) Continuously occupied duration: The length of a
maximal time interval during which the occu-
pancy in a zone or building is above a threshold
yoccp continuously. To define it precisely, we
say an interval Sk1,k2 :¼ [k1, k2] is a maximal
occupied interval if xj(k) � yoccp for k1 � k �
k2 and xj (k171) 5 yoccp, xj (k2 þ 1) 5 yoccp.
The lengths of all maximal occupied intervals
are realizations of the random variable con-
tinuously occupied duration.

(6) Number of occupied/unoccupied transitions (in a
day): The number of transitions between
‘‘occupied’’ and ‘‘unoccupied’’ status in a day
for the zone or building. Assuming that the
time index starts at 1 when day d starts,
the number of elements of the set {kjxj(k) �
yempty, xj(k þ 1) 5 yempty} [ {kjxj(k) 5 yempty,
xj(k þ 1) � yempty}, for 1 � k 5 24 6 60/T is
the number of occupied/unoccupied transitions
of zone j in day d.

Table 1. Parameters to be determined from a questionnaire-based survey of the building occupants for constructing the MuMo
model.

Content Symbol Remark

Primary zone PZi The zone in the building in which agent i spends most of its
time, e.g. the room in which i ’s office is located.

Secondary zone SZi The zone in the building in which agent i spends most of its
time, after the primary zone. For example, a cafeteria in an
office building or a meeting room.

Arrival/departure time AT
ðdÞ
i ;DT

ðdÞ
i

The time when agent i arrives at the building/ leaves the
building, in day d of the week, where d ¼ 1, . . .,7.

Lunch/dinner schedule LST
ðdÞ
i ;LET

ðdÞ
i =DST

ðdÞ
i ;DET

ðdÞ
i

The starting time and ending time of lunch/dinner of agent i is

denoted as LST
ðdÞ
i ;LET

ðdÞ
i =DST

ðdÞ
i ;DET

ðdÞ
i respectively. We

only consider the lunch/dinner schedule in time range

between AT
dð Þ
i and DT

dð Þ
i .

Lunch/dinner nodes LN
ðdÞ
i ;DN

ðdÞ
i LN

dð Þ
i and DN

dð Þ
i represent the nodes (location) that agent i eats

lunch and dinner, which can be either the outside node n þ 1
or any zone in the building.

Ratio of presence RP
ðdÞ
i

Ratio of the duration that agent i occupies PZi in the d -th day
of the week to the duration between its arrival and departure
times for that day.

Frequency of occupying
secondary zone

FOSZi The average number of times that agent i occupies SZi per day.

Average visit duration of
secondary zone

AVTi The average duration that agent i spends in its secondary zone
when it visits that zone

Monte-Carlo simulations of the model are con-
ducted, and the resulting multiple time-series (each 1-
week long) are used to estimate the pmfs and
cumulative distribution functions (CDFs) of these
random variables. The pmfs and CDFs of these
variables are also estimated from the repeated seg-
ments of 1-week long processed sensor data. All the
variables that are defined in terms of a time index, such
as first arrival time, are expressed in units of time
(usually hours) when presented, for ease of visual
interpretation. The variable ‘‘number of occupied/
unoccupied transitions’’ is the same as ‘‘number of
changes’’ in Page et al. (2008) in the single-occupant
single-zone scenario.

For ease of quantitative comparison of the model’s
predictions and measurements, we use the normalized
root mean square deviation (NRMSD) and Kullback-
Leibler divergence. Let x(k) and y(k), k ¼ 1, . . . , K be
two time sequences, the NRMSD between x and y is
defined as

NRMSDðx; yÞ ¼ kx� yk=
ffiffiffiffi
K
p

max z�min z
; ð2Þ

where x ¼ [x(1), . . . , x(K)]T, y ¼ [y(1), . . . , y(K)]T,
z ¼ [xT, yT]T and k � k is the Euclidean norm. To
compare the predicted distribution of a random
variable by the model with that estimated from
measurements, we use the Kullback-Leibler (K–L)
divergence. The K–L divergence is frequently used to
compute distances between two densities p and q, and

8 C. Liao et al.
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is defined as (Cover and Thomas 1991)

dðpkqÞ ¼
X
i

pi log
pi
qi

� �
; ð3Þ

with the standard convention that 0 log 0
q ¼ 0 and

q log q
0 ¼ 1. In this article, we used the convention

q log q
0 ¼ 0. Note that the K–L divergence is only a

pseudo-metric since d(pkq) 6¼ d(qkp) in general. For a
random variable, X, pMuMo

X and pmeas
X denote the pmfs

of X predicted by the MuMo model and that estimated
from measurements.

3.1. Model calibration procedure

Calibrating the parameters of the MuMo model
becomes necessary when the information used in
model construction may not be accurate. This is
especially true in scenarios involving multiple occu-
pants, since in these cases the proposed model is
constructed from information obtained from occu-
pants’ response to a questionnaire, which is likely to
suffer from large uncertainty. We choose a fraction of
the measured occupancy data for calibration and call it
the training data. The rest of the data, called
verification data, are not used for calibration. For the
SOSZ scenario, we used half the data (6 months) for
calibration and the other half for validation. In both
the MOSZ and MOMZ scenarios, calibration was
performed with 2 weeks of data, while the validation
data was of 10 weeks and 7 weeks duration,
respectively. The choice of the length of the calibration
data vis-a-vis the validation data was arbitrary. The
statistics of the random variables described in the
beginning of Section 3 are first estimated by using only
the calibration data. Calibration is then performed by
changing the agent based model – so that the difference
between the model predictions and measurements, as
measured by the values of NRMSD and K–L
divergence, is small. To keep the calibration tractable,
we modify only a few parameters. The calibration
process, and the sequence in which it is performed, is
described below.

