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Abstract— To perform clock synchronization in mobile ad-
hoc networks, nodes need to estimate current time of a global
clock based on the readings of their local clocks along with
time-stamped messages from their neighbors. We formulate the
problem as nodes simultaneously estimating skews and offsets
of their own clocks with respect to a global clock from noisy
difference measurements of logarithm of skews and that of
offsets. These measurements can be obtained by exchanging
time stamped messages. A leader-following consensus-based
algorithm is proposed to estimate these parameters in a
distributed manner. Ideas from stochastic approximation are
used to ensure mean square convergence of estimation error
under certain conditions. A sequence of scheduled update times
is used to meet the requirement of specific decreasing time-
varying gains that need to be synchronized across nodes with
unsynchronized clocks. Simulations indicate that high accuracy
of global time estimation can be maintained for long time
duration with the proposed algorithm. Performance of the
proposed algorithm is compared through simulations with the
virtual clock synchronization algorithm ATS [1]. It is seen
that the proposed algorithm is more robust than ATS to
measurement noise resulting from random delays in message
exchange.

I. INTRODUCTION

Clock synchronization is extremely important for the func-
tionality and performance of wireless ad-hoc networks and
sensor networks. In TDMA-based communication schemes,
accurate time synchronization ensures that each node com-
municates with others in their own time slots without in-
terfering with others. Operation on a pre-scheduled sleep-
wake cycle for energy conservation in sensor networks
also requires all nodes to share a common notion of time.
However, clocks run at different speeds due to imperfectness
of quartz crystal oscillators. Even if they were to have the
same speed, each clock may start at different time instants
which leads to a difference in their local times.

The local time of node u when the global time is t, τu(t),
is usually modeled as:

τu(t) = αut+ βu, (1)

where the scalar parameters αu, βu are called its skew (speed
of clock) and offset, respectively [2]. In practice, skews are
time-varying due to temperature change, aging etc. However,
it is common to model the skew of a clock as a constant since
its variation is negligible during time intervals of interest [3].
The global time is the Coordinated Universal Time (UTC),
or the local time of one of the clocks that is elected as a
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reference when none of the clocks can access the UTC. A
clock can determine the global time t from its local time
by using the relationship t = (τu(t)− βu)/αu as long as it
knows its skew and offset. Hence the problem of the clock
synchronization can be alternatively posed as the problem
of nodes estimating their skews and offsets. A node u can
use a pairwise synchronization method, such as those in [4]–
[6], to estimate αu and βu if it directly communicates to the
reference node. However, this is not the case for most of the
nodes due to limited communication range. It is therefore
not possible for all nodes to measure their skews and offsets
directly.

Network-wide clock synchronization in ad-hoc networks
has been intensely studied in recent years. Work in this area
can be grouped into three categories: cluster-based protocols,
tree-based protocols and distributed protocols. In cluster-
based [7] and tree-based protocols [8], [9], synchronization
relies on establishing a pre-specified network structure. In
mobile networks, however, network topology continually
changes, which results in frequent re-computation of a cluster
and spanning tree, or re-election of a root node. This intro-
duces considerable communication overhead to the networks,
therefore the above cluster-based and tree-based protocols are
primarily targeted to networks of static or quasi-static nodes.

Recently, a number of fully distributed algorithms that
do not require the establishment of clusters or trees have
been proposed. These typically perform synchronization by
estimating skews and/or offsets and then computing the
global time from them. The algorithms proposed in [6], [10]–
[15] belong to this category. These distributed protocols are
more readily applicable to mobile networks than the previous
two. However, little is known about how such algorithms will
perform in mobile networks. In [16], an algorithm similar to
that in [10]–[12] is proposed, and its performance is analyzed
for mobile networks. It was shown that the variances of
estimation errors of skews and offsets converge to positive
values when suffering from measurement noise. However,
even a small error in the skew estimates is likely to cause
large error in the estimate of global time t for large values
of t. Thus, frequent restarting of the synchronization process
may be needed with such an algorithm.

