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Abstract— We examine distributed time-synchronization in
mobile ad-hoc and sensor networks. The problem is to estimate
the skews and offsets of clocks of all the nodes with respect to an
arbitrary reference clock. Pairs of nodes that can communicate
with each other can obtain noisy measurements of the relative
skews and offsets between them. We propose a distributed
algorithm with which each node can estimate its offset/skew
from these noisy relative measurements by communicating
only with its neighbors. The algorithm is simple and easy
to implement. We model the change in the communication
network due to the moving nodes as a Markov chain whose

state space is the set of graphs that can occur. Using tools
from Markov Jump Linear Systems, we provide a sufficient
condition for the mean square convergence of the estimation
error. A conjecture on mean square convergence under weaker
conditions is discussed. Monte Carlo simulations are provided
that corroborate the predictions and justify the conjecture.

I. INTRODUCTION

Time or clock synchronization is critical in the effective

use of sensor and multi-agent networks; particularly in

applications such as range finding for target tracking and

localization, intrusion detection, time correlation of telemetry

data, sensor fusion, slot assignment in TDMA, duty cycling

protocols, and so on [1]. At a given global time t, the

local clock time at node u can be approximately written as

tu = αut+βu, where αu is the skew and βu is the offset. The

global time to which all nodes need to be synchronized can

be the local clock time at an arbitrarily chosen “reference”

node. The time synchronization problem is effectively a

problem of estimating the skews and offsets of every node,

since the nodes can infer the global time from their local

clock times once they know their own skews and offsets.

A large number of protocols have been proposed to

solve the problem of time-synchronization in static ad-hoc

networks, such as the Timing-Sync Protocol for Sensor

Networks [2], Flooding Time Synchronization Protocol [3]

and Reference Broadcast Synchronization [4], etc. These

are tree and cluster - based, and not fully distributed. The

protocols in [5], [6], [7], [8] are distributed and iterative;

nodes iteratively update their current estimates of skew and

offset by exchanging information with their neighbors.

The methods described in all the papers mentioned above

are geared to networks of static nodes. Due to the unreli-

ability of the communication channels, edges in the graph

that model communication between pairs of nodes may

temporarily drop, but the graph does not change otherwise.
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Under these conditions, various properties of the estimation

algorithm are established. For example, the averaging scheme

proposed in [5], [6] are proven to converge to the centralized

best linear unbiased estimate of the node variables (offsets

and skews) even in the presence of temporary node and

link failures. The schemes in [7], [8] have similar robustness

properties.

In this paper we examine the question on how to estimate

the offsets and skews accurately for a network consisting of

mobile nodes. Due to motion, the set of neighbors of a node,

i.e., the nodes it can communicate with, may change over

time. To the best of our knowledge, distributed estimation

of offsets and skews in this scenario has not been examined

before.

When a pair of nodes can exchange time-stamped mes-

sages, they can obtain noisy measurements of the relative

skews and offsets; see [9], [10] for details on how these

measurements are obtained. The time-synchronization prob-

lem therefore can be posed as the problem of estimating

scalar valued “node variables” from noisy measurements of

their pairwise differences. The algorithm we propose to solve

the estimation problem in a time-varying network of mobile

nodes is similar in approach to the one in [5]. The algorithm

is fully distributed and asynchronous. It involves only local

communication among neighbors and simple computations.

The algorithm consists of an iterative update law, and is

related to the consensus-type algorithms [11], [12], [13]. The

analysis of the algorithms, especially that of the variance of

the estimation error, requires tools beyond that available from

the literature on consensus.

We model the time-variation of the network topology

due to nodes’ motion as a Markov chain. In that case, the

evolution of the estimation errors is a Markov Jump Linear

System (MJLS) driven by a zero-mean wide sense stationary

(WSS) white noise sequence. We establish a sufficient con-

dition on the underlying Markov chain that guarantees that

the estimation error dynamics are mean square convergent.