(1) The arrival and departure times of the ‘‘early
bird’’’ and the ‘‘night owl’’: An ‘‘early bird’’ is
an agent whose arrival time is smaller than or
equal to that of the rest of the agents. A ‘‘night
owl’’ is an agent whose departure time is
greater than or equal to that of the rest. The
first arrival and last departure time of a zone or
a building are mostly dependent on these
occupants. While these agents can be identified
from the information that agents provide in the
survey, the actual arrival and departure times

that they provide may not be accurate. We
adjust the arrival time AT of early birds
(departure time DT of night owls) so that
K–L divergence d pmeas

X k pMuMo
X

� �
is small,

where random variable X is the first arrival
(last departure) time of the zone or building.
Every time AT and/or DT of an agent is
changed, the procedure described in Section 2.2
is executed to re-compute the nominal presence
probability profiles of these agents. Although
there may be more than one early bird (night
owl), we only calibrate the arrival and depar-
ture times of one early bird (night owl) to
perform model calibration in this study.

(2) The parameter a: Since p
ðdÞ
i;PZi ¼ RP

ðdÞ
i þ a, the

parameter a determines the probability
of presence in the primary zone of all the
agents. We modify a so as to make NRMSD
(xMuMo, xmeas) small, where xMuMo and xmeas is
the mean occupancy (zone or building) of the
model’s prediction and measured (training)
data over 1 week. Every time a is changed,
the nominal presence probability profiles of all
the agents are recomputed.

(3) The transition probability parameters pd and pa:
The parameter pd is calibrated so as to make
d pmeas

X k pMuMo
X

� �
small, where random variable

X is number of occupied/unoccupied transi-
tions of the zone or building. Since the
parameter pa determines how fast an agent
moves away from zones such as a hallway or a
restroom in which people do not typically
spend most time, the choice pa depends on the
sampling period T. If T � 15, we set pa be 1 so
that the agent ‘‘transitions out’’ of such a zone
with high probability in the next time index.
However, if T � 5, pa should be decreased to
reduce the acceleration effect.

In the SOSZ scenario, the MuMo model can be
constructed from either survey or sensor data. If a
survey is used, the model calibration procedure is
essentially the same as in the multiple occupants case.
If the model is constructed from sensor data, steps (1)
and (2) described above are unnecessary since the
nominal presence probability profile generated from
data is accurate. Step (3) is still needed.

3.2. Model verification

3.2.1. Model verification: SOSZ (single-occupant
single-zone) scenario

In this scenario, data reported in (Page et al. 2008) were
used for model construction, calibration and
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verification, which was provided to us by the authors of
Page et al. (2008). The sensor measurements consist of
series of change of occupancy states (occupied/unoccu-
pied) with time stamps collected in a single occupant
office for a duration of about 1 year. We processed the
data and obtained the time-series of occupancy states in
a 15-min sampling interval. We use half of the processed
data to estimate the nominal presence probability
profile, which is called the ‘‘probability of presence’’ in
Page et al. (2008). The method of computing the
nominal presence probability profile is the same as
computing the ‘‘probability of presence’’ as described
Page et al. (2008). The interested reader is referred to
Page et al. (2008) for details on the data collection and
processing. After calibration, the transition probability
parameters pd in the MuMo model is set to 0.5.

The Page model reported in Page et al. (2008)
contains a model of long absences, which are defined
as absence of more than 1 day not including weekend.
In contrast, the proposed MuMo model does not; see
Remark 1. In order to maintain consistency, we
simulate a variant of the Page model, by removing
the long absence part from the model. Similarly, we
remove the periods of long absence from the sensor
data obtained from the authors of (Page et al. 2008)
before using it for model calibration and verification.
The same data are used for construction and calibra-
tion of both the Page model and the MuMo model.

One thousand Monte-Carlo simulations (each of 1
week duration) are conducted with both the proposed
model and the Page model. The distributions of
variables (other than mean occupancy) described in

the beginning of Section 3 are estimated from
measured data and simulation time traces. Since the
statistics of variables such as first arrival time in
weekdays are going to differ from that in weekends,
comparison in weekdays should be done separately
from that in weekends. In the interest of space, we only
present comparison for weekdays.

Figure 2 shows that both the MuMo model and
Page model predict the mean occupancy well, and with
similar degree of error. The NRMSD between the
mean occupancy predicted by the MuMo model and
measured values is 0.0995; for Page model is it slightly
higher: 0.1371.