In this paper, similar to [16], we formulate the clock
synchronization problem as the estimation of skews and
offsets using noisy difference measurements of log-skews
and offsets. The two types of measurements can be computed
by employing existing pairwise synchronization protocols
via exchanging time-stamped messages. We propose a dis-
tributed algorithm (DiSync) which ensures the variances of



the estimation errors in skews and offsets converge to zero
under mild assumption on node mobility, etc. In addition,
we provide a formula of the limiting bias of the estimates,
which requires further information on the switching sequence
of the graphs. Time varying gains in the algorithm that make
the variances converge to 0 are adopted from stochastic ap-
proximation, used in consensus to attenuate noise [17], [18].
This leads much more accurate estimates of global times
compared to the algorithms mentioned earlier. The gains
need to vary in a specific manner with time, which poses
challenges to implement in a network of unsynchronized
clocks. This is addressed by using an iteration schedule so
that nodes can effectively perform a synchronous update
without having synchronized clocks.

A new type of virtual time-synchronization protocols has
been proposed recently. They let nodes estimate a common
virtual global time that may not be related to the time of any
clock [1], [19]. These algorithms are potentially applicable to
mobile networks. However, these approaches are not useful
when nodes want to know a true global time, not just a virtual
one.

We evaluate the accuracy of the DiSync algorithm when
applying to global time estimation through Monte Carlo
simulations. Simulations indicate the error of the global time
estimate stays close to 0 for long time intervals. We also
compare the result with ATS algorithm proposed in [1]. Al-
though ATS does not provide a true global time, we compare
the two algorithms in terms of the maximum synchronization
error - the maximum deviation in the estimates of (virtual or
true) global time over two arbitrary nodes. It turns out that
the proposed DiSync algorithm outperforms ATS under this
metric.

II. PROBLEM FORMULATION

The clock synchronization problem is formulated as nodes
estimating their skews and offsets. Most of the nodes cannot
estimate their skews and offsets directly from the reference
node(s) due to limited range of communication. However, it
is possible for a pair of nodes u, v, who can communicate
with each other, to estimate their relative skew αu,v := αu

αv

and relative offset βu,v := βu − βv αu

αv
. The reason for this

terminology is the following relationship τu(t) = αu

αv
τv(t) +

βu−βv αu

αv
, derived from (1). The estimation of relative skews

and offsets is called “pairwise synchronization”. Several pro-
tocols for pairwise synchronization exist using time-stamped
messages [4]–[6]. We assume nodes can estimate relative
skews and offsets by using one of these existing protocols.

Suppose between a pair u and v, node u obtains noisy
estimates α̂u,v, β̂u,v of the parameters αu,v, βu,v by using
a pairwise synchronization protocol. We model the noisy
estimate as α̂u,v = αu,v + esu,v , where esu,v is the estimation
error. Therefore, by αu,v = αu

αv
,

log α̂u,v = logαu − logαv + ξsu,v, (2)

where ξsu,v = log(1 + esu,v
αv

αu
). The quantity obtained

from pairwise synchronization is therefore a noisy difference
measurement of log-skews. If αv/αu ≈ 1, which is usually

the case, and esu,v is small, then the measurement noise ξsu,v
is small. Similarly, the noisy estimate of relative offset is
modeled as β̂u,v = βu,v + eou,v , where eou,v is the error.
Again, by βu,v = βu − βv αu

αv
,

β̂u,v = βu − βv + ξou,v, (3)

which is a noisy difference measurement of the offsets
between the two nodes, with measurement noise ξou,v =
βv(1 − αu

αv
) + eou,v . Due to the term βv(1 − αu

αv
), the

measurement error is biased even if eou,v is zero mean. Since
αu

αv
is close to 1 for most clocks, the bias is usually small.

We see from (2) and (3) that log α̂u,v and β̂u,v are the
noisy measurements of log-skew difference logαu − logαv
and offset difference βu − βv , respectively. We now seek
to estimate the log-skews and offsets of all the nodes in
a distributed manner from these noisy pairwise difference
measurements. Note that once a node estimate its log-skew,
it can recover the skew. Once an estimate of skew and offset
is obtained, it can compute the global time from its local
time.