In particular, the mean of the error converges to 0 and

the correlation matrix to a positive-definite matrix, whose

value is a function of the transition probability matrix, the

measurement error variances, and structure of the graphs that

constitute the state space of the Markov chain. Monte Carlo

simulations are provided that corroborate the theoretical

predictions. We conjecture that the conditions required for

mean square convergence of the estimation errors are weaker

than the sufficient condition provided here.

Since the variances converge to non-zero steady state

values, the nodes can turn off the iterative updates after a
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sufficiently long time. This will conserve on-board energy

with little loss of estimation accuracy.

The rest of the paper is organized as follows. Section II

states the estimation problem precisely. Section III describes

the proposed algorithm and the main result, while Section IV

provides simulation results.

II. PROBLEM STATEMENT

By exchanging a number of time-stamped messages, a

pair of nodes u and v can obtain measurements of their

relative offsets βu−βv and ratios of skews αu/αv. Methods

for estimating offset differences when skews are unity are

described in [9]. With 4 rounds of communication between

u and v, (u → v, v → u, u → v, v → u in that order),

both offset differences and skew ratios can be obtained [10].

Due to various inaccuracies, the measurements will be noisy.

That is, u and v can obtain ηu,v and ξu,v after a few

rounds of communication, where ηu,v = βu − βv + ǫu,v

and ξu,v = log(αu) − log(αv) + εu,v, where ǫu,v, εu,v are

a zero-mean measurement noises. Thus, both relative offset

and skew ratio measurements are special cases of

ζu,v = xu − xv + ǫu,v, (1)

where ζu,v is a noisy measurement of the difference between

the unknown scalar variables xu and xv , and ǫu,v is a zero-

mean measurement error. For this reason, we restrict our

attention to the problem of estimating scalar-valued variables

from relative measurements of the type (1). For the sake of

concreteness, we will frequently refer to offset estimation as

a specific example of this problem.

Let the total number of sensor nodes in the network be

ntotal. These define a node set V = {1, 2, . . . , ntotal}. With

each node u, a real-valued variable xu ∈ R is associated that

we call a node variable. The node variable could be either

the log-of-skew or the offset of u’s local clock with respect to

the clock of an arbitrarily chosen reference. Without loss of

generality, we fix the node variable of the reference node to

0: xr = 0, and set the index of the reference node ntotal. The

number of nodes whose node variables have to be estimated

is ntotal − 1 =: n.

Time is measured by a discrete time-index k = 0, 1, . . . .
The mobile nodes define a time-varying undirected graph

G(k) = (V ,E (k)), where (u, v) ∈ E (k) if and only if

u and v can obtain a relative measurement of the form (1)

during the time interval between the time indices k and k+1.

Specifically, for each (u, v) ∈ E (k), a measurement

ζu,v(k) = xu − xv + ǫu,v(k), (2)

is obtained by both u and v at time k. We assume that

ǫu,v(k) is zero mean wide sense stationary white noise

process, and the measurement errors ǫu,v(k) on distinct edges

are uncorrelated: E[ǫu,v(k)ǫw,x(ℓ)] = 0 unless k = ℓ and

u = w, v = x, in which case it is equal to σ2
0 . Since

multiple rounds of communication is required to obtain a

measurement, if (u, v) ∈ E (k), then u and v can also

communicate and exchange information at time k. The nodes

that u can communicate with at k are the neighbors of u at

time k, which are denoted by Nu(k).
The problem is to estimate the node variables xu for u =

1, . . . , n by using the relative measurements ζu,v(k), (u, v) ∈
E (k) that become available over time k = 0, 1, . . . . In

addition, the algorithm has to be distributed in the sense that

each node has to estimate its own variables locally, and at

every time k, a node u can only exchange information with

its neighbors Nu(k).

III. PROPOSED ALGORITHM

Each node u maintains in its local memory an estimate

x̂u(k) of its node variable xu that is iteratively updated.