The distributions of variables such as first arrival
time predicted by the two models (MuMo and Page)
and from measurements are shown in Figure 2, while
the K–L distances are shown in Table 2. Figure 3(a)
and (b) suggests that both the models predict the
distributions of first arrival time and last departure
time well. While the proposed MuMo model captures
the location of the peak of first arrival time better than
the Page model, the latter captures the peak value of
the pmf better. A similar observation holds for the last
departure time. We see from Table 2 that the Page’s
prediction of these two variables is more accurate
according to the K–L divergence metric. None of the
two models predicts the cumulative occupied duration
very well, as seen from Figure 3(c), though their
predictions are quite close to each other. This is also
seen from the K–L divergences for this variable in
Table 2. Figure 3(d) shows that the distributions of
continuously occupied duration. The Page model
slightly underestimates the frequency of short period
of presence compared to the MuMo model, but the
difference with the measured value is small. The
distribution of the number of occupied/unoccupied
transitions, which reflects the mobility of the agent, is
shown in Figure 3(e). The MuMo model under-
predicts small and large values of this variable, while
predicting the intermediate values accurately. The
error in the prediction of both the models seem to be
similar, though they occur at different values of the
variable. Based on this comparison, we conclude that
the MuMo model has the same level of accuracy as
that of the Page model. The K–L divergence values

Table 2. K–L divergence between pMuMo
X , pPageX and pmeas

X in the single-occupant single-zone scenario.

Variable(X) d pmeas
X k pMuMo

X

� �
d pmeas

X k pPageX

� �
d pMuMo

X k pPageX

� �
First arrival time 0.4986 0.2081 0.1826
Last departure time 0.6388 0.2945 0.1903
Cumulative occupied duration 0.3215 0.3416 0.0201
Continuously occupied duration 0.0229 0.0986 0.0751
Number of occupied/unoccupied transitions 0.2421 0.8717 0.3954

Figure 2. Mean occupancy in the SOSZ(single-occupant
single-zone) scenario for one week: comparison between
predictions of the Page model (black), the MuMo model
(blue with circles), and measurements (dashed red).

10 C. Liao et al.
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shown in Table 2 indicate that the MuMo model
predicts the distribution of the continuously occupied
duration the best and that of the last departure time
the poorest. The two models seem to predict most of
the occupancy statistics sufficiently well, except that of
cumulative occupied duration.

3.2.2. Model verification: the MOSZ (multi-occupant
single-zone) scenario

The MOSZ scenario studied in this article corresponds
to a room in a building in the University of Florida

campus, shown as zone 15 in Figure 4. The room
housed five graduate students who worked there
regularly and three undergraduate research assistants
who used it intermittently. The MuMo model con-
structed for this room had eight primary agents. The
model also had seven secondary agents, who were used
to simulate students who would occasionally visit the
room to meet with a few of the graduate students who
were teaching assistants. The MuMo model was
constructed by conducting a survey of the occupants
to determine the subset of the parameters listed in
Table 1 that are relevant to the MOSZ scenario. All the

Figure 3. Comparison the statistics predicted by the MuMo model (blue with circles), Page model (black) and measured data
(dashed red) in the SOSZ scenario. The times 0 and 24 h correspond to midnight. The bin-size in (c) is 30 min, while for
(a),(b),(d), it is 15 min. (a) First arrival time. (b) Last departure time. (c) Cumulative occupied duration. (d) Continuously
occupied duration. (e) Number of occupied/unoccupied transitions.
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time-related answers in the survey were rounded off to
have a 15 min time-resolution.

We collected occupancy data for this room by
using a wireless video camera to monitor the entrance
to the room. The data were collected for a period of
about 4 months (during January–April 2010). The
video camera captures grey-scale images at a rate of 30
frames per second. A motion detection algorithm was
used to save only those frames when motion was
detected. Each saved frame was time stamped. Tests
were conducted by manually comparing the saved
frames with fully recorded video, which established
that the motion detection algorithm was capable of
detecting anyone moving in the field of view of the
camera under all lighting conditions. The saved frames
were analysed manually to count the flow rate of
occupants (number of people coming into and exiting
the room). Manual counting was performed to ensure
that measurements obtained were of high accuracy.
Room occupancy at a particular time was then
calculated by computing the cumulative sum of the
flow rate measurements, and then adding it to the
room’s initial occupancy. Since the data were collected
with a high frame-rate video camera, the occupancy
time-series so obtained had a time resolution of
seconds. This raw time-series data was converted to
one with a sampling interval of 15 min using a
weighted average. For instance, if the occupancy value
is 1 from 1 to 10 min and 2 from 11 to 15 min, then
the value of occupancy in the time step that
corresponds to this 15-min interval is computed as
1 6 10/15 þ 2 6 5/15 ¼ 1.33. Although data were
collected for 16 weeks, due to technical problems with
the video cameras we had measurements available for
12 Mondays, 10 Tuesdays, 7 Wednesdays, 10 Thurs-
days, 11 Fridays, 11 Saturdays and 9 Sundays. Of

these, about 2 weeks of data were used for calibration
and the rest for verification. We do not take into
account the janitorial staff in the model construction
because (s)he usually occupies the room for less than
1 min in the time range from 5: 30 am to 7: 30 am. To
maintain consistency, we also ignore the janitorial staff
in counting occupancy from the sensor (video)
measurements. It is important to do so since otherwise
the statistics of first arrival time as measured by the
video sensor will be significantly affected by the
janitorial staff while the model will not be able to
predict that.