To facilitate further discussion, we only consider the esti-
mation of scalar valued node variables from noisy difference
measurements. If an algorithm of solving this problem is
available, two copies of the algorithm can be executed in
parallel to obtain both skews and offsets. Let u-th node in
a n-node network have an associated scalar node variable
xu ∈ R, u ∈ V = Vb ∪ Vr = {1, . . . , n}. Nodes
in Vb = {1, . . . , nb} do not know their node variables,
while the reference nodes are the remaining nr nodes in
Vr = {nb+ 1, . . . , n}. Here xu represents log(αu) for skew
estimation and βu for offset estimation. Time is measured
by a discrete time-index k = 0, 1, . . . . The mobile nodes
define a time-varying undirected measurement graph G(k) =
(V ,E(k)), where (u, v) ∈ E(k) if and only if u and v can
obtain a difference measurement of the form

ζu,v(k) = xu − xv + ξu,v(k), (4)

during the time interval between k and k + 1, where ξu(k)
is measurement error. We assume that between u and v,
whoever obtains the measurement first shares it with the
other so that it is available to both u and v. We also follow
the convention that the difference measurement between u
and v that is obtained by the node u is always of xu − xv
while that used by v is always of xv − xu. Since the same
measurement is shared by a pair of neighboring nodes, if v
receives the measurement ζu,v(k) from u, then it converts the
measurement to ζv,u(k) by assigning ζv,u(k) := −ζu,v(k).
For similar reasons, between a pair u and v, the node who
computes ζu,v(k) in node pair u and v is fixed for all time
k. This can be achieved by comparing the magnitude of the
index of nodes. For example, if u > v, then u computes
ζu,v(k) first and then sends it to v. The neighbors of u
at k, denoted by Nu(k), is the set of nodes that u has an
edge with in the measurement graph G(k). We assume that
if v ∈ Nu(k), then u and v can also exchange information
through wireless communication at time k.



Now the reformulated problem is to estimate the node
variables xu, u ∈ Vb, by using the difference measurements
ζu,v(k), (u, v) ∈ E(k) that become available over time. We
assume nr ≥ 1 (i.e., there exists a least one reference node),
otherwise the problem is indeterminate up to a constant.

III. THE DISYNC ALGORITHM

We first present an iterative algorithm that nodes can
use to solve the problem of node variable estimation from
noisy difference measurements in a distributed manner. Since
nodes do not have synchronized clocks, iterative updates
have to be performed asynchronously. Each node u ∈ Vb

keeps its local iteration index ku and maintains an estimate
x̂u(ku) ∈ R of its node variable xu in its local memory. The
estimates can be initialized to arbitrary values. In executing
the algorithm, node u starts its i-th iteration at a pre-
specified local time τ (i), for i = 0, 1, . . . , which will be
described in Section III-.1. Then, node u obtains current
estimates x̂v(ku) along with the measurements ζu,v(ku) from
its current neighbors v ∈ Nu(ku). After a fixed time length
δt (measured in local time), node u updates its new estimate
based on current measurements and neighbors’ estimates by
using the following update law:

x̂u(ku + 1) = x̂u(ku)+

m(ku)
∑

v∈Nu(ku)

auv(ku)(x̂v(ku) + ζu,v(ku)− x̂u(ku));

(5)

where the time varying gain m(·) : Z+ → R+ has to be
specified to all nodes a-priori. Note that when Nu(ku) = ∅,
x̂u(ku+1) = x̂u(ku). The choice of m(·) will play a crucial
role in the convergence of the algorithm and will be described
in Section IV. In this paper, we let weight auv(ku) = 1 if
(u, v) ∈ E(ku). The reference nodes take part by helping
their neighbors obtain difference measurements, and keep
their variables at 0 for all the time. After the update, node u
increments its local iteration index ku by 1. The algorithm
is summarized in Algorithm 1. Note that since obtaining
difference measurements requires exchanging time-stamped
messages, current estimates can be easily exchanged during
the process of obtaining new measurements.