The estimates are initialized to arbitrary values. In executing

the algorithm at iteration k, node u communicates with its

current neighbors to obtain from them their current estimates

x̂v(k), v ∈ Nu(k). It also collects the measurements ζu,v(k)
for each v ∈ Nu(k) during this time. It then updates its

estimate according to

x̂u(k + 1) =
x̂u(k) +

∑

v∈Nu(k)(x̂v(k) + ζu,v(k))

du(k) + 1
, (3)

where the degree du(k) = |Nu(k)| is the number of

neighbors of node u. Nodes continue this iterative update

as long as they keep moving; or until they see little change

in their local estimates.

Note that x̂v(k)+ζu,v(k) = xu+(x̂v(k)−xv)+ǫu,v(k); so

each term inside the summation on the right hand side of (3)

is an unbiased estimate of xu, provided E[x̂v(k)] = xv. This

condition is satisfied if the initial estimates are unbiased,

i.e. E[x̂u(0)] = xu for each u. It is possible to ensure

that the initial estimates are unbiased by using the flagged

initialization procedure with no additional communication or

computation cost, which is described in [6]. The right hand

side of (3) is therefore an average of multiple noisy estimates

of xu. The reason for including x̂u(k) in the right hand side

of (3) is to make it well-defined even at times when u has

no neighbors. Note that if v in (3) is the reference node, i.e.,

v = r, then x̂v(k) = xr = 0.

A. Main result

We consider the case when the sequence of graphs

{G(k)}∞k=0 can be modeled as the realization of a Markov

chain, whose state space G = {G1, . . . ,GN} is the set of

all the graphs that can be formed by the mobile nodes. The

Markovian property means that if G ∈ G, then P(G(k+1) =
G|G(k)) = P(G(k + 1) = G|G(k),G(k − 1), . . . ,G(0)). A

simple example in which the time variation of the graphs

satisfies the Markovian property is that of a network of

static nodes with unreliable communication links such that

each link can fail temporarily, and the failure of each edge

at every time instant k is independent of the failures of

other links and the probability of its failure is time-invariant.

Another example is a network of mobile agents whose

motion obeys first order dynamics with range-determined

communication. Specifically, suppose the position of node

u at time k, denoted by pu(k), is restricted to lie on the
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unit sphere S2 = {x ∈ R
3|‖x‖ = 1}, and suppose the

position evolution obeys: pu(k + 1) = f(pu(k) + ∆u(k)),
where ∆u(k) is a stationary zero-mean white noise sequence

for every u, and E[∆u(k)∆v(k)T ] = 0 unless u = v. The

function f(·) : R3 → S2 is a projection function onto the

unit-sphere. In addition, (u, v) ∈ E (k) if and only if the

geodesic distance between them is less than or equal to some

predetermined range. In this case, prediction of G(k + 1)
given G(k) cannot be improved by the knowledge of the

graphs observed prior to k: G(k − 1), . . . ,G(0), and hence

the change in the graph sequence satisfies the Markovian

property.

If no restriction is placed on the motion of the nodes or

edge formation, the size of state space N := |G| is the total

number of distinct graphs possible with ntotal nodes, which

is 2
1

2
ntotal(ntotal−1). If certain nodes are restricted to move only

within certain geographic areas, N is less than this maximum

number. We assume that the Markov chain is homogeneous,

and denote the transition probability matrix of the chain by

P . Define x := [x1, . . . , xn]T as the vector of all the node

variables and x̂(k) := [x̂1(k), . . . , x̂n(k)]T be the vector of

the estimates at time k. The main result of the paper is the

following, in which e(k) := x̂(k)−x is the estimation error

at time k, and µ(k) := E[e(k)], Q(k) := E[e(k)e(k)
T
] are

its mean and correlation, respectively.