As in the previous scenario, 1000 Monte-Carlo
simulations (each of 1 week duration) are conducted
with both the proposed model and the Page model.
The statistics of variables other than the mean
occupancy, which are described in the beginning of
Section 3, are estimated from data (measurements and
simulation time traces). Comparison between the two
is provided only for weekdays, for the reasons
described in Section 3.2.1. The thresholds used in
computing first arrival times, etc. are: yempty ¼ yoccp
0.5. Calibration of the model according to the
procedure described in Section 3.1 led to a change of
the transition probability parameter pd to 0.8 for
primary agents (instead of the default value 0.5). The
transition probability parameter for the secondary
occupants is kept at pd ¼ 0.5. The nominal presence
probability profiles of one early bird and one night owl
were also adjusted during calibration. These two
agents were identified from the survey of the occupants
of the room.

Mean occupancy at each time was computed by
averaging over all the measurements available for that
time. Figure 5(a) compares the mean occupancy
predicted by the proposed model with that computed

Figure 4. Floor plan of the 3rd floor of MAE-B building in the University of Florida campus, where the measurements used in
the verification of the MuMo model for the MOSZ (multi-occupant single-zone) and MOMZ (multi-occupant multi-zone)
scenarios were collected. Verification of the model in the MOSZ (multi-occupant single-zone) scenario was done using data
collected from the camera (shown as a triangle) in Zone 15. Verification in the MOMZ (multi-occupant multi-zone) scenario was
done with data collected with the cameras (shown as stars) near the entrances to the floor.
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from measurements, and that computed from survey.
The mean occupancy estimated from survey is simply
the sum of the probability of each agent being
‘‘inside’’, where these probabilities are determined
from the nominal presence probability profiles. To
see why it is so, let IAð�Þ be the indicator function of
the set A, so that IAðxÞ ¼ 1 if x 2 A and 0 otherwise.
Now,

xðkÞ ¼
X
i

If1;...;ngðziðkÞÞ:

Since E½If1;...;ngðziðkÞÞ� ¼ PrðziðkÞ 6¼ nþ 1Þ, we
have that the mean occupancy is
E½xðkÞ� ¼

P
i PrðziðkÞ 6¼ nþ 1Þ. The error in the mod-

el’s prediction of mean occupancy is NRMSD
(xMuMo, xmeas) ¼ 0.0877, while that from the survey
is NRMSD (xsurvey, xmeas) ¼ 0.1202, where xMuMo,
xmeas and xsurvey are the time-series of mean occupancy
of the zone over 1 week computed from the model’s
prediction, measurements, and survey. The error in
mean occupancy predication, expressed as a fraction of
the mean occupancy, is largest during the weekends.
We believe the reason is that since the occupants have
a greater variability in using the building during the
weekends, they are not able to provide accurate
description of their own behaviour in the survey.

Figure 6 compares the distributions of random
variables predicted by the model and empirically
estimated from measured data. Table 3 provides the
K–L divergences between the predicted and measured
distributions. We see from Figure 6(a) that the shape
of the distribution of first arrival time is predicted

correctly, but there are a few late first arrivals around
noon that the model does not capture. Similarly,
Figure 6(b) shows that the overall trend of last
departure time is predicted correctly by the model,
though it does not capture all the peaks in the pmf.
There is a small peak in the measured pmf at around
5 pm that correspond to occupants leaving the room in
the evening that the model does not predict. This may
be due to the night owl occasionally leaving earlier
than usual. The distributions of cumulative occupied
duration are shown in Figure 6(c) and those of
continuously occupied duration are shown in Figure
6(d). There are several peaks in the measured pmf of
the cumulative occupied duration that the model does
not predict, though the overall trend of the distribution
is predicted correctly. In case of the continuously
occupied duration, the model does accurately predict
that multi-modal nature of the distribution, but its
prediction of the values of the probabilities is less
accurate. Figure 6(e) shows the distribution of the
number of occupied/unoccupied transitions in a day.
The MuMo model predicts the distribution quite well,
especially the probabilities of the number of transitions
greater than 5.

We see from Table 3 that among all the variables,
the model’s prediction of the distribution of cumula-
tive occupied duration is the poorest, and of the
number of occupied/unoccupied transitions is the best.
In addition, it is seen from Figure 6 that, in general, the
model’s predictions of distributions are smoother
compared to the measured ones. We believe part of
the reason for the difference between prediction and
measured values, as well as of the non-smoothness of
the measured pmfs, is the limited amount of verifica-
tion data. Specifically, there are only 250 samples of
the variable cumulative occupied duration that the
measured distributions are estimated from, since
measurements from each weekday leads to only one
sample. In contrast, the pmfs from the model are
estimated from 5000 samples. Because of this, the
estimates from the measured data may have larger
error. For further evidence in support of the hypoth-
esis, notice that the model predicts the multiple peaks
in the pmf of continuously occupied duration shown in
Figure 6(d), but not that in several other variables. For
a given time interval in which sensor measurements are
collected, there are many samples of continuously
occupied duration in that time-series while there is only
one sample of cumulative occupied duration in a time-
series of 1 day. So, for the same duration of data
collection, we obtain more samples of the variable
continuously occupied duration than others, which is
likely to make the estimate of the pmf of continuously
occupied duration more accurate than that of the
others.