1) Iteration schedule and synchronous view: We will later
describe that the gains m(·) is chosen to be a decreasing
function of time, which helps reduce the effect of mea-
surement noise. This is a well-known idea in stochastic
approximation. However, using this idea in a network of
unsynchronized clocks presents an unique challenge since no
node has a notion of a common time index, at least in the
initial phase when they do not have good estimates. If nodes
waits for a constant length of time (measured in their local
clocks) before starting a new iteration, a node with faster
skew might finish the (i+ 1)-th iteration while a node with
slower skew hasn’t even finished the i-th iteration. Therefore,
specifying a function m(·) to all the nodes does not ensure

Algorithm 1 DiSync algorithm at node u

1: while u is performing time synchronization do
2: if Local time τu = τ (i), i = 0, 1, . . . then
3: u collects current local indices kv from neighbors v ∈ Nu(ku).
4: for all v ∈ Nu(ku) do
5: if ku = kv and u does not have ζu,v(ku) then
6: 1.u and v perform pairwise communication;
7: 2.u saves ζu,v(ku) and x̂v(ku); v saves ζv,u(kv) and

x̂u(kv);
8: else
9: u and v stop the communication;

10: end if
11: end for
12: end if
13: if τu = τ (i) + δt, i = 0, 1, . . . then
14: if Nu(ku) 6= ∅ then
15: u updates x̂u(ku + 1) using (5);
16: else
17: x̂u(ku + 1) = x̂u(ku);
18: end if
19: u updates, ku=ku+1;
20: end if
21: end while

that nodes use the same gain at the same (global) interval,
which is required for the theoretical guarantees of stochastic
approximation to hold.

This problem is ameliorated by providing the nodes a
priori the sequence of local time instants τ (i), i = 0, 1 . . .
mentioned earlier. This sequence is called an iteration sched-
ule, and the formula for computing it is described below.
Let the skews and offsets of all clocks be lower and upper
bounded by those in two fictitious clocks cL and cH , such
that αcL ≤ αu ≤ αcH , βcL ≤ βu ≤ βcH . Therefore
τcL(t) ≤ τu(t) ≤ τcH (t) for all u ∈ V . The formula for
calculating τ (i) is

τ (i+1) =
αcH
αcL

(τ (i) + δt− βcL) + βcH , (6)

where τ (0) has to be chosen such that τ (0) > βcH .
This schedule ensures that nodes operating on their un-
synchronized local clocks still perform updates in an ef-
fectively synchronous manner. To see this, define I(i) :=

(
τ(i)−βcH

αcH
,
τ(i+1)−βcH

αcH
) as a global interval and I(i)u :=

( τ
(i)−βu

αu
, τ

(i)+δt−βu

αu
) as the global time interval with respect

to i-th local iteration of node u. Eq. (6) guarantees that, at
each i, I(i)u ⊂ I(i) for all u ∈ V . In other words, there
exists a sequence of global time intervals such that the i-
th global interval contains, and only contains, the i-th local
iteration (in global time) of all u ∈ V . We emphasize that
τ (i) is the same for all nodes and every node u starts and
ends its i-th iteration at the same local time instants τ (i) and
τ (i) + δt. Although we don’t know real skews and offsets,
we can still pick fairly safe values for αcH

αcL
, βcL and βcH ,

which is described in the technical report [20].
Due to the use of the iteration schedule, the DiSync

algorithm can be now analyzed as if it is executed by all
nodes synchronously.



IV. CONVERGENCE ANALYSIS

In this section we consider only the synchronous version
of the algorithm using global index k. We rewrite (5) as

x̂u(k + 1) = x̂u(k)+

m(k)
∑

v∈Nu(k)

auv(k)(x̂v(k) + ζu,v(k)− x̂u(k)). (7)

Now define the estimation error as eu(k) := x̂u(k) − xu.
Eq. (7) reduces to the following using (4):

eu(k + 1) =

eu(k) +m(k)
∑

v∈Nu(k)

auv(k)(ev(k)− eu(k) + εu,v(k)).