Theorem 1: Consider the iterative update (3) carried out

by the nodes in a synchronous manner. Assume that the

evolution of the graph G(k) is governed by a homogeneous

Markov chain with transition probability matrix P. If P
is entry-wise positive, and at least one element of G is a

connected graph, then the estimation error e(k) is mean

square convergent, and in particular, µ(k) → 0 and ‖Q(k)−
Q‖ → 0 as k → ∞, where Q is a positive definite matrix.

�

A formula for Q is provided later in Lemma 1. The proofs

of the theorem and the lemma are provided in [10]. The

implication of the theorem is that the estimates converge to

an unbiased estimate with a finite variance for every initial

condition on the node variables. Thus, after a sufficiently

long time, the nodes can turn off the synchronization updates

without much loss of accuracy.

The hypothesis of the theorem asks that the Markov chain

satisfy two conditions: (1) every entry of P is positive and

(2) at least one element of G is a connected graph. The first

condition will trivially lead to ergodicity of Markov chain,

which guarantees the steady state distribution exists and is

also required to use some of the results from the Markov

jump linear system (MJLS) literature. In addition, both the

conditions are used to show the spectral radius of a particular

matrix is less than 1, which allows us to use results from

MJLS theory to prove mean square stability. We believe the

conditions are an artifact of our proof technique; they are

not necessary.

Conjecture 1: If the Markov chain is ergodic and its state

space G is such that the union of all the graphs in G is

a connected graph, then µ(k) converges to 0 and Q(k)
converges to a steady state matrix. �

Ergodicity implies that the unique steady state distribution

of each state is non-zero, which means every graph in the

state space of the chain occurs infinitely often. Since their

union is connected, it means information from the reference

will flow to each of the nodes, which is likely to lead to

convergence. Simulations reported in Section IV provide

evidence in support of this conjecture.

B. Convergence Analysis

To provide a formula for the steady state correlation matrix

and prove the theorem, we need to express the iterative

update (3) in a compact form, for which we introduce the

following standard graph-theoretic terminology. Given an

undirected graph G = (V ,E ), we first introduce a directed

graph ~G = (V , ~E ) by assigning directions to the edges of

G arbitrarily. For the sake of concreteness, however, we will

follow the convention that (u, v) ∈ E then the edge direction

in ~G is from the node with lower index to that with a higher

index. Let |V | = ntotal and |E | = |~E | = m. The node-edge

incidence matrix A of the directed graph ~G is a ntotal ×m
matrix whose entries are defined as follows: Au,e = 0 if

the edge e is not incident on node u; Au,e = +1 if edge e
is directed away from node u and Au,e = −1 if edge e is

directed towards node u. The basis incidence matrix Ab is the

(ntotal−1)×m sub-matrix of A that is obtained by removing

the row corresponding to the reference node. The matrix

Lb := AbA
T
b is called the Dirichlet or grounded Laplacian

matrix of the graph G. In fact, Lb does not depend on the

directions of the edges. The diagonal matrix M constructed

from the diagonal entries of Lb is the basis degree matrix

and N := M − Lb is called the basis adjacency matrix.

Explicitly, M(u, u) = du, and N(u, u) = 0, N(u, v) = 1 if

(u, v) ∈ E .

With the above notation, it follows from the update law (3)

that the temporal evolution of x̂(k) is given by

x̂(k + 1) = JG(k)x̂(k) +BG(k)ζ(k) (4)

where

JG(k) := (MG(k) + I)−1(NG(k) + I),

BG(k) := (MG(k) + I)−1AbG(k),

ζ(k) := [ζ1(k), . . . , ζm(k)(k)]
T = AT

bG(k)x + ǫ(k),

(5)

m(k) = |E (k)| is the total number of measurements at k
and ǫ(k) is vector of all measurement noise. MG(k) and

NG(k) are the basis degree and basis adjacency matrices of

the graph G(k), and AbG(k) is the basis incidence matrix

of the associated directed graph ~G(k). To avoid making the

notation more cumbersome than it already is, we refrain from

using ~G(k) in the subscripts. We rewrite the last term in (4):