Figure 5. (a) Mean occupancy estimate in a MOSZ scenario
(for zone 15 in Figure 4) from three sources: measurements
(dashed red), MuMo model prediction (dotted blue) and
survey (black). (b) shows the mean (black) and + 3 s
(dashed magenta) of the error between the model prediction
and the measured values.
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The reader will notice that the pmfs in Figure
6(a)–(e) are with ‘‘binsize ¼ 1/2 h’’, which means the
data have been aggregated to a time-resolution of
30 min (interval covered by two time indices) in
computing the probabilities. The reason for doing so
is again the limited number of measured data, which is
not enough to cover all the bins in a reasonable range
of values with a 15-min resolution. For example,
there is no conceivable reason for the value of
{Pr(Cumulative occupied duration) ¼ 12 hr 30 min}

Table 3. K–L divergence between pMuMo
X and pmeas

X in the
multi-occupant single-zone scenario.

Variable(X) d pmeas
X k pMuMo

X

� �
First arrival time 0.2388
Last departure time 0.1900
Cumulative occupied duration 0.3261
Continuously occupied duration 0.1881
Number of occupied/unoccupied
transitions

0.0810

Figure 6. Verification of the MuMo model in the MOSZ scenario: comparison between the predictions (blue with cirles) and
measurements (dashed red). The distributions are estimated from 1000 Monte-Carlo simulations of the model and from about 12
weeks of measurements. Comparison is for weekdays only, with binsize ¼ 1/2 h. (a) First arrival time. (b) Last departure time.
(c) Cumulative occupied duration. (d) Continuously occupied duration. (e) Number of occupied/unoccupied transitions.
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to be significantly different from {Pr(Cumulative
occupied duration) ¼ 12 hr 15 min}, while this is
what the measurements seem to say if a time-resolution
smaller than 30 min is used. A more conclusive
comparison will require measurements collected for a
longer duration.

Overall, we see from the comparison that the
proposed model does predict the distributions of
several key occupancy-related variables with limited
error. In fact, the comparison with measured values is
better in this scenario than in the single-occupant
single-zone scenario.

3.2.3. Model verification: the multi-occupant
multi-zone (MOMZ) scenario

The MOMZ scenario studied here corresponds to the
third floor of the MAE-B building in the University of
Florida campus (see Figure 4). For the remainder of
this article, we will refer to the third floor of the MAE-
B building as the ‘‘building’’. About 51 people (faculty,
staff, graduate and undergraduate research assistants
and visitors) used the building at the time of survey.
The model includes 40 primary agents and 11
secondary agents. Measurements were collected by
high resolution video cameras mounted on the walls.
The cameras have auto back light compensation to
provide stable video quality under all lighting condi-
tions. A motion detection algorithm of the kind
described in Section 3.2.2 is used for saving frames
only when motion was detected. Each of the two
entrances (exits) into (from) the building was mon-
itored by one camera. Net flow rate of occupants into
the building was obtained by adding the net flow rate
across each of these camera’s field of view. The flow
rate into the zone 14 in Figure 4 was also measured
from the camera images. As a result, we obtained from
these cameras the total occupancy of the building and
occupancy in zone 14 (a room with multiple occu-
pants). Measurements presented in this study were
collected during a period of about 9 weeks during
May–July, 2010.

Data for model construction were collected by a
survey of the occupants of the building. Instead of
asking questions to each occupant of a room in multi-
occupant rooms, we randomly picked one or two
occupants and asked them about the nominal beha-
viour of their colleagues. Only rough estimates were
sought. For instance, we divided the range of arrival
time into 1-h resolution, namely, ‘‘before 8am’’, ‘‘8–
9 am’’, ‘‘9–10 am’’ or ‘‘after 12 pm’’, and the surveyed
individuals were asked merely to provide the number
of people that fell into each of those ranges. We also
collected information on schedules of the faculty
members whose offices are in this building.

Furthermore, all professors’ course schedules were
collected from the registrar’s office and/or professors’
websites. Note that since this survey did not distinguish
between the occupants in a room, we specified the
agents by randomly combining the answers provided
by the occupants. For instance, we assigned the arrival
times of all agents in a room such that the number of
people in each time range was consistent with the
information collected from the survey. As a result, the
agents may not have to map to the real occupants in an
one-to-one fashion.

Two weeks of measurements were used as training
data for calibration, while the remaining data (7 weeks,
with some days unavailable due to technical issues)
were used as verification data. Model calibration,
following the procedure described in Section 3.1, led to
the following values of parameters: pd ¼ 0.8, pa ¼ 0.5,
a ¼ 0.1. An early bird and a night low were identified
from the survey, whose arrival time and departure time
were changed during calibration. For secondary
agents, pd ¼ 0.5 was used. For the sake of simplicity,
the acceleration module was not used for secondary
agents.