(8)

In order to pursue further analysis, we introduce some
stipulations and notations. First, we let auv(k) = 0 for
v /∈ Nu(k). Then, the n × n Laplacian matrix L(k) of
the graph G(k) is defined as Luv(k) =

∑n
v=1 auv(k) if

u = v, and Luv(k) = −auv(k) if u 6= v. By removing
the rows and columns of L(k) with respect to reference
nodes, we get the nb × nb principle submatrix Lb(k) (so
called grounded or Dirichlet Laplacian matrix [21]). Let
e(k) := [e1(k), . . . , enb

(k)]T , the corresponding state space
form of the estimation error is

e(k + 1) = (I −m(k)Lb(k))e(k) +m(k)D(k)ε(k), (9)

where

ε(k) := [ε̄1(k)T , . . . , ε̄nb (k)T ]T , ε̄u(k) := [εu,1(k), . . . εu,n(k)]T ,

D(k) := diag(ā1(k), . . . , ānb (k)), āu(k) := [au,1(k), . . . , au,n(k)],

where εu,u(k) /∈ ε̄u(k) and au,u(k) /∈ āu(k). Note that
when auv(k) = 0, εu,v(k) is a random variable with the
same mean and variance as the measurement noise on any
existing edge. Moreover, recall that once a node u computes
measurement ζu,v(k), it sends this measurement to v. Thus
εu,v(k) = −εv,u(k).

Assumption 1: Measurement noise vector ε(k) is with
mean E[ε(k)] = γ and bounded second moment, i.e.
E[‖ε(k)‖2] <∞, where ‖ · ‖ denotes 2-norm. Furthermore,
ε(k) and ε(j) are independent for k 6= j. In addition, {ε(k)}
is independent of e(0), where E‖e(0)‖2 <∞.

Assumption 2: The non-increasing positive sequence
{m(k)} (step size of the stochastic approximation) is chosen
as m(k) = c1

k+c2
, where c1, c2 are constant real num-

bers. Therefore, m(k) satisfies
∑∞
k=0m(k) = ∞ and∑∞

k=0m
2(k) <∞.

Assumption 3: There exists d ∈ N s.t. for any t ≥ 0,Ĝdt :=⋃t+d−1
k=t G(k) = (V ,

⋃t+d−1
k=t E(k)) is connected, where

E(k) is set of edges in G(k).
Assumption 4: The limits L̄, L̄b, D̄ defined below exist:

L̄ := limt→∞
1
t

∑t
k=0 L(k), L̄b := limt→∞

1
t

∑t
k=0 Lb(k),

D̄ := limt→∞
1
t

∑t
k=0D(k).

Remark 1: 1) Assumption 3 implies that information
can go from any node to the rest of the nodes within
a fixed bounded length of time. In other words, nodes

are connected for an infinite number of times. Fur-
thermore, as G(k) is bidirectional, another equiva-
lent assumption is that Ĝdt contains a spanning tree.
The proposed algorithm is also robust to permanently
adding or deleting nodes in case the new resulting
graph satisfies the assumption.

2) To understand the meaning of Assumption 4, define
the finite state space G = {G1, . . . ,GN} as the set of
graphs that can occur over time. If the sequence of
G(k) can be divided into a sequence of finite intervals
Ij , j = 1, 2, . . . , such that the percentage of times that
each state Gk occurs is fixed in all except finitely many
such intervals Ij , then L̄, L̄b and D̄ exist. Another
example is that the state Gi occurs according to a
sample path of a stationary ergodic process. In the
end, denote sets of matrices Lb = {Lb1, . . . , LbN} and
D = {D1, . . . , DN}, where Lbi and Di correspond to
Gi ∈ G. If the percentage of all states occurring is
π = {π1, π2, . . . , πN}, then

L̄b :=

N∑
i=1

πiLbi, D̄ :=

N∑
i=1

πiDi (10)

Theorem 1: Under Assumption 1-4, the Algorithm 1 en-
sures that e(k) in (9) converges to L̄−1b D̄γ in mean square,
i.e., limk→∞E(‖e(k)− L̄−1b D̄γ‖2) = 0. �

The theorem states that under the assumptions, the vari-
ance of the estimation error decays to 0. If additionally all
the difference measurements are unbiased (γ = 0), then the
bias of the estimates converge to 0 as well. Due to limited
space, we include the proof in the technical report [20].