BG(k)ζ(k) = (MG(k) + I)−1AbG(k)(AbG(k)
Tx) +BG(k)ǫ(k)

= (MG(k) + I)−1(MG(k) + I − (NG(k) + I))x

+BG(k)ǫ(k)

= −JG(k)x + x +BG(k)ǫ(k), (6)

where the second equality follows from AbG(k)AbG(k)
T =

LbG(k). Substituting (6) in (4) and subtracting x from both
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sides of (4), we obtain the dynamics of the estimation error

e(k) := x̂(k) − x:

e(k + 1) = JG(k)e(k) +BG(k)ǫ(k), (7)

where the initial condition e(0) is a random vector that is

independent of the Markov chain.

Now we introduce some non-standard notation to express

the error dynamics in a more convenient form. Let m̃ be the

number of edges in the union graph ∪iGi, where the union is

over the state space G of the Markov chain. For every graph

Gi ∈ G, define an extended incidence matrix Ãi by introduc-

ing additional columns with all entries equal to 0 so that Ãi

is an ntotal × m̃ matrix. Let Ãbi the corresponding extended

basis incidence matrix, and define B̃i := (Mi + I)−1Ãbi.

Note that unlike Bi, the dimension of B̃i does not change

with Gi. At every time k, we also define an extended noise

vector ǫ̃(k) ∈ Rm̃, with entries that correspond to edges

that do not exist in G(k) set to arbitrary values. As a result,

ÃbG(k)ǫ̃(k) = AbG(k)ǫ(k). Based on the assumptions made

previously about the measurement noises ǫu,v, we impose

γ := E[ǫ̃(k)] = 0 and Γ := E[ǫ̃(k)ǫ̃(k)T ] = σ2
0I > 0

(positive definite), where I is an identity matrix. Note that

the entries of ǫ̃(k) (and their means and variances) that

correspond to edges that do not exist in E (k) do not affect

the analysis and can be chosen arbitrarily.

The state of the following system is identical to that of (7)

for the same initial conditions:

e(k + 1) = JG(k)e(k) + B̃G(k)ǫ̃(k). (8)

The error dynamics (8) is a Markov jump linear system

(MJLS) [14]. Our main result, Theorem 1, is established by

using tools from the theory of MJLS. The reason for defining

the “extended” matrices was to make the terms B̃G(k) and

ǫ̃(k) have the same dimension irrespective of k.

We also need the following definitions and terminology

from [14]. Let Rm×n be the space of m×n real matrices. Let

V = (V1, V2, . . . , VN ) ∈ Hm×n be the set of all N-sequences

of real m × n matrices Vi ∈ Rm×n. The operators ϕ and

ϕ̂ is defined as follows: let Vi = [(vi)1 . . . (vi)n] ∈ Rm×n,

then

ϕ(Vi) :=







(vi)1
...

(vi)n






and ϕ̂(V ) :=







ϕ(V1)
...

ϕ(VN )






(9)

Hence, ϕ(Vi) ∈ Rmn and ϕ̂(V ) ∈ RNmn. Similarly, define

an inverse function ϕ̂−1 : RNmn → Hm×n that produces an

element of Hm×n given a vector in Nmn. For Ji ∈ Rn×n,

define

diag[Ji] :=







J1 . . . 0
...

. . .
...

0 . . . JN






∈ R

Nn×Nn (10)

and

C := (PT ⊗In)diag[Ji] ∈ R
Nn

D := (PT ⊗In2)diag[Ji ⊗ Ji] ∈ R
Nn2

, (11)

where In is the n × n identity matrix, P is transition

probability matrix and ⊗ denotes Kronecker product. Define

also

ψj :=

N
∑

i=1

pijB̃iγπi ∈ R
n, ψ := [ψT

1 , . . . , ψ
T
N ]T ∈ R

Nn,

where pij is (i, j)-th entry of P and π ∈ R
1×N is the

stationary distribution of the Markov chain, which exists due

to the ergodicity directly followed by assumption of positive

P . Now define

q = [qT
1 , . . . , q

T
N ]T = (I − C)−1ψ ∈ R

Nn (12)