Figure 7 compares the mean value of occupancy of
the entire building estimated from three sources:
measurements, prediction by the MuMo model and
the survey. Because of the limited number of measure-
ments available, the measured mean occupancy is
computed only for a 24-h period by averaging over the
measurements obtained for 30 weekdays. Model
prediction of mean occupancy is computed by aver-
aging over 5000 samples from Monte-Carlo simula-
tions. The mean occupancy estimated from survey was
computed in the manner described in Section 3.2.2.
The prediction errors are NRMSD (xMuMo, xmeas) ¼
0.0995, while NRMSD (xsurvey, xmeas) ¼ 0.2118. This
much higher accuracy of the model compared to the
survey’s prediction is interesting since the model is
generated from survey data as well. However, the
agent-based model mimics various aspects of people’s
behaviour, including the fact that they do not remain
inside the building for the whole duration between
arrival and departure. Therefore it is able to predict the

Figure 7. Estimate of mean occupancy (for the building
shown in Figure 4) in a MOMZ scenario from three sources:
measurements (dashed red), MuMo model prediction (dotted
blue), and survey (black).
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trend of building occupancy better than the survey.
The large over-prediction of mean occupancy by direct
processing of survey information shows that using
schedule information, even after accounting for prob-
abilities of presence obtained from a survey, may lead to
poor estimation of building occupancy.

Figures 8(a)–(e) show the pmfs and CDFs of
variables such as first arrival time (for the whole
building) as estimated from 1000 Monte-Carlo simula-
tions of the MuMo model. They also show the
distributions estimated from sensor measurements
(verification data) for the same variables. The

thresholds used are: yempty ¼ yoccp ¼ 3. A larger
threshold is used here compared to the previous two
scenarios since we are dealing with a building with
more than 50 occupants. We see from Figure 8(a) that
the model does predict the location of the main peak in
the pmf of the first arrival time quite well, though it
misses a peak corresponding to late first arrivals. The
model’s prediction of the last departure time is poorer
than that for the first arrival time, as seen from Figure
8(b). There is a large probability of the last departure
time being close to 6 pm that the model does not
reproduce. It also over-predicts the probability of very

Figure 8. Verification of the MuMo model in the MOMZ scenario: comparison between predicted (dotted blue) and measured
(dashed red). All variables correspond to total building occupancy. Comparison is for weekdays only, with binsize ¼ 1/2 h. (a)
First arrival time. (b) Last departure time. (c) Cumulative occupied duration. (d) Continuously occupied duration. (e) Number of
occupied/unoccupied transitions.
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late (past midnight) last departures. Since the last
departure time of a building is determined by the
behaviour of a few ‘‘night owls’’, the model’s inability
to predict these statistics may come from the inaccu-
racy of the information obtained from the survey. A
possible cause of the mismatch is that the night-owl
occupants misjudged how often they leave early when
they provided this information in the survey. Figure
8(c) shows the distributions of the cumulative occupied
duration in a day. As in the single-occupant single-
zone and multi-occupant single-zone scenarios, the
prediction of this variable is poorer than the rest. The
model predicts the multi-modality of the distribution
of continuously occupied duration better, which is
shown in Figure 8(d). The model predicts the main
peak around 1–2 h quite well, but the other peaks are
not predicted as accurately. We see from Figure 8(e)
(as well as the K–L divergences in Table 4) that, as in
the single-occupant single-zone and multi-occupant
single-zone scenarios, among all the variables the
model predicts most accurately the number of transi-
tions between occupied and unoccupied status.

Overall, while the MuMo model predicts the
general trend of the distributions of these variables,
and the prediction is quite accurate for a few variables.
However, it fails to accurately predict the values of the
probabilities for several variables, especially of last
departure time and cumulative occupied duration. The
mismatch between the model’s prediction and the
measured values in the MOMZ scenario is higher than
that seen in the previous two scenarios that involved
single zones. A higher error in the multi-zone scenario
is expected since survey-based data introduce more
inaccuracies in an agent-based model as the number of
agents increases, and the survey in this case was not as
detailed as in the MOSZ case. Another reason for the
mismatch may be the limited amount of measured
data, as it was the case in the multi-occupant single-
zone scenario and discussed in Section 3.2.2. In fact,
this factor may be playing an even stronger role here
since the verification data were collected from mea-
surements of only 7 weeks. Therefore, a significant
share of the difference may come from the measured
data and not the model.

4. Covariance graph model

In this section, we describe a simpler model of
building-occupancy than the agent-based model de-
scribed in the previous section. Agent-based models
are not suitable for real-time occupancy estimation, for
which a compact representation of the occupancy
dynamics is needed whose predictions can be readily
fused with sensor measurements to yield occupancy
estimates.

The model we describe now, which is called a
Covariance Graph Model, or a graphical model for
short, compactly represents marginal dependencies
among the occupancy of various zones. Note that a
graphical model does not describe the behaviour of
individual occupants. Graphical models have been
widely used in spatial statistics, image analysis and
bioinformatics; see (Lauritzen 1996; Rue and Held
2005) and references therein. A covariance graph
model of an n-variate distribution is specified in terms
of the mean m and covariance matrix S ¼ {sij}. It is
called a graphical model since the structure of the
covariance matrix defines a graph G ¼ ðV; EÞ, where
V ¼ f1; . . . ; ng is the node set and E � V � V is the
edge set with the property that ði; jÞ =2 E ) si;j ¼ 0
(Drton and Perlman 2004). For occupancy modelling,
the random vector whose distribution we are interested
is the occupancy vector x(k) ¼ [x1(k), . . . , xn(k)]

T,
where xi is the occupancy of node i, i ¼ 1, . . . , n. Note
that the n þ 1-th node that corresponds to ‘‘outside
the building’’ is not part of the nodes of the graph.
Since occupancy statistics vary with time, the
model varies with time as well, so that we have a
sequence of covariance graph models (m(k), S(k)),
k ¼ 1, . . . , K.