V. NUMERICAL EVALUATION OF TIME
SYNCHRONIZATION ACCURACY WITH DISYNC

We now examine the performance of the DiSync algorithm
of performing clock synchronization. To simulate a realistic
scenario, we use a pairwise synchronization algorithm to
generate difference measurements. Random delays during
the exchange of time stamped message directly determine
the level of noise in the resulting difference measurements
for the pairwise synchronization phase, which ultimately
determines the clock synchronization accuracy. Since we
directly employ a pairwise synchronization protocol, we do
not know if the noise in the difference measurements of
log-skew and offsets are unbiased or not, and what the
noise variance is. Therefore, the communication delays are
chosen to be realistic based on available information so that
the noise levels are close to what are expected to occur
in practice. The setting of the simulations is such that the
assumptions of Theorem 1 are either unlikely to be satisfied
or not possible to check. Simulations are performed in a 50-
node mobile network within a 100m × 100m square field.
Nodes’ motions are generated according to the widely used
Random Direction (RD) mobility model [22]. A pair of
nodes can communicate when distance between them is less
than 15m. When within communication range, they exchange
time stamped messages to perform pairwise synchronization



Fig. 1. Two graphs that occur during one simulation with 50 nodes moving
according to the random direction mobility model.

to obtain difference measurements of log skews and offsets.
Due to random motion, the connectivity assumption of
Theorem 1 is violated.

The true skews and offsets of 49 nodes are picked
uniformly from [1 − 2 × 10−5, 1 + 2 × 10−5] and
[−10−2, 10−2]sec respectively according to [9]. The single
reference node (50th) has skew 1 and offset 0. The update
interval (also called synchronization period) is chosen as
1 sec, i.e., tk+1 − tk = 1. For the sake of convenience,
simulations are carried out in a synchronous fashion.

A. More details on pairwise synchronization

In this evaluation, we select the pairwise synchronization
algorithm proposed in [4] to compute the relative skew αu,v
and relative offset βu,v . The difference measurements βu−βv
and log(αu) − log(αv) are then obtained from these as
described in Section II. According to [4], at the beginning of
the kth interval, node u sends a message to v that contains
the value of the local time at u when the message is sent:
τ
(1)
u . When node v receives this message, it records the

local time of reception: τ (1)v . After a waiting period, node
v sends a message back to u that contains both τ

(2)
v and

τ
(1)
v . When it arrives at u, node u again records the local

time of reception: τ (2)u . Two nodes u and v in communication
range performs this procedure, called two-way time-stamped
message exchange, twice - at the beginning and in the
middle of each synchronization period. At the end of the
k-th synchronization period, node u uses the obtained eight
time stamps {τ (i)u , τ

(i)
v } for i = 1, . . . 4 to estimate αu,v(k)

and βu,v(k) via the formula provided in [4]. Finally, node u
sends back to v these estimates.

The random errors in the estimated αu,v(k) and βu,v(k)
come from the random delay during the message exchange.
We assume the random delay is Gaussian distributed with
mean 150µsec and standard deviation 10µsec [9]. The
relation between the statistics of the delays and that of
the measurement noise defined in Section II are complex.
In simulations, we simply use the pairwise synchronization
algorithm and the resulting relative skew and offset estimates,
whatever the noise is, to estimate absolute skews and offsets.

B. DiSync performance in estimating global time

We conduct 500 Monte Carlo simulations. Figure 1 shows
two snapshots of the network during a simulation. As we can
see, only a limited number of nodes can communicate with
each other. In the following plots, the x-axis is discrete in
time, i.e., tk for k = 1, 2, . . . . Recall that auv(k) = 1 if
(u, v) ∈ E(k) for all k. The step size is chosen as m(k) =
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Fig. 2. Empirically estimated mean and variance of the estimation error of
skews: for DiSync algorithm, the error is defined as α̂u(t)−αu; for ATS,
the error is defined as αu%̂u(t)−αv %̂v(t), i.e., the difference of estimated
skew of virtual clock between node u and v. Note that in (b), y-axis is in
logarithm scale.
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Fig. 3. The estimation error of global time of two nodes in DiSync.