R(q) := (R1(q), . . . , RN(q)) ∈ H
n×n, (13)

where

Rj(q) :=

N
∑

i=1

pij(B̃iΓB̃
T
i πi + Jiqiγ

T B̃T
i (14)

+ B̃iγq
T
i J

T
i )) ∈ R

n×n

Finally, define

Q = (Q1, . . . , QN ) ∈ H
n×n,

= ϕ̂−1
(

(I −D)−1ϕ̂(R(q))
)

µ :=

N
∑

i=1

qi ∈ R
n, Q :=

N
∑

i=1

Qi ∈ R
n×n. (15)

With all these definitions, we can finally state the steady state

correlation of the estimation error when convergence occurs.

Lemma 1: Under the hypothesis of Theorem 1, the steady

state correlation matrix is given by Q in (15), and Q >
0. �

Remark 1 (Relationship to consensus): The proposed al-

gorithm is closely related to average consensus protocols that

have been widely studied. In fact, convergence of the mean

of the estimation error can be independently established by

using results from the consensus literature. If time-variation

of the graph is examined in the deterministic setting, it

can be shown that the mean of the error converges to 0
if there is an integer T so that the union graph G∗(k) =
∪k+T

i=k G(i) at every k is connected. This follows upon taking

expectation (over the noise alone) of both sides of (7) to

obtain E[e(k + 1)] = J(k) E[e(k)], which turns out to

be an average consensus algorithm with the state of the

reference node fixed at 0, and then applying results from [11],

[12]. The effect of stochastic disturbances on consensus

algorithms in graphs that do not change with time has been

examined by Xiao et. al. [13], Bamieh et. al. [15] and Kar

et. al.[16]. The examination of the covariance of e(k) with

time-varying graph topologies does not seem tractable with

such techniques. �

IV. NUMERICAL INVESTIGATION

In this section we present results from simulations with

two networks, the first one with 4 nodes and the second with

25 nodes. These two networks are referred to as network 4A

and 25B, respectively. Because skew and offset estimation
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Fig. 1. The graph G(k) at two distinct k; for network 4A.
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Fig. 2. Mean and variance of the estimate of node 3’s node variable (clock
offset) as a function of time in network 4A; empirically estimated from 5000
Monte Carlo experiments. In (b), The dot-dash line is the theoretical steady
state variance as predicted by Lemma 1.

are special cases of the node-variable estimation problem as

discussed in Section II, we run simulations for the offset

estimation problem only, with clock skews setting to 1 for

all nodes. The clock offsets of the nodes with respect to the

reference node (indexed as 4 and 25, respectively) are fixed

arbitrarily. The noise on each measurement is a Normally

distributed random variable with mean 0 and variance 1. The

initial estimate of each node is chosen by using the flagged

initialization method of [6]. It should be noted that the

flagged initialization scheme does not alter the convergence

properties of the algorithm since it only affects the initial

conditions.

In both networks, the positions of the mobile nodes evolve

according to

pu(k + 1) = f(pu(k) + ∆u(k)), (16)

where, for every u, pu(k) ∈ R
2 is the position of agent u at

time k, and {∆u(k)} is a zero mean white noise sequence

with covariance 4I , where I is the 2×2 identity matrix. The

function f(·) is a projection function acting on pu(k) such

that pu(k) remains in the region [−10, 10] × [−10, 10] (for

network 4A) and in [−50, 50]× [−50, 50] (for network 25B).

In the network 4A and 25B, an edge between two nodes at

time k exists if and only if the Euclidean distance between

them is less than or equal to 10 and 30, respectively. Figure 1

shows two snapshots of the graph sequence G(k) resulting

from the motion of the 4 mobile nodes in network 4A.