Graphical models can be identified from time-series
of the underlying random vector. For the application
in hand, we need zone-level occupancy data for
graphical model identification. In a building in which
each zone is equipped with sensors that measure the
zone’s occupancy, such data can be directly obtained
from the sensors. Simulations of the agent-based
model can also be used to produce the required time-
series data. The next paragraph discusses the identifi-
cation of covariance graphical model from time-series
of occupancy of all zones. We briefly note that the
graphical models we describe are relevant only in
scenarios involving multiple zones.

4.1. Model identification

To describe model identification, we first consider the
case when the model does not change with time. The
identification of a covariance graph model (m, S) from
samples of the random vector x consists of two steps:

Table 4. K–L divergence between pMuMo
X and pmeas

X in the
multi-occupant multi-zone scenario.

Variable(X) d pmea
X k pMuMo

X

� �
First arrival time 0.5667
Last departure time 0.7496
Cumulative occupied duration 0.8814
Continuously occupied duration 0.0981
Number of occupied/unoccupied
transitions

0.0248

Journal of Building Performance Simulation 17

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
, [

Pr
ab

ir
 B

ar
oo

ah
] 

at
 0

6:
33

 0
8 

Ju
ly

 2
01

1 



(i) model selection and (ii) parameter estimation.
Model selection refers to choosing the structure of
the graph G (or equivalently, the sparsity pattern of S),
while parameter estimation refers to choosing the
values of those entries of S that have been decided to
be non-zero in the model selection step. The goal of
this two-step identification is to estimate the possibly
sparsest graph structure that can still explain the first-
and second-order statistics of the data. We follow the
methods proposed by Drton and Perlman (2004) and
Chaudhuri et al. (2007) to carry out the model
selection and parameter estimation steps. The first
step is the computation of the sample covariance
matrix from N samples of data. Assuming we conduct
N Monte-Carlo experiments, for every time k, we
compute the sample mean

xðkÞ ¼
XN

j¼1 x
ðjÞðkÞ; ð4Þ

where x
(j)(k) is x(k) observed in the j-th experiment.

Similarly, we compute the sample covariance of the
state at time k as

WðkÞ ¼ 1

N

XN
j¼1
ðxðjÞðkÞ � xðkÞÞðxðjÞðkÞ � xðkÞÞT: ð5Þ

Model selection is based on hypotheses testing on all
edges (i.e. all entries of W(k)) at an overall confidence
level determined by a designed parameter Z (Drton and
Perlman 2004). Assuming that the data come from the
true graph model G, this method leads to an estimated
graph model bGZ with the following confidence level
limn!1 infPð bGZ ¼ GÞ � 1� Z. This means, for fixed Z,
the correct model is selected with probability at least
17Z for large sample size. Once the structure of the
graph model is chosen based on model selection, an
iterative conditional fitting algorithm based on max-
imum likelihood estimation is used for estimating the
values of the non-zero entries of S. The interested
reader is referred to Chaudhuri et al. (2007) for the
details. Although rigorous results on identification of
graphical models require the assumption that the
underlying distribution is multi-variate Gaussian,
applications of these models to non-Gaussian data
are common (Borgelt and Kruse 2002).

For time-varying models, we can follow the method
above to identify a distinct model at each time step.
Using multiple time-series of occupancy in an n-room
building, we estimate K covariance graph models (m(k),
S(k)), k ¼ 1, . . . , K, one for each time step. There is
one difficulty in proceeding in such a straightforward
manner. The sample covariance matrix W in Equation
(5) is required to be non-singular for these methods to

be applicable (Drton and Perlman 2004, Chaudhuri
et al. 2007). At certain times, especially at night, the
probabilities of certain rooms being occupied are very
small. In this case, we may get zero rows and columns
in the sample covariance matrix due to finite number
of samples. To address this issue, we eliminate these
rows and columns and construct reduced sample
covariance matrix W(k)r. The reduced covariance
matrix S(k)r can now be identified by using the
techniques described above, and then S(k) can be
regained by plugging in the zero rows and columns
back to S(k)r.

The model selection part of the graphical model
identification process reduces the complexity of the
model significantly. For comparison we define a sample
covariance graphical model in which the sample
covariance computed from data is used for the
covariance matrix without model selection. Since the
latter does not perform model selection, any non-zero
entry in the sample covariance matrix, no matter how
small, will be retained. As a result, if only the sample
covariance is used, the number of edges in the
graphical model will be far larger than that if model
selection is performed. The reduction in model
complexity (as measured by the number of edges in
the graph) due to the model selection part can be seen
clearly from Figure 9, which shows the number of
edges as a function of time in both the models. It
should be noted that model selection has minimal
effect on the predictive power of the model. As
evidence, Figure 10 shows the mean occupancy of the
building predicted by the covariance graph model as
well as that by the sample covariance graph model,
which are seen to be nearly indistinguishable.