1.5
k+3 . Figure 2(a) and 2(b) show the mean and variance of
estimation error of skews for two nodes. The variance is seen
to converge to 0. Figure 3 shows the global time estimation
error, t̂u− t as a function of t for two nodes. After an initial
transient period, the estimation error of the global time is
quite small. The extremely accurate skew estimates obtained
by DiSync is crucial in getting good global time estimates,
since even a tiny error in the skew estimate leads to a large
error in the prediction of global time t over time.

C. Comparison between DiSync and ATS

In ATS [1], each node u estimates the virtual global time
using t̂ru(t) = %̂u(k)τu(t) + ôu(k) for tk ≤ t ≤ tk+1, where
variables %̂u(k) and ôu(k) can be thought of as the skew and
offset of a virtual global time respect to the local time of u
during interval k. Each node u updates its %̂u(k) and ôu(k)
using %̂v(k), t̂rv(k), α̂uv(k) from its neighbors, where α̂uv(k)
is the estimated relative skew. α̂uv(k) is obtained by pairwise
communication between u and v during k-th update interval,
as part of the ATS algorithm. This is done as follows. Two
time-stamped messages are sent from node v to node u: one
at the beginning of k-th interval and the other one in the
middle of the interval. Note that no return messages from u
to v is required. The computation of α̂uv(k) is performed by
a low-pass filter as provided in ATS: α̂u,v(k) = ρα̂u,v(k −
1) + (1 − ρ)

τ(1)
v −τ

(2)
v

τ
(1)
u −τ(2)

u

, where ρ is a tuning parameter and
chosen as 0.2 (same value used in ATS). It has been shown
that limk→∞ αu%̂u(k) = ᾱ, limk→∞ ôu(k) + βu%̂(k) = β̄,
where ᾱ and β̄ is the skew and offset of the virtual clock with
respect to t. The ATS algorithm ensures that the estimated
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Fig. 4. Maximum synchronization error along time in one experiment.

virtual global times in all nodes are eventually equal, i.e.,
limt→∞ t̂ru(t) = t̂rv(t) for all u and v, under the assumption
that the time stamps are exchanged without random delay.

To compare with the proposed DiSync algorithm under
identical conditions, we add random delay to τ

(i)
u for i =

1, 2. The delay parameters are the same as those used during
the simulation of the DiSync algorithm. In addition, since
ATS does not estimate the clock time at any of the nodes, we
use the metric “maximum synchronization error” to compare
ATS with DiSync. They are defined as maxu,v |t̂u(tk) −
t̂v(tk)| and maxu,v |t̂ru(tk) − t̂rv(tk)| for all u and v, in
DiSync and ATS respectively.

Figure 4 compares maximum synchronization error for
both the algorithms. The maximum synchronization error de-
creases faster in ATS at the beginning. However, the superior
robustness to the measurement noise of the DiSync algorithm
helps it outperform ATS after about 300 sec. This higher
robustness is also seen in Figure 2(a) and 2(b). While
the variance of the estimation errors of skews and offsets
converge to zero for DiSync, they converge to non-zero
constants in case of ATS.

VI. CONCLUSION

We proposed DiSync, a distributed asynchronous protocol
for clock synchronization in mobile ad-hoc networks. Clock
synchronization is performed in two stages, first by estimat-
ing the skews and offsets (with respect to a global clock) of
the nodes and then using them to estimate the global time.
The estimation error of skews and offsets is proved to be
mean square convergent. Numerical evaluation demonstrates
that nodes can estimate the time of global clock accurately.
Simulations also showed that DiSync outperforms ATS in
terms of maximum synchronization error.

The iteration schedule proposed here to impose implic-
itly synchronized updates requires some knowledge of the
bounds on skews and offsets of all the nodes. With poor
bounds, especially on the skews, the time interval required
to perform one update step grows without bound as time in-
creases. We believe this potential pitfall can be fixed by using
the estimated skews after some time has passed (instead of
pre-specified bounds on skews). Since the DiSync algorithm
provides highly accurate skew estimates, doing so will ensure
synchronous updates while keeping the time interval between
updates from growing. The effectiveness of this strategy will
be studied in future work.
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