Monte Carlo experiments are conducted to empirically

estimate the mean and variance of the estimation errors,
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Fig. 3. The trajectory of node 24’s estimate of its node variable (clock
offset) as a function of time in network 25B, for two distinct numerical
experiments.
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Fig. 4. Mean and variance of the estimate of node 24’s node variable
(clock offset) as a function of time in network 25B; empirically estimated
from 5000 Monte Carlo experiments.

by averaging over 5000 sample runs. Figure 2(a) shows the

empirically estimated mean of node 3’s estimate and the true

value. As predicted by Theorem 1, the mean of the estimate

converges to the true value. Figure 2(b) shows the empirically

estimated variance of node 3’s estimate and the theoretical

prediction from Theorem 1 (Eq. (15)). Computation of the

theoretical predictions requires knowledge of the Markov

transition probability matrix P and the stationary distribution

of the chain. For the network 4A, the number of possible

graphs is 64, and the 64×64 transition probability matrix is

estimated from the Monte Carlo experiments. The stationary

distribution π is computed from the estimated P.

Monte Carlo simulations are conducted with the network

25B. Figure 3 shows two distinct sample runs of the estimate

of node 24 in the network 25B. Each sample run is obtained

by running the algorithm with a distinct sequence of pseudo-

random numbers generated in MATLAB. The plot shows

that the estimates quickly approach the true value and then

oscillate around it. Figure 4(a) and 4(b) show the mean

and variance of the estimates of node 24. As predicted by

Theorem 1, the mean of the estimate converges to the true

value. Due to the motion model that does not preclude any

of the 225·12 possible graphs, determining the steady state

variance is computationally infeasible. Hence, in this case

we are unable to provide comparisons of the variance with

the predicted steady state value.

Remark 2 (Conjecture 1): To test the conjecture, we per-

formed Monte Carlo simulations with another Markov chain

whose state space consisted of the three graphs shown in
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Remark 2. Node 4 is the reference.

0 5 10 15 20 25
−50

−40

−30

−20

−10

0

Iteration index

M
e

a
n

 

 

Empirical

True value

(a) Mean

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Iteration index

V
a

ri
a

n
c
e

 

 

Empirical

Steady state

(b) Variance

Fig. 6. Mean and variance of the estimate of node 3’s node variable
(clock offset) as a function of time in the network discussed in Remark 2;
empirically estimated from 5000 Monte Carlo experiments. In (b), the dot-
dash line is theoretical steady state variance as predicted by Lemma 1.

Figure 5. The transition probability matrix of the chain was

chosen as

P =





0.3 0.2 0.5
0.1 0.5 0.4
0 0.5 0.5



 . (17)

Notice that P is not entry-wise positive and none of the

graphs in the state space G is connected. However, the

conditions of the conjecture, i.e. the chain is ergodic and

the union of the graphs in G is connected, are satisfied.

Figure 6(a) and 6(b) show that the mean converges to 0 and

variance converges to the value predicted by Lemma 1, even

though the conditions are violated. �

V. SUMMARY

We proposed a distributed time-synchronization protocol

for mobile ad-hoc and sensor networks. To the best of our

knowledge, synchronization in networks with truly mobile

nodes has not been analyzed earlier. The problem was

converted to estimation of scalar node variables (offsets

and log-skews) from noisy relative measurements between

node pairs. The proposed algorithm is based on an iterative

update law. When the time-evolution of the communication

graph can be modeled as a Markov chain, we showed

that under certain conditions the estimation algorithm is

mean square convergent: the estimated values converge to

their true values in mean, and their variances converge to

positive constants. This means the mean and the variance

of the estimation error does not change much after sufficient

iterations. Therefore, nodes can stop updating their estimates

to save bandwidth and on-board energy while incurring little

loss of synchronization accuracy. Avenues for future work

include establishing weaker sufficient conditions for mean

square convergence and characterization of the convergence

rate in terms of the Markov chain’s properties.
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