4.2. Comparison with agent-based model

The graphical model can be used to generate realiza-
tions of the occupancy vector x(k). At every k, x(k) has
to be generated to be multi-dimensional Gaussian with

Figure 9. Effect of model selection on model complexity.
The number of edges in covariance graph model (dot black)
compared to that in the sample covariance graphical model
(dashed pink). Model selection is not applied to the sample
covariance graph model, which leads to a large number of
edges compared to the covariance graph model.
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mean m(k) and covariance matrix S(k), which can be
done by software packages such as MATLAB [copy-
right]. Building occupancy can then be computed by
summing over the entries of x(k). When generated this
way, the resulting time series of x(k) will be approxi-
mately independent over time (depending on the
properties of the pseudo-random number generator
used) and multi-dimensional Gaussian at every time.
The temporal correlations between occupancy at
distinct times are not captured by the graphical model,
and therefore will not be reflected in the time-series
generated by the graphical model.

Figure 10 compares the mean occupancy of the
building (the one shown in Figure 4) as estimated by
the agent-based MuMo model and the covariance
graphical model that was identified from simulation
time-traces of the agent-based model. The prediction
of the mean occupancy from the two models are
almost identical, which is expected since the graphical
model is constructed to capture the first and second
moments of the agent-based model.

Apart from predicting mean occupancy over time,
graphical model is also useful in performing real-time
estimation from limited measurements. If sensors are
installed in a few zones of a building that provide
information on occupancy in those zones, then these
measurements can be fused with the mean and
covariance information embedded in the graphical
model to estimate occupancy in all the zones that are

nodes of the graph. The interested reader is referred to
Liao and Barooah (2010) for the details of occupancy
estimation using graphical models.

5. Summary and future work

This article makes two contributions. First, we
presented a novel stochastic agent-based model of
occupancy dynamics in a building with an arbitrary
number of zones and occupants. The proposed MuMo
model can be used to simulate the evolution of
occupancy over time during non-emergency situations.
Second, we showed that the graphical modelling
framework can be used to construct a simpler model
of occupancy in a multi-zone building. The graphical
model only retains information about mean and
covariance of occupancy at various zones over time,
but is more suitable for applications such as real-time
occupancy estimation due to the reduced complexity
compared to the agent-based model. Simulation time-
traces from the MuMo model can be used to identify
the graphical model.

In the single-occupant single-zone scenario, we
found that the MuMo model has similar predictive
capability as the model by Page et al. (2008) that was
proposed for this scenario. In the multi-occupant
single-zone and multi-occupant multi-zone scenarios,
it was found through comparison with measured data
that it predicts certain variables more accurately than
others. In general, mean occupancy, and the marginal
distributions of the first arrival time, continuously
occupied duration, and number of transitions between
occupied and unoccupied states are predicted well.
However, the distribution of last departure time and
cumulative occupied duration are not predicted as
well.

In cases involving multiple agents, the inputs that
have to be provided to the model usually have to be
collected from the occupants by conducting a ques-
tionnaire-based survey, since obtaining this informa-
tion from sensor measurements may be infeasible for
even a moderately sized building. For situations
involving a large number of agents, gathering enough
information to specify the input to the model may
become a hurdle in using such a model. The accuracy
of the input information is likely to affect model
prediction accuracy; but it is not known by how much.
Our survey for the multi-occupant multi-zone scenario
was not as detailed as in the multi-occupant single-
zone scenario, and the prediction accuracy was found
to be correspondingly lower. Among the three
scenarios, the difference between the prediction and
measured values seems to be poorest in the multi-
occupant multi-zone scenario. However, the number of
measurements available to compare the model’s

Figure 10. Comparison between mean occupancy predicted
by the agent-based MuMo model (dotted blue) as well as the
covariance graphical model (CGM) (black), which was
identified from simulations of the agent-based model. The
prediction by the sample covariance graphical model
(SCGM) (dashed pink) is also plotted to show that model
selection in the identification of the CGM has little impact on
the model’s predictive capability. (a) Building (Figure 4). (b)
Zone 14 (Figure 4).
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prediction against was also the smallest in the multi-
occupant multi-zone scenario. This makes drawing
strong conclusions difficult. The first arrival time and
the last departure time are found to depend on a few
key individuals, so accuracy of the model depends on
obtaining accurate information on their behaviour
pattern.

Due to slow variation in a building’s usage pattern
over time (owing to change in occupants, etc.), the
dynamics of occupancy in a building may change with
time. A useful attribute of an occupancy model is its
ability to adapt to these slow variations automatically
based on measurements. One can think of it as the
ability to self-calibrate the parameters of the model as
the dynamics change. We have not addressed this issue;
but it presents an exciting avenue for future research.
Due to its lower complexity, the graphical model may
be a more appropriate candidate for performing such
on-line adaptation compared to an agent-based model.

The graphical model described here is meant to
capture only spatial correlations; it loses information
on temporal correlations in occupancy. Meaning, the
statistical relationship among occupancy at distinct
times is lost. However, it should be possible to retain
these temporal dependencies using a graphical model
in the following way. Define the augmented state
vector as X(k):¼ [xT(k),xT(k þ 1), . . . , x

T(k þ t)]T,
where t is some positive integer. The mean and
covariance matrix of X(k), which is a graphical model
with nt nodes, will have information on temporal
dependencies between occupancy at time less than t
indices apart. This is a subject of future study.
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Note

1. Another reason for introducing the term ‘‘node’’ is its use
in the graphical models, which will be described later.